Complete Parameter List

Full Parameter List of Rover latest V4.1.0 dev

You can change and check the parameters for another version:

This is a complete list of the parameters which can be set (e.g. via the MAVLink protocol) to control vehicle behaviour. They are stored in persistent storage on the vehicle.

This list is automatically generated from the latest ardupilot source code, and so may contain parameters which are not yet in the stable released versions of the code.

Rover Parameters

FORMAT_VERSION: Eeprom format version number

Note: This parameter is for advanced users

This value is incremented when changes are made to the eeprom format

LOG_BITMASK: Log bitmask

Note: This parameter is for advanced users

Bitmap of what log types to enable in on-board logger. This value is made up of the sum of each of the log types you want to be saved. On boards supporting microSD cards or other large block-storage devices it is usually best just to enable all log types by setting this to 65535. The individual bits are ATTITUDE_FAST=1, ATTITUDE_MEDIUM=2, GPS=4, PerformanceMonitoring=8, ControlTuning=16, NavigationTuning=32, Mode=64, IMU=128, Commands=256, Battery=512, Compass=1024, TECS=2048, Camera=4096, RCandServo=8192, Rangefinder=16384, Arming=32768, FullLogs=65535

Bitmask Values
Bit Meaning
0 ATTITUDE_FAST
1 ATTITUDE_MED
2 GPS
3 PM
4 THR
5 NTUN
7 IMU
8 CMD
9 CURRENT
10 RANGEFINDER
11 COMPASS
12 CAMERA
13 STEERING
14 RC
15 ARM/DISARM
19 IMU_RAW
Value Meaning
0 Disabled
65535 Default

RST_SWITCH_CH: Reset Switch Channel

Note: This parameter is for advanced users

RC channel to use to reset to last flight mode after geofence takeover.

INITIAL_MODE: Initial driving mode

Note: This parameter is for advanced users

This selects the mode to start in on boot. This is useful for when you want to start in AUTO mode on boot without a receiver. Usually used in combination with when AUTO_TRIGGER_PIN or AUTO_KICKSTART.

Values
Value Meaning
0 Manual
1 Acro
3 Steering
4 Hold
5 Loiter
6 Follow
7 Simple
10 Auto
11 RTL
12 SmartRTL
15 Guided

TELEM_DELAY: Telemetry startup delay

The amount of time (in seconds) to delay radio telemetry to prevent an Xbee bricking on power up

Increment Range Units
1 0 - 30 seconds

GCS_PID_MASK: GCS PID tuning mask

Note: This parameter is for advanced users

bitmask of PIDs to send MAVLink PID_TUNING messages for

Bitmask Values
Bit Meaning
0 Steering
1 Throttle
2 Pitch
3 Left Wheel
4 Right Wheel
5 Sailboat Heel
Value Meaning
0 None
1 Steering
2 Throttle
4 Pitch
8 Left Wheel
16 Right Wheel
32 Sailboat Heel

AUTO_TRIGGER_PIN: Auto mode trigger pin

pin number to use to enable the throttle in auto mode. If set to -1 then don’t use a trigger, otherwise this is a pin number which if held low in auto mode will enable the motor to run. If the switch is released while in AUTO then the motor will stop again. This can be used in combination with INITIAL_MODE to give a ‘press button to start’ rover with no receiver.

Values
Value Meaning
-1 Disabled
0 APM TriggerPin0
1 APM TriggerPin1
2 APM TriggerPin2
3 APM TriggerPin3
4 APM TriggerPin4
5 APM TriggerPin5
6 APM TriggerPin6
7 APM TriggerPin7
8 APM TriggerPin8
50 Pixhawk TriggerPin50
51 Pixhawk TriggerPin51
52 Pixhawk TriggerPin52
53 Pixhawk TriggerPin53
54 Pixhawk TriggerPin54
55 Pixhawk TriggerPin55

AUTO_KICKSTART: Auto mode trigger kickstart acceleration

X acceleration in meters/second/second to use to trigger the motor start in auto mode. If set to zero then auto throttle starts immediately when the mode switch happens, otherwise the rover waits for the X acceleration to go above this value before it will start the motor

Increment Range Units
0.1 0 - 20 meters per square second

CRUISE_SPEED: Target cruise speed in auto modes

The target speed in auto missions.

Increment Range Units
0.1 0 - 100 meters per second

CRUISE_THROTTLE: Base throttle percentage in auto

The base throttle percentage to use in auto mode. The CRUISE_SPEED parameter controls the target speed, but the rover starts with the CRUISE_THROTTLE setting as the initial estimate for how much throttle is needed to achieve that speed. It then adjusts the throttle based on how fast the rover is actually going.

Increment Range Units
1 0 - 100 percent

PILOT_STEER_TYPE: Pilot input steering type

Set this to 1 for skid steering input rovers (tank track style in RC controller). When enabled, servo1 is used for the left track control, servo3 is used for right track control

Values
Value Meaning
0 Default
1 Two Paddles Input
2 Direction reversed when backing up
3 Direction unchanged when backing up

FS_ACTION: Failsafe Action

What to do on a failsafe event

Values
Value Meaning
0 Nothing
1 RTL
2 Hold
3 SmartRTL or RTL
4 SmartRTL or Hold

FS_TIMEOUT: Failsafe timeout

The time in seconds that a failsafe condition must persist before the failsafe action is triggered

Increment Range Units
0.5 1 - 100 seconds

FS_THR_ENABLE: Throttle Failsafe Enable

The throttle failsafe allows you to configure a software failsafe activated by a setting on the throttle input channel to a low value. This can be used to detect the RC transmitter going out of range. Failsafe will be triggered when the throttle channel goes below the FS_THR_VALUE for FS_TIMEOUT seconds.

Values
Value Meaning
0 Disabled
1 Enabled
2 Enabled Continue with Mission in Auto

FS_THR_VALUE: Throttle Failsafe Value

The PWM level on the throttle channel below which throttle failsafe triggers.

Increment Range
1 910 - 1100

FS_GCS_ENABLE: GCS failsafe enable

Enable ground control station telemetry failsafe. When enabled the Rover will execute the FS_ACTION when it fails to receive MAVLink heartbeat packets for FS_TIMEOUT seconds.

Values
Value Meaning
0 Disabled
1 Enabled
2 Enabled Continue with Mission in Auto

FS_CRASH_CHECK: Crash check action

What to do on a crash event. When enabled the rover will go to hold if a crash is detected.

Values
Value Meaning
0 Disabled
1 Hold
2 HoldAndDisarm

FS_EKF_ACTION: EKF Failsafe Action

Note: This parameter is for advanced users

Controls the action that will be taken when an EKF failsafe is invoked

Values
Value Meaning
0 Disabled
1 Hold

FS_EKF_THRESH: EKF failsafe variance threshold

Note: This parameter is for advanced users

Allows setting the maximum acceptable compass and velocity variance

Values
0.6:Strict,0.8:Default,1.0:Relaxed

MODE_CH: Mode channel

Note: This parameter is for advanced users

RC Channel to use for driving mode control

MODE1: Mode1

Driving mode for switch position 1 (910 to 1230 and above 2049)

Values
Value Meaning
0 Manual
1 Acro
3 Steering
4 Hold
5 Loiter
6 Follow
7 Simple
10 Auto
11 RTL
12 SmartRTL
15 Guided

MODE2: Mode2

Driving mode for switch position 2 (1231 to 1360)

Values
Value Meaning
0 Manual
1 Acro
3 Steering
4 Hold
5 Loiter
6 Follow
7 Simple
10 Auto
11 RTL
12 SmartRTL
15 Guided

MODE3: Mode3

Driving mode for switch position 3 (1361 to 1490)

Values
Value Meaning
0 Manual
1 Acro
3 Steering
4 Hold
5 Loiter
6 Follow
7 Simple
10 Auto
11 RTL
12 SmartRTL
15 Guided

MODE4: Mode4

Driving mode for switch position 4 (1491 to 1620)

Values
Value Meaning
0 Manual
1 Acro
3 Steering
4 Hold
5 Loiter
6 Follow
7 Simple
10 Auto
11 RTL
12 SmartRTL
15 Guided

MODE5: Mode5

Driving mode for switch position 5 (1621 to 1749)

Values
Value Meaning
0 Manual
1 Acro
3 Steering
4 Hold
5 Loiter
6 Follow
7 Simple
10 Auto
11 RTL
12 SmartRTL
15 Guided

MODE6: Mode6

Driving mode for switch position 6 (1750 to 2049)

Values
Value Meaning
0 Manual
1 Acro
3 Steering
4 Hold
5 Loiter
6 Follow
7 Simple
10 Auto
11 RTL
12 SmartRTL
15 Guided

TURN_MAX_G: Turning maximum G force

The maximum turning acceleration (in units of gravities) that the rover can handle while remaining stable. The navigation code will keep the lateral acceleration below this level to avoid rolling over or slipping the wheels in turns

Increment Range Units
0.01 0.1 - 10 standard acceleration due to gravity

SYSID_ENFORCE: GCS sysid enforcement

Note: This parameter is for advanced users

This controls whether packets from other than the expected GCS system ID will be accepted

Values
Value Meaning
0 NotEnforced
1 Enforced

TURN_RADIUS: Turn radius of vehicle

Turn radius of vehicle in meters while at low speeds. Lower values produce tighter turns in steering mode

Increment Range Units
0.1 0 - 10 meters

ACRO_TURN_RATE: Acro mode turn rate maximum

Acro mode turn rate maximum

Increment Range Units
1 0 - 360 degrees per second

RTL_SPEED: Return-to-Launch speed default

Return-to-Launch speed default. If zero use WP_SPEED or CRUISE_SPEED.

Increment Range Units
0.1 0 - 100 meters per second

FRAME_CLASS: Frame Class

Frame Class

Values
Value Meaning
0 Undefined
1 Rover
2 Boat
3 BalanceBot

BAL_PITCH_MAX: BalanceBot Maximum Pitch

Pitch angle in degrees at 100% throttle

Increment Range Units
0.1 0 - 5 degrees

CRASH_ANGLE: Crash Angle

Pitch/Roll angle limit in degrees for crash check. Zero disables check

Increment Range Units
1 0 - 60 degrees

FRAME_TYPE: Frame Type

Frame Type

RebootRequired Values
True
Value Meaning
0 Undefined
1 Omni3
2 OmniX
3 OmniPlus

LOIT_TYPE: Loiter type

Loiter behaviour when moving to the target point

Values
Value Meaning
0 Forward or reverse to target point
1 Always face bow towards target point
2 Always face stern towards target point

SIMPLE_TYPE: Simple_Type

Simple mode types

RebootRequired Values
True
Value Meaning
0 InitialHeading
1 CardinalDirections

LOIT_RADIUS: Loiter radius

Vehicle will drift when within this distance of the target position

Increment Range Units
1 0 - 20 meters

MIS_DONE_BEHAVE: Mission done behave

Behaviour after mission completes

Values
Value Meaning
0 Hold
1 Loiter
2 Acro

BAL_PITCH_TRIM: Balance Bot pitch trim angle

Balance Bot pitch trim for balancing. This offsets the tilt of the center of mass.

Increment Range Units
0.1 -2 - 2 degrees

STICK_MIXING: Stick Mixing

Note: This parameter is for advanced users

When enabled, this adds steering user stick input in auto modes, allowing the user to have some degree of control without changing modes.

Values
Value Meaning
0 Disabled
1 Enabled

SPEED_MAX: Speed maximum

Note: This parameter is for advanced users

Maximum speed vehicle can obtain at full throttle. If 0, it will be estimated based on CRUISE_SPEED and CRUISE_THROTTLE.

Increment Range Units
0.1 0 - 30 meters per second

LOIT_SPEED_GAIN: Loiter speed gain

Note: This parameter is for advanced users

Determines how agressively LOITER tries to correct for drift from loiter point. Higher is faster but default should be acceptable.

Increment Range
0.01 0 - 5

FS_OPTIONS: Rover Failsafe Options

Note: This parameter is for advanced users

Bitmask to enable Rover failsafe options

Bitmask Values
Bit Meaning
0 Failsafe enabled in Hold mode
Value Meaning
0 None
1 Failsafe enabled in Hold mode

CH7_OPTION: Channel 7 option

What to do use channel 7 for

Values
Value Meaning
0 Nothing
1 SaveWaypoint
2 LearnCruiseSpeed
3 ArmDisarm
4 Manual
5 Acro
6 Steering
7 Hold
8 Auto
9 RTL
10 SmartRTL
11 Guided
12 Loiter

AUX_CH: Auxiliary switch channel

Note: This parameter is for advanced users

RC Channel to use for auxiliary functions including saving waypoints

PIVOT_TURN_ANGLE: Pivot turn angle

Navigation angle threshold in degrees to switch to pivot steering. This allows you to setup a skid steering rover to turn on the spot in auto mode when the angle it needs to turn it greater than this angle. An angle of zero means to disable pivot turning. Note that you will probably also want to set a low value for WP_RADIUS to get neat turns.

Increment Range Units
1 0 - 360 degrees

PIVOT_TURN_RATE: Pivot turn rate

Desired pivot turn rate in deg/s.

Increment Range Units
1 0 - 360 degrees per second

AFS_ Parameters

AFS_ENABLE: Enable Advanced Failsafe

Note: This parameter is for advanced users

This enables the advanced failsafe system. If this is set to zero (disable) then all the other AFS options have no effect

AFS_MAN_PIN: Manual Pin

Note: This parameter is for advanced users

This sets a digital output pin to set high when in manual mode

AFS_HB_PIN: Heartbeat Pin

Note: This parameter is for advanced users

This sets a digital output pin which is cycled at 10Hz when termination is not activated. Note that if a FS_TERM_PIN is set then the heartbeat pin will continue to cycle at 10Hz when termination is activated, to allow the termination board to distinguish between autopilot crash and termination.

Values
Value Meaning
-1 Disabled
49 BB Blue GP0 pin 4
50 AUXOUT1
51 AUXOUT2
52 AUXOUT3
53 AUXOUT4
54 AUXOUT5
55 AUXOUT6
57 BB Blue GP0 pin 3
113 BB Blue GP0 pin 6
116 BB Blue GP0 pin 5

AFS_WP_COMMS: Comms Waypoint

Note: This parameter is for advanced users

Waypoint number to navigate to on comms loss

AFS_WP_GPS_LOSS: GPS Loss Waypoint

Note: This parameter is for advanced users

Waypoint number to navigate to on GPS lock loss

AFS_TERMINATE: Force Terminate

Note: This parameter is for advanced users

Can be set in flight to force termination of the heartbeat signal

AFS_TERM_ACTION: Terminate action

Note: This parameter is for advanced users

This can be used to force an action on flight termination. Normally this is handled by an external failsafe board, but you can setup APM to handle it here. Please consult the wiki for more information on the possible values of the parameter

AFS_TERM_PIN: Terminate Pin

Note: This parameter is for advanced users

This sets a digital output pin to set high on flight termination

Values
Value Meaning
-1 Disabled
49 BB Blue GP0 pin 4
50 AUXOUT1
51 AUXOUT2
52 AUXOUT3
53 AUXOUT4
54 AUXOUT5
55 AUXOUT6
57 BB Blue GP0 pin 3
113 BB Blue GP0 pin 6
116 BB Blue GP0 pin 5

AFS_AMSL_LIMIT: AMSL limit

Note: This parameter is for advanced users

This sets the AMSL (above mean sea level) altitude limit. If the pressure altitude determined by QNH exceeds this limit then flight termination will be forced. Note that this limit is in meters, whereas pressure altitude limits are often quoted in feet. A value of zero disables the pressure altitude limit.

Units
meters

AFS_AMSL_ERR_GPS: Error margin for GPS based AMSL limit

Note: This parameter is for advanced users

This sets margin for error in GPS derived altitude limit. This error margin is only used if the barometer has failed. If the barometer fails then the GPS will be used to enforce the AMSL_LIMIT, but this margin will be subtracted from the AMSL_LIMIT first, to ensure that even with the given amount of GPS altitude error the pressure altitude is not breached. OBC users should set this to comply with their D2 safety case. A value of -1 will mean that barometer failure will lead to immediate termination.

Units
meters

AFS_QNH_PRESSURE: QNH pressure

Note: This parameter is for advanced users

This sets the QNH pressure in millibars to be used for pressure altitude in the altitude limit. A value of zero disables the altitude limit.

Units
hectopascal

AFS_MAX_GPS_LOSS: Maximum number of GPS loss events

Note: This parameter is for advanced users

Maximum number of GPS loss events before the aircraft stops returning to mission on GPS recovery. Use zero to allow for any number of GPS loss events.

AFS_MAX_COM_LOSS: Maximum number of comms loss events

Note: This parameter is for advanced users

Maximum number of comms loss events before the aircraft stops returning to mission on comms recovery. Use zero to allow for any number of comms loss events.

AFS_GEOFENCE: Enable geofence Advanced Failsafe

Note: This parameter is for advanced users

This enables the geofence part of the AFS. Will only be in effect if AFS_ENABLE is also 1

AFS_RC: Enable RC Advanced Failsafe

Note: This parameter is for advanced users

This enables the RC part of the AFS. Will only be in effect if AFS_ENABLE is also 1

AFS_RC_MAN_ONLY: Enable RC Termination only in manual control modes

Note: This parameter is for advanced users

If this parameter is set to 1, then an RC loss will only cause the plane to terminate in manual control modes. If it is 0, then the plane will terminate in any flight mode.

AFS_DUAL_LOSS: Enable dual loss terminate due to failure of both GCS and GPS simultaneously

Note: This parameter is for advanced users

This enables the dual loss termination part of the AFS system. If this parameter is 1 and both GPS and the ground control station fail simultaneously, this will be considered a “dual loss” and cause termination.

AFS_RC_FAIL_TIME: RC failure time

Note: This parameter is for advanced users

This is the time in seconds in manual mode that failsafe termination will activate if RC input is lost. For the OBC rules this should be (1.5). Use 0 to disable.

Units
seconds

AFS_MAX_RANGE: Max allowed range

Note: This parameter is for advanced users

This is the maximum range of the vehicle in kilometers from first arming. If the vehicle goes beyond this range then the TERM_ACTION is performed. A value of zero disables this feature.

Units
kilometers

AHRS_ Parameters

AHRS_GPS_GAIN: AHRS GPS gain

Note: This parameter is for advanced users

This controls how much to use the GPS to correct the attitude. This should never be set to zero for a plane as it would result in the plane losing control in turns. For a plane please use the default value of 1.0.

Increment Range
.01 0.0 - 1.0

AHRS_GPS_USE: AHRS use GPS for navigation

Note: This parameter is for advanced users

This controls whether to use dead-reckoning or GPS based navigation. If set to 0 then the GPS won’t be used for navigation, and only dead reckoning will be used. A value of zero should never be used for normal flight. Currently this affects only the DCM-based AHRS: the EKF uses GPS whenever it is available.

Values
Value Meaning
0 Disabled
1 Enabled

AHRS_YAW_P: Yaw P

Note: This parameter is for advanced users

This controls the weight the compass or GPS has on the heading. A higher value means the heading will track the yaw source (GPS or compass) more rapidly.

Increment Range
.01 0.1 - 0.4

AHRS_RP_P: AHRS RP_P

Note: This parameter is for advanced users

This controls how fast the accelerometers correct the attitude

Increment Range
.01 0.1 - 0.4

AHRS_WIND_MAX: Maximum wind

Note: This parameter is for advanced users

This sets the maximum allowable difference between ground speed and airspeed. This allows the plane to cope with a failing airspeed sensor. A value of zero means to use the airspeed as is.

Increment Range Units
1 0 - 127 meters per second

AHRS_TRIM_X: AHRS Trim Roll

Compensates for the roll angle difference between the control board and the frame. Positive values make the vehicle roll right.

Increment Range Units
0.01 -0.1745 - +0.1745 radians

AHRS_TRIM_Y: AHRS Trim Pitch

Compensates for the pitch angle difference between the control board and the frame. Positive values make the vehicle pitch up/back.

Increment Range Units
0.01 -0.1745 - +0.1745 radians

AHRS_TRIM_Z: AHRS Trim Yaw

Note: This parameter is for advanced users

Not Used

Increment Range Units
0.01 -0.1745 - +0.1745 radians

AHRS_ORIENTATION: Board Orientation

Note: This parameter is for advanced users

Overall board orientation relative to the standard orientation for the board type. This rotates the IMU and compass readings to allow the board to be oriented in your vehicle at any 90 or 45 degree angle. This option takes affect on next boot. After changing you will need to re-level your vehicle.

Values
Value Meaning
0 None
1 Yaw45
2 Yaw90
3 Yaw135
4 Yaw180
5 Yaw225
6 Yaw270
7 Yaw315
8 Roll180
9 Roll180Yaw45
10 Roll180Yaw90
11 Roll180Yaw135
12 Pitch180
13 Roll180Yaw225
14 Roll180Yaw270
15 Roll180Yaw315
16 Roll90
17 Roll90Yaw45
18 Roll90Yaw90
19 Roll90Yaw135
20 Roll270
21 Roll270Yaw45
22 Roll270Yaw90
23 Roll270Yaw135
24 Pitch90
25 Pitch270
26 Pitch180Yaw90
27 Pitch180Yaw270
28 Roll90Pitch90
29 Roll180Pitch90
30 Roll270Pitch90
31 Roll90Pitch180
32 Roll270Pitch180
33 Roll90Pitch270
34 Roll180Pitch270
35 Roll270Pitch270
36 Roll90Pitch180Yaw90
37 Roll90Yaw270
38 Yaw293Pitch68Roll180
39 Pitch315
40 Roll90Pitch315
100 Custom

AHRS_COMP_BETA: AHRS Velocity Complementary Filter Beta Coefficient

Note: This parameter is for advanced users

This controls the time constant for the cross-over frequency used to fuse AHRS (airspeed and heading) and GPS data to estimate ground velocity. Time constant is 0.1/beta. A larger time constant will use GPS data less and a small time constant will use air data less.

Increment Range
.01 0.001 - 0.5

AHRS_GPS_MINSATS: AHRS GPS Minimum satellites

Note: This parameter is for advanced users

Minimum number of satellites visible to use GPS for velocity based corrections attitude correction. This defaults to 6, which is about the point at which the velocity numbers from a GPS become too unreliable for accurate correction of the accelerometers.

Increment Range
1 0 - 10

AHRS_EKF_TYPE: Use NavEKF Kalman filter for attitude and position estimation

Note: This parameter is for advanced users

This controls which NavEKF Kalman filter version is used for attitude and position estimation

Values
Value Meaning
0 Disabled
2 Enable EKF2
3 Enable EKF3

AHRS_CUSTOM_ROLL: Board orientation roll offset

Note: This parameter is for advanced users

Autopilot mounting position roll offset. Positive values = roll right, negative values = roll left. This parameter is only used when AHRS_ORIENTATION is set to CUSTOM.

Increment Range Units
1 -180 - 180 degrees

AHRS_CUSTOM_PIT: Board orientation pitch offset

Note: This parameter is for advanced users

Autopilot mounting position pitch offset. Positive values = pitch up, negative values = pitch down. This parameter is only used when AHRS_ORIENTATION is set to CUSTOM.

Increment Range Units
1 -180 - 180 degrees

AHRS_CUSTOM_YAW: Board orientation yaw offset

Note: This parameter is for advanced users

Autopilot mounting position yaw offset. Positive values = yaw right, negative values = yaw left. This parameter is only used when AHRS_ORIENTATION is set to CUSTOM.

Increment Range Units
1 -180 - 180 degrees

ARMING_ Parameters

ARMING_REQUIRE: Require Arming Motors

Note: This parameter is for advanced users

Arming disabled until some requirements are met. If 0, there are no requirements (arm immediately). If 1, require rudder stick or GCS arming before arming motors and sends the minimum throttle PWM value to the throttle channel when disarmed. If 2, require rudder stick or GCS arming and send 0 PWM to throttle channel when disarmed. See the ARMING_CHECK_* parameters to see what checks are done before arming. Note, if setting this parameter to 0 a reboot is required to arm the plane. Also note, even with this parameter at 0, if ARMING_CHECK parameter is not also zero the plane may fail to arm throttle at boot due to a pre-arm check failure.

Values
Value Meaning
0 Disabled
1 THR_MIN PWM when disarmed
2 0 PWM when disarmed

ARMING_ACCTHRESH: Accelerometer error threshold

Note: This parameter is for advanced users

Accelerometer error threshold used to determine inconsistent accelerometers. Compares this error range to other accelerometers to detect a hardware or calibration error. Lower value means tighter check and harder to pass arming check. Not all accelerometers are created equal.

Range Units
0.25 - 3.0 meters per square second

ARMING_RUDDER: Arming with Rudder enable/disable

Note: This parameter is for advanced users

Allow arm/disarm by rudder input. When enabled arming can be done with right rudder, disarming with left rudder. Rudder arming only works in manual throttle modes with throttle at zero +- deadzone (RCx_DZ)

Values
Value Meaning
0 Disabled
1 ArmingOnly
2 ArmOrDisarm

ARMING_MIS_ITEMS: Required mission items

Note: This parameter is for advanced users

Bitmask of mission items that are required to be planned in order to arm the aircraft

Bitmask
Bit Meaning
0 Land
1 VTOL Land
2 DO_LAND_START
3 Takeoff
4 VTOL Takeoff
5 Rallypoint

ARMING_CHECK: Arm Checks to Perform (bitmask)

Checks prior to arming motor. This is a bitmask of checks that will be performed before allowing arming. The default is no checks, allowing arming at any time. You can select whatever checks you prefer by adding together the values of each check type to set this parameter. For example, to only allow arming when you have GPS lock and no RC failsafe you would set ARMING_CHECK to 72. For most users it is recommended that you set this to 1 to enable all checks.

Bitmask Values
Bit Meaning
0 All
1 Barometer
2 Compass
3 GPS lock
4 INS
5 Parameters
6 RC Channels
7 Board voltage
8 Battery Level
9 Airspeed
10 Logging Available
11 Hardware safety switch
12 GPS Configuration
13 System
14 Mission
15 Rangefinder
16 Camera
17 AuxAuth
19 FFT
Value Meaning
0 None
1 All
2 Barometer
4 Compass
8 GPS Lock
16 INS(INertial Sensors - accels & gyros)
32 Parameters(unused)
64 RC Channels
128 Board voltage
256 Battery Level
512 Airspeed
1024 LoggingAvailable
2048 Hardware safety switch
4096 GPS configuration
8192 System
16384 Mission
32768 RangeFinder
65536 Camera
131072 AuxAuth
524288 FFT

ARSPD Parameters

ARSPD_TYPE: Airspeed type

Type of airspeed sensor

Values
Value Meaning
0 None
1 I2C-MS4525D0
2 Analog
3 I2C-MS5525
4 I2C-MS5525 (0x76)
5 I2C-MS5525 (0x77)
6 I2C-SDP3X
7 I2C-DLVR-5in
8 UAVCAN
9 I2C-DLVR-10in
10 I2C-DLVR-20in
11 I2C-DLVR-30in
12 I2C-DLVR-60in

ARSPD_USE: Airspeed use

Enables airspeed use for automatic throttle modes and replaces control from THR_TRIM. Continues to display and log airspeed if set to 0. Uses airspeed for control if set to 1. Only uses airspeed when throttle = 0 if set to 2 (useful for gliders with airspeed sensors behind propellers).

Values
Value Meaning
0 DoNotUse
1 Use
2 UseWhenZeroThrottle

ARSPD_OFFSET: Airspeed offset

Note: This parameter is for advanced users

Airspeed calibration offset

Increment
0.1

ARSPD_RATIO: Airspeed ratio

Note: This parameter is for advanced users

Calibrates pitot tube pressure to velocity. Increasing this value will indicate a higher airspeed at any given dynamic pressure.

Increment
0.1

ARSPD_PIN: Airspeed pin

Note: This parameter is for advanced users

The pin number that the airspeed sensor is connected to for analog sensors. Set to 15 on the Pixhawk for the analog airspeed port.

ARSPD_AUTOCAL: Automatic airspeed ratio calibration

Note: This parameter is for advanced users

Enables automatic adjustment of ARSPD_RATIO during a calibration flight based on estimation of ground speed and true airspeed. New ratio saved every 2 minutes if change is > 5%. Should not be left enabled.

ARSPD_TUBE_ORDER: Control pitot tube order

Note: This parameter is for advanced users

Changes the pitot tube order to specify the dynamic pressure side of the sensor. Accepts either if set to 2. Accepts only one side if set to 0 or 1 and can help detect excessive pressure on the static port without indicating positive airspeed.

ARSPD_SKIP_CAL: Skip airspeed calibration on startup

Note: This parameter is for advanced users

This parameter allows you to skip airspeed offset calibration on startup, instead using the offset from the last calibration. This may be desirable if the offset variance between flights for your sensor is low and you want to avoid having to cover the pitot tube on each boot.

Values
Value Meaning
0 Disable
1 Enable

ARSPD_PSI_RANGE: The PSI range of the device

Note: This parameter is for advanced users

This parameter allows you to to set the PSI (pounds per square inch) range for your sensor. You should not change this unless you examine the datasheet for your device

ARSPD_BUS: Airspeed I2C bus

Note: This parameter is for advanced users

Bus number of the I2C bus where the airspeed sensor is connected

Values
Value Meaning
0 Bus0(internal)
1 Bus1(external)
2 Bus2(auxillary)

ARSPD_PRIMARY: Primary airspeed sensor

Note: This parameter is for advanced users

This selects which airspeed sensor will be the primary if multiple sensors are found

Values
Value Meaning
0 FirstSensor
1 2ndSensor

ARSPD_OPTIONS: Airspeed options bitmask

Note: This parameter is for advanced users

Bitmask of options to use with airspeed.

Bitmask
Bit Meaning
0 Disable on sensor failure
1 Re-enable on sensor recovery

ARSPD2_TYPE: Second Airspeed type

Type of 2nd airspeed sensor

Values
Value Meaning
0 None
1 I2C-MS4525D0
2 Analog
3 I2C-MS5525
4 I2C-MS5525 (0x76)
5 I2C-MS5525 (0x77)
6 I2C-SDP3X
7 I2C-DLVR-5in
8 UAVCAN
9 I2C-DLVR-10in
10 I2C-DLVR-20in
11 I2C-DLVR-30in
12 I2C-DLVR-60in

ARSPD2_USE: Enable use of 2nd airspeed sensor

use airspeed for flight control. When set to 0 airspeed sensor can be logged and displayed on a GCS but won’t be used for flight. When set to 1 it will be logged and used. When set to 2 it will be only used when the throttle is zero, which can be useful in gliders with airspeed sensors behind a propeller

Values
Value Meaning
0 Don’t Use
1 use
2 UseWhenZeroThrottle

ARSPD2_OFFSET: Airspeed offset for 2nd airspeed sensor

Note: This parameter is for advanced users

Airspeed calibration offset

Increment
0.1

ARSPD2_RATIO: Airspeed ratio for 2nd airspeed sensor

Note: This parameter is for advanced users

Airspeed calibration ratio

Increment
0.1

ARSPD2_PIN: Airspeed pin for 2nd airspeed sensor

Note: This parameter is for advanced users

Pin number indicating location of analog airspeed sensors. Pixhawk/Cube if set to 15.

ARSPD2_AUTOCAL: Automatic airspeed ratio calibration for 2nd airspeed sensor

Note: This parameter is for advanced users

If this is enabled then the autopilot will automatically adjust the ARSPD_RATIO during flight, based upon an estimation filter using ground speed and true airspeed. The automatic calibration will save the new ratio to EEPROM every 2 minutes if it changes by more than 5%. This option should be enabled for a calibration flight then disabled again when calibration is complete. Leaving it enabled all the time is not recommended.

ARSPD2_TUBE_ORDR: Control pitot tube order of 2nd airspeed sensor

Note: This parameter is for advanced users

This parameter allows you to control whether the order in which the tubes are attached to your pitot tube matters. If you set this to 0 then the top connector on the sensor needs to be the dynamic pressure. If set to 1 then the bottom connector needs to be the dynamic pressure. If set to 2 (the default) then the airspeed driver will accept either order. The reason you may wish to specify the order is it will allow your airspeed sensor to detect if the aircraft it receiving excessive pressure on the static port, which would otherwise be seen as a positive airspeed.

ARSPD2_SKIP_CAL: Skip airspeed calibration on startup for 2nd sensor

Note: This parameter is for advanced users

This parameter allows you to skip airspeed offset calibration on startup, instead using the offset from the last calibration. This may be desirable if the offset variance between flights for your sensor is low and you want to avoid having to cover the pitot tube on each boot.

Values
Value Meaning
0 Disable
1 Enable

ARSPD2_PSI_RANGE: The PSI range of the device for 2nd sensor

Note: This parameter is for advanced users

This parameter allows you to to set the PSI (pounds per square inch) range for your sensor. You should not change this unless you examine the datasheet for your device

ARSPD2_BUS: Airspeed I2C bus for 2nd sensor

Note: This parameter is for advanced users

The bus number of the I2C bus to look for the sensor on

Values
Value Meaning
0 Bus0(internal)
1 Bus1(external)
2 Bus2(auxillary)

ATC Parameters

ATC_STR_RAT_P: Steering control rate P gain

Steering control rate P gain. Converts the turn rate error (in radians/sec) to a steering control output (in the range -1 to +1)

Increment Range
0.001 0.000 - 2.000

ATC_STR_RAT_I: Steering control I gain

Steering control I gain. Corrects long term error between the desired turn rate (in rad/s) and actual

Increment Range
0.001 0.000 - 2.000

ATC_STR_RAT_IMAX: Steering control I gain maximum

Steering control I gain maximum. Constrains the steering output (range -1 to +1) that the I term will generate

Increment Range
0.01 0.000 - 1.000

ATC_STR_RAT_D: Steering control D gain

Steering control D gain. Compensates for short-term change in desired turn rate vs actual

Increment Range
0.001 0.000 - 0.400

ATC_STR_RAT_FF: Steering control feed forward

Steering control feed forward

Increment Range
0.001 0.000 - 3.000

ATC_STR_RAT_FILT: Steering control filter frequency

Steering control input filter. Lower values reduce noise but add delay.

Increment Range Units
0.1 0.000 - 100.000 hertz

ATC_STR_RAT_FLTT: Steering control Target filter frequency in Hz

Target filter frequency in Hz

Increment Range Units
0.1 0.000 - 100.000 hertz

ATC_STR_RAT_FLTE: Steering control Error filter frequency in Hz

Error filter frequency in Hz

Increment Range Units
0.1 0.000 - 100.000 hertz

ATC_STR_RAT_FLTD: Steering control Derivative term filter frequency in Hz

Derivative filter frequency in Hz

Increment Range Units
0.1 0.000 - 100.000 hertz

ATC_SPEED_P: Speed control P gain

Speed control P gain. Converts the error between the desired speed (in m/s) and actual speed to a motor output (in the range -1 to +1)

Increment Range
0.01 0.010 - 2.000

ATC_SPEED_I: Speed control I gain

Speed control I gain. Corrects long term error between the desired speed (in m/s) and actual speed

Increment Range
0.01 0.000 - 2.000

ATC_SPEED_IMAX: Speed control I gain maximum

Speed control I gain maximum. Constrains the maximum motor output (range -1 to +1) that the I term will generate

Increment Range
0.01 0.000 - 1.000

ATC_SPEED_D: Speed control D gain

Speed control D gain. Compensates for short-term change in desired speed vs actual

Increment Range
0.001 0.000 - 0.400

ATC_SPEED_FF: Speed control feed forward

Speed control feed forward

Increment Range
0.001 0.000 - 0.500

ATC_SPEED_FILT: Speed control filter frequency

Speed control input filter. Lower values reduce noise but add delay.

Increment Range Units
0.1 0.000 - 100.000 hertz

ATC_SPEED_FLTT: Speed control Target filter frequency in Hz

Target filter frequency in Hz

Increment Range Units
0.1 0.000 - 100.000 hertz

ATC_SPEED_FLTE: Speed control Error filter frequency in Hz

Error filter frequency in Hz

Increment Range Units
0.1 0.000 - 100.000 hertz

ATC_SPEED_FLTD: Speed control Derivative term filter frequency in Hz

Derivative filter frequency in Hz

Increment Range Units
0.1 0.000 - 100.000 hertz

ATC_ACCEL_MAX: Speed control acceleration (and deceleration) maximum in m/s/s

Speed control acceleration (and deceleration) maximum in m/s/s. 0 to disable acceleration limiting

Increment Range Units
0.1 0.0 - 10.0 meters per square second

ATC_BRAKE: Speed control brake enable/disable

Speed control brake enable/disable. Allows sending a reversed output to the motors to slow the vehicle.

Values
Value Meaning
0 Disable
1 Enable

ATC_STOP_SPEED: Speed control stop speed

Speed control stop speed. Motor outputs to zero once vehicle speed falls below this value

Increment Range Units
0.01 0.00 - 0.50 meters per second

ATC_STR_ANG_P: Steering control angle P gain

Steering control angle P gain. Converts the error between the desired heading/yaw (in radians) and actual heading/yaw to a desired turn rate (in rad/sec)

Increment Range
0.1 1.000 - 10.000

ATC_STR_ACC_MAX: Steering control angular acceleration maximum

Steering control angular acceleration maximum (in deg/s/s). 0 to disable acceleration limiting

Increment Range Units
0.1 0 - 1000 degrees per square second

ATC_STR_RAT_MAX: Steering control rotation rate maximum

Steering control rotation rate maximum in deg/s. 0 to remove rate limiting

Increment Range Units
0.1 0 - 1000 degrees per second

ATC_DECEL_MAX: Speed control deceleration maximum in m/s/s

Speed control and deceleration maximum in m/s/s. 0 to use ATC_ACCEL_MAX for deceleration

Increment Range Units
0.1 0.0 - 10.0 meters per square second

ATC_BAL_P: Pitch control P gain

Pitch control P gain for BalanceBots. Converts the error between the desired pitch (in radians) and actual pitch to a motor output (in the range -1 to +1)

Increment Range
0.01 0.000 - 2.000

ATC_BAL_I: Pitch control I gain

Pitch control I gain for BalanceBots. Corrects long term error between the desired pitch (in radians) and actual pitch

Increment Range
0.01 0.000 - 2.000

ATC_BAL_IMAX: Pitch control I gain maximum

Pitch control I gain maximum. Constrains the maximum motor output (range -1 to +1) that the I term will generate

Increment Range
0.01 0.000 - 1.000

ATC_BAL_D: Pitch control D gain

Pitch control D gain. Compensates for short-term change in desired pitch vs actual

Increment Range
0.001 0.000 - 0.100

ATC_BAL_FF: Pitch control feed forward

Pitch control feed forward

Increment Range
0.001 0.000 - 0.500

ATC_BAL_FILT: Pitch control filter frequency

Pitch control input filter. Lower values reduce noise but add delay.

Increment Range Units
0.1 0.000 - 100.000 hertz

ATC_BAL_FLTT: Pitch control Target filter frequency in Hz

Target filter frequency in Hz

Increment Range Units
0.1 0.000 - 100.000 hertz

ATC_BAL_FLTE: Pitch control Error filter frequency in Hz

Error filter frequency in Hz

Increment Range Units
0.1 0.000 - 100.000 hertz

ATC_BAL_FLTD: Pitch control Derivative term filter frequency in Hz

Derivative filter frequency in Hz

Increment Range Units
0.1 0.000 - 100.000 hertz

ATC_BAL_SPD_FF: Pitch control feed forward from speed

Pitch control feed forward from speed

Increment Range
0.01 0.0 - 10.0

ATC_SAIL_P: Sail Heel control P gain

Sail Heel control P gain for sailboats. Converts the error between the desired heel angle (in radians) and actual heel to a main sail output (in the range -1 to +1)

Increment Range
0.01 0.000 - 2.000

ATC_SAIL_I: Sail Heel control I gain

Sail Heel control I gain for sailboats. Corrects long term error between the desired heel angle (in radians) and actual

Increment Range
0.01 0.000 - 2.000

ATC_SAIL_IMAX: Sail Heel control I gain maximum

Sail Heel control I gain maximum. Constrains the maximum I term contribution to the main sail output (range -1 to +1)

Increment Range
0.01 0.000 - 1.000

ATC_SAIL_D: Sail Heel control D gain

Sail Heel control D gain. Compensates for short-term change in desired heel angle vs actual

Increment Range
0.001 0.000 - 0.100

ATC_SAIL_FF: Sail Heel control feed forward

Sail Heel control feed forward

Increment Range
0.001 0.000 - 0.500

ATC_SAIL_FILT: Sail Heel control filter frequency

Sail Heel control input filter. Lower values reduce noise but add delay.

Increment Range Units
0.1 0.000 - 100.000 hertz

ATC_SAIL_FLTT: Sail Heel Target filter frequency in Hz

Target filter frequency in Hz

Increment Range Units
0.1 0.000 - 100.000 hertz

ATC_SAIL_FLTE: Sail Heel Error filter frequency in Hz

Error filter frequency in Hz

Increment Range Units
0.1 0.000 - 100.000 hertz

ATC_SAIL_FLTD: Sail Heel Derivative term filter frequency in Hz

Derivative filter frequency in Hz

Increment Range Units
0.1 0.000 - 100.000 hertz

AVOID_ Parameters

AVOID_ENABLE: Avoidance control enable/disable

Enabled/disable avoidance input sources

Bitmask Values
Bit Meaning
0 UseFence
1 UseProximitySensor
2 UseBeaconFence
Value Meaning
0 None
1 UseFence
2 UseProximitySensor
3 UseFence and UseProximitySensor
4 UseBeaconFence
7 All

AVOID_MARGIN: Avoidance distance margin in GPS modes

Vehicle will attempt to stay at least this distance (in meters) from objects while in GPS modes

Range Units
1 - 10 meters

AVOID_BACKUP_SPD: Avoidance maximum backup speed

Maximum speed that will be used to back away from obstacles in GPS modes (m/s). Set zero to disable

Range Units
0 - 2 meters per second

BATT2_ Parameters

BATT2_MONITOR: Battery monitoring

Controls enabling monitoring of the battery’s voltage and current

RebootRequired Values
True
Value Meaning
0 Disabled
3 Analog Voltage Only
4 Analog Voltage and Current
5 Solo
6 Bebop
7 SMBus-Generic
8 UAVCAN-BatteryInfo
9 BLHeli ESC
10 SumOfFollowing
11 FuelFlow
12 FuelLevelPWM
13 SMBUS-SUI3
14 SMBUS-SUI6
15 NeoDesign
16 SMBus-Maxell

BATT2_VOLT_PIN: Battery Voltage sensing pin

Sets the analog input pin that should be used for voltage monitoring.

RebootRequired Values
True
Value Meaning
-1 Disabled
2 Pixhawk/Pixracer/Navio2/Pixhawk2_PM1
13 Pixhawk2_PM2/CubeOrange_PM2
14 CubeOrange
16 Durandal
100 PX4-v1

BATT2_CURR_PIN: Battery Current sensing pin

Sets the analog input pin that should be used for current monitoring.

RebootRequired Values
True
Value Meaning
-1 Disabled
3 Pixhawk/Pixracer/Navio2/Pixhawk2_PM1
14 Pixhawk2_PM2
15 CubeOrange
4 CubeOrange_PM2
17 Durandal
101 PX4-v1

BATT2_VOLT_MULT: Voltage Multiplier

Note: This parameter is for advanced users

Used to convert the voltage of the voltage sensing pin (BATT2_VOLT_PIN) to the actual battery’s voltage (pin_voltage * VOLT_MULT). For the 3DR Power brick with a Pixhawk, this should be set to 10.1. For the Pixhawk with the 3DR 4in1 ESC this should be 12.02. For the PX using the PX4IO power supply this should be set to 1.

BATT2_AMP_PERVLT: Amps per volt

Number of amps that a 1V reading on the current sensor corresponds to. With a Pixhawk using the 3DR Power brick this should be set to 17. For the Pixhawk with the 3DR 4in1 ESC this should be 17.

Units
ampere per volt

BATT2_AMP_OFFSET: AMP offset

Voltage offset at zero current on current sensor

Units
volt

BATT2_CAPACITY: Battery capacity

Capacity of the battery in mAh when full

Increment Units
50 milliampere hour

BATT2_SERIAL_NUM: Battery serial number

Note: This parameter is for advanced users

Battery serial number, automatically filled in for SMBus batteries, otherwise will be -1. With UAVCAN it is the battery_id.

BATT2_LOW_TIMER: Low voltage timeout

Note: This parameter is for advanced users

This is the timeout in seconds before a low voltage event will be triggered. For aircraft with low C batteries it may be necessary to raise this in order to cope with low voltage on long takeoffs. A value of zero disables low voltage errors.

Increment Range Units
1 0 - 120 seconds

BATT2_FS_VOLTSRC: Failsafe voltage source

Note: This parameter is for advanced users

Voltage type used for detection of low voltage event

Values
Value Meaning
0 Raw Voltage
1 Sag Compensated Voltage

BATT2_LOW_VOLT: Low battery voltage

Battery voltage that triggers a low battery failsafe. Set to 0 to disable. If the battery voltage drops below this voltage continuously for more then the period specified by the BATT2_LOW_TIMER parameter then the vehicle will perform the failsafe specified by the BATT2_FS_LOW_ACT parameter.

Increment Units
0.1 volt

BATT2_LOW_MAH: Low battery capacity

Battery capacity at which the low battery failsafe is triggered. Set to 0 to disable battery remaining failsafe. If the battery capacity drops below this level the vehicle will perform the failsafe specified by the BATT2_FS_LOW_ACT parameter.

Increment Units
50 milliampere hour

BATT2_CRT_VOLT: Critical battery voltage

Battery voltage that triggers a critical battery failsafe. Set to 0 to disable. If the battery voltage drops below this voltage continuously for more then the period specified by the BATT2_LOW_TIMER parameter then the vehicle will perform the failsafe specified by the BATT2_FS_CRT_ACT parameter.

Increment Units
0.1 volt

BATT2_CRT_MAH: Battery critical capacity

Battery capacity at which the critical battery failsafe is triggered. Set to 0 to disable battery remaining failsafe. If the battery capacity drops below this level the vehicle will perform the failsafe specified by the BATT2__FS_CRT_ACT parameter.

Increment Units
50 milliampere hour

BATT2_FS_LOW_ACT: Low battery failsafe action

What action the vehicle should perform if it hits a low battery failsafe

Values
Value Meaning
0 None
1 RTL
2 Hold
3 SmartRTL
4 SmartRTL or Hold
5 Terminate

BATT2_FS_CRT_ACT: Critical battery failsafe action

What action the vehicle should perform if it hits a critical battery failsafe

Values
Value Meaning
0 None
1 RTL
2 Hold
3 SmartRTL
4 SmartRTL or Hold
5 Terminate

BATT2_ARM_VOLT: Required arming voltage

Note: This parameter is for advanced users

Battery voltage level which is required to arm the aircraft. Set to 0 to allow arming at any voltage.

Increment Units
0.1 volt

BATT2_ARM_MAH: Required arming remaining capacity

Note: This parameter is for advanced users

Battery capacity remaining which is required to arm the aircraft. Set to 0 to allow arming at any capacity. Note that execept for smart batteries rebooting the vehicle will always reset the remaining capacity estimate, which can lead to this check not providing sufficent protection, it is recommended to always use this in conjunction with the BATT2__ARM_VOLT parameter.

Increment Units
50 milliampere hour

BATT2_BUS: Battery monitor I2C bus number

Battery monitor I2C bus number

Range
0 - 3

BATT3_ Parameters

BATT3_MONITOR: Battery monitoring

Controls enabling monitoring of the battery’s voltage and current

RebootRequired Values
True
Value Meaning
0 Disabled
3 Analog Voltage Only
4 Analog Voltage and Current
5 Solo
6 Bebop
7 SMBus-Generic
8 UAVCAN-BatteryInfo
9 BLHeli ESC
10 SumOfFollowing
11 FuelFlow
12 FuelLevelPWM
13 SMBUS-SUI3
14 SMBUS-SUI6
15 NeoDesign
16 SMBus-Maxell

BATT3_VOLT_PIN: Battery Voltage sensing pin

Sets the analog input pin that should be used for voltage monitoring.

RebootRequired Values
True
Value Meaning
-1 Disabled
2 Pixhawk/Pixracer/Navio2/Pixhawk2_PM1
13 Pixhawk2_PM2/CubeOrange_PM2
14 CubeOrange
16 Durandal
100 PX4-v1

BATT3_CURR_PIN: Battery Current sensing pin

Sets the analog input pin that should be used for current monitoring.

RebootRequired Values
True
Value Meaning
-1 Disabled
3 Pixhawk/Pixracer/Navio2/Pixhawk2_PM1
14 Pixhawk2_PM2
15 CubeOrange
4 CubeOrange_PM2
17 Durandal
101 PX4-v1

BATT3_VOLT_MULT: Voltage Multiplier

Note: This parameter is for advanced users

Used to convert the voltage of the voltage sensing pin (BATT3_VOLT_PIN) to the actual battery’s voltage (pin_voltage * VOLT_MULT). For the 3DR Power brick with a Pixhawk, this should be set to 10.1. For the Pixhawk with the 3DR 4in1 ESC this should be 12.02. For the PX using the PX4IO power supply this should be set to 1.

BATT3_AMP_PERVLT: Amps per volt

Number of amps that a 1V reading on the current sensor corresponds to. With a Pixhawk using the 3DR Power brick this should be set to 17. For the Pixhawk with the 3DR 4in1 ESC this should be 17.

Units
ampere per volt

BATT3_AMP_OFFSET: AMP offset

Voltage offset at zero current on current sensor

Units
volt

BATT3_CAPACITY: Battery capacity

Capacity of the battery in mAh when full

Increment Units
50 milliampere hour

BATT3_SERIAL_NUM: Battery serial number

Note: This parameter is for advanced users

Battery serial number, automatically filled in for SMBus batteries, otherwise will be -1. With UAVCAN it is the battery_id.

BATT3_LOW_TIMER: Low voltage timeout

Note: This parameter is for advanced users

This is the timeout in seconds before a low voltage event will be triggered. For aircraft with low C batteries it may be necessary to raise this in order to cope with low voltage on long takeoffs. A value of zero disables low voltage errors.

Increment Range Units
1 0 - 120 seconds

BATT3_FS_VOLTSRC: Failsafe voltage source

Note: This parameter is for advanced users

Voltage type used for detection of low voltage event

Values
Value Meaning
0 Raw Voltage
1 Sag Compensated Voltage

BATT3_LOW_VOLT: Low battery voltage

Battery voltage that triggers a low battery failsafe. Set to 0 to disable. If the battery voltage drops below this voltage continuously for more then the period specified by the BATT3_LOW_TIMER parameter then the vehicle will perform the failsafe specified by the BATT3_FS_LOW_ACT parameter.

Increment Units
0.1 volt

BATT3_LOW_MAH: Low battery capacity

Battery capacity at which the low battery failsafe is triggered. Set to 0 to disable battery remaining failsafe. If the battery capacity drops below this level the vehicle will perform the failsafe specified by the BATT3_FS_LOW_ACT parameter.

Increment Units
50 milliampere hour

BATT3_CRT_VOLT: Critical battery voltage

Battery voltage that triggers a critical battery failsafe. Set to 0 to disable. If the battery voltage drops below this voltage continuously for more then the period specified by the BATT3_LOW_TIMER parameter then the vehicle will perform the failsafe specified by the BATT3_FS_CRT_ACT parameter.

Increment Units
0.1 volt

BATT3_CRT_MAH: Battery critical capacity

Battery capacity at which the critical battery failsafe is triggered. Set to 0 to disable battery remaining failsafe. If the battery capacity drops below this level the vehicle will perform the failsafe specified by the BATT3__FS_CRT_ACT parameter.

Increment Units
50 milliampere hour

BATT3_FS_LOW_ACT: Low battery failsafe action

What action the vehicle should perform if it hits a low battery failsafe

Values
Value Meaning
0 None
1 RTL
2 Hold
3 SmartRTL
4 SmartRTL or Hold
5 Terminate

BATT3_FS_CRT_ACT: Critical battery failsafe action

What action the vehicle should perform if it hits a critical battery failsafe

Values
Value Meaning
0 None
1 RTL
2 Hold
3 SmartRTL
4 SmartRTL or Hold
5 Terminate

BATT3_ARM_VOLT: Required arming voltage

Note: This parameter is for advanced users

Battery voltage level which is required to arm the aircraft. Set to 0 to allow arming at any voltage.

Increment Units
0.1 volt

BATT3_ARM_MAH: Required arming remaining capacity

Note: This parameter is for advanced users

Battery capacity remaining which is required to arm the aircraft. Set to 0 to allow arming at any capacity. Note that execept for smart batteries rebooting the vehicle will always reset the remaining capacity estimate, which can lead to this check not providing sufficent protection, it is recommended to always use this in conjunction with the BATT3__ARM_VOLT parameter.

Increment Units
50 milliampere hour

BATT3_BUS: Battery monitor I2C bus number

Battery monitor I2C bus number

Range
0 - 3

BATT4_ Parameters

BATT4_MONITOR: Battery monitoring

Controls enabling monitoring of the battery’s voltage and current

RebootRequired Values
True
Value Meaning
0 Disabled
3 Analog Voltage Only
4 Analog Voltage and Current
5 Solo
6 Bebop
7 SMBus-Generic
8 UAVCAN-BatteryInfo
9 BLHeli ESC
10 SumOfFollowing
11 FuelFlow
12 FuelLevelPWM
13 SMBUS-SUI3
14 SMBUS-SUI6
15 NeoDesign
16 SMBus-Maxell

BATT4_VOLT_PIN: Battery Voltage sensing pin

Sets the analog input pin that should be used for voltage monitoring.

RebootRequired Values
True
Value Meaning
-1 Disabled
2 Pixhawk/Pixracer/Navio2/Pixhawk2_PM1
13 Pixhawk2_PM2/CubeOrange_PM2
14 CubeOrange
16 Durandal
100 PX4-v1

BATT4_CURR_PIN: Battery Current sensing pin

Sets the analog input pin that should be used for current monitoring.

RebootRequired Values
True
Value Meaning
-1 Disabled
3 Pixhawk/Pixracer/Navio2/Pixhawk2_PM1
14 Pixhawk2_PM2
15 CubeOrange
4 CubeOrange_PM2
17 Durandal
101 PX4-v1

BATT4_VOLT_MULT: Voltage Multiplier

Note: This parameter is for advanced users

Used to convert the voltage of the voltage sensing pin (BATT4_VOLT_PIN) to the actual battery’s voltage (pin_voltage * VOLT_MULT). For the 3DR Power brick with a Pixhawk, this should be set to 10.1. For the Pixhawk with the 3DR 4in1 ESC this should be 12.02. For the PX using the PX4IO power supply this should be set to 1.

BATT4_AMP_PERVLT: Amps per volt

Number of amps that a 1V reading on the current sensor corresponds to. With a Pixhawk using the 3DR Power brick this should be set to 17. For the Pixhawk with the 3DR 4in1 ESC this should be 17.

Units
ampere per volt

BATT4_AMP_OFFSET: AMP offset

Voltage offset at zero current on current sensor

Units
volt

BATT4_CAPACITY: Battery capacity

Capacity of the battery in mAh when full

Increment Units
50 milliampere hour

BATT4_SERIAL_NUM: Battery serial number

Note: This parameter is for advanced users

Battery serial number, automatically filled in for SMBus batteries, otherwise will be -1. With UAVCAN it is the battery_id.

BATT4_LOW_TIMER: Low voltage timeout

Note: This parameter is for advanced users

This is the timeout in seconds before a low voltage event will be triggered. For aircraft with low C batteries it may be necessary to raise this in order to cope with low voltage on long takeoffs. A value of zero disables low voltage errors.

Increment Range Units
1 0 - 120 seconds

BATT4_FS_VOLTSRC: Failsafe voltage source

Note: This parameter is for advanced users

Voltage type used for detection of low voltage event

Values
Value Meaning
0 Raw Voltage
1 Sag Compensated Voltage

BATT4_LOW_VOLT: Low battery voltage

Battery voltage that triggers a low battery failsafe. Set to 0 to disable. If the battery voltage drops below this voltage continuously for more then the period specified by the BATT4_LOW_TIMER parameter then the vehicle will perform the failsafe specified by the BATT4_FS_LOW_ACT parameter.

Increment Units
0.1 volt

BATT4_LOW_MAH: Low battery capacity

Battery capacity at which the low battery failsafe is triggered. Set to 0 to disable battery remaining failsafe. If the battery capacity drops below this level the vehicle will perform the failsafe specified by the BATT4_FS_LOW_ACT parameter.

Increment Units
50 milliampere hour

BATT4_CRT_VOLT: Critical battery voltage

Battery voltage that triggers a critical battery failsafe. Set to 0 to disable. If the battery voltage drops below this voltage continuously for more then the period specified by the BATT4_LOW_TIMER parameter then the vehicle will perform the failsafe specified by the BATT4_FS_CRT_ACT parameter.

Increment Units
0.1 volt

BATT4_CRT_MAH: Battery critical capacity

Battery capacity at which the critical battery failsafe is triggered. Set to 0 to disable battery remaining failsafe. If the battery capacity drops below this level the vehicle will perform the failsafe specified by the BATT4__FS_CRT_ACT parameter.

Increment Units
50 milliampere hour

BATT4_FS_LOW_ACT: Low battery failsafe action

What action the vehicle should perform if it hits a low battery failsafe

Values
Value Meaning
0 None
1 RTL
2 Hold
3 SmartRTL
4 SmartRTL or Hold
5 Terminate

BATT4_FS_CRT_ACT: Critical battery failsafe action

What action the vehicle should perform if it hits a critical battery failsafe

Values
Value Meaning
0 None
1 RTL
2 Hold
3 SmartRTL
4 SmartRTL or Hold
5 Terminate

BATT4_ARM_VOLT: Required arming voltage

Note: This parameter is for advanced users

Battery voltage level which is required to arm the aircraft. Set to 0 to allow arming at any voltage.

Increment Units
0.1 volt

BATT4_ARM_MAH: Required arming remaining capacity

Note: This parameter is for advanced users

Battery capacity remaining which is required to arm the aircraft. Set to 0 to allow arming at any capacity. Note that execept for smart batteries rebooting the vehicle will always reset the remaining capacity estimate, which can lead to this check not providing sufficent protection, it is recommended to always use this in conjunction with the BATT4__ARM_VOLT parameter.

Increment Units
50 milliampere hour

BATT4_BUS: Battery monitor I2C bus number

Battery monitor I2C bus number

Range
0 - 3

BATT5_ Parameters

BATT5_MONITOR: Battery monitoring

Controls enabling monitoring of the battery’s voltage and current

RebootRequired Values
True
Value Meaning
0 Disabled
3 Analog Voltage Only
4 Analog Voltage and Current
5 Solo
6 Bebop
7 SMBus-Generic
8 UAVCAN-BatteryInfo
9 BLHeli ESC
10 SumOfFollowing
11 FuelFlow
12 FuelLevelPWM
13 SMBUS-SUI3
14 SMBUS-SUI6
15 NeoDesign
16 SMBus-Maxell

BATT5_VOLT_PIN: Battery Voltage sensing pin

Sets the analog input pin that should be used for voltage monitoring.

RebootRequired Values
True
Value Meaning
-1 Disabled
2 Pixhawk/Pixracer/Navio2/Pixhawk2_PM1
13 Pixhawk2_PM2/CubeOrange_PM2
14 CubeOrange
16 Durandal
100 PX4-v1

BATT5_CURR_PIN: Battery Current sensing pin

Sets the analog input pin that should be used for current monitoring.

RebootRequired Values
True
Value Meaning
-1 Disabled
3 Pixhawk/Pixracer/Navio2/Pixhawk2_PM1
14 Pixhawk2_PM2
15 CubeOrange
4 CubeOrange_PM2
17 Durandal
101 PX4-v1

BATT5_VOLT_MULT: Voltage Multiplier

Note: This parameter is for advanced users

Used to convert the voltage of the voltage sensing pin (BATT5_VOLT_PIN) to the actual battery’s voltage (pin_voltage * VOLT_MULT). For the 3DR Power brick with a Pixhawk, this should be set to 10.1. For the Pixhawk with the 3DR 4in1 ESC this should be 12.02. For the PX using the PX4IO power supply this should be set to 1.

BATT5_AMP_PERVLT: Amps per volt

Number of amps that a 1V reading on the current sensor corresponds to. With a Pixhawk using the 3DR Power brick this should be set to 17. For the Pixhawk with the 3DR 4in1 ESC this should be 17.

Units
ampere per volt

BATT5_AMP_OFFSET: AMP offset

Voltage offset at zero current on current sensor

Units
volt

BATT5_CAPACITY: Battery capacity

Capacity of the battery in mAh when full

Increment Units
50 milliampere hour

BATT5_SERIAL_NUM: Battery serial number

Note: This parameter is for advanced users

Battery serial number, automatically filled in for SMBus batteries, otherwise will be -1. With UAVCAN it is the battery_id.

BATT5_LOW_TIMER: Low voltage timeout

Note: This parameter is for advanced users

This is the timeout in seconds before a low voltage event will be triggered. For aircraft with low C batteries it may be necessary to raise this in order to cope with low voltage on long takeoffs. A value of zero disables low voltage errors.

Increment Range Units
1 0 - 120 seconds

BATT5_FS_VOLTSRC: Failsafe voltage source

Note: This parameter is for advanced users

Voltage type used for detection of low voltage event

Values
Value Meaning
0 Raw Voltage
1 Sag Compensated Voltage

BATT5_LOW_VOLT: Low battery voltage

Battery voltage that triggers a low battery failsafe. Set to 0 to disable. If the battery voltage drops below this voltage continuously for more then the period specified by the BATT5_LOW_TIMER parameter then the vehicle will perform the failsafe specified by the BATT5_FS_LOW_ACT parameter.

Increment Units
0.1 volt

BATT5_LOW_MAH: Low battery capacity

Battery capacity at which the low battery failsafe is triggered. Set to 0 to disable battery remaining failsafe. If the battery capacity drops below this level the vehicle will perform the failsafe specified by the BATT5_FS_LOW_ACT parameter.

Increment Units
50 milliampere hour

BATT5_CRT_VOLT: Critical battery voltage

Battery voltage that triggers a critical battery failsafe. Set to 0 to disable. If the battery voltage drops below this voltage continuously for more then the period specified by the BATT5_LOW_TIMER parameter then the vehicle will perform the failsafe specified by the BATT5_FS_CRT_ACT parameter.

Increment Units
0.1 volt

BATT5_CRT_MAH: Battery critical capacity

Battery capacity at which the critical battery failsafe is triggered. Set to 0 to disable battery remaining failsafe. If the battery capacity drops below this level the vehicle will perform the failsafe specified by the BATT5__FS_CRT_ACT parameter.

Increment Units
50 milliampere hour

BATT5_FS_LOW_ACT: Low battery failsafe action

What action the vehicle should perform if it hits a low battery failsafe

Values
Value Meaning
0 None
1 RTL
2 Hold
3 SmartRTL
4 SmartRTL or Hold
5 Terminate

BATT5_FS_CRT_ACT: Critical battery failsafe action

What action the vehicle should perform if it hits a critical battery failsafe

Values
Value Meaning
0 None
1 RTL
2 Hold
3 SmartRTL
4 SmartRTL or Hold
5 Terminate

BATT5_ARM_VOLT: Required arming voltage

Note: This parameter is for advanced users

Battery voltage level which is required to arm the aircraft. Set to 0 to allow arming at any voltage.

Increment Units
0.1 volt

BATT5_ARM_MAH: Required arming remaining capacity

Note: This parameter is for advanced users

Battery capacity remaining which is required to arm the aircraft. Set to 0 to allow arming at any capacity. Note that execept for smart batteries rebooting the vehicle will always reset the remaining capacity estimate, which can lead to this check not providing sufficent protection, it is recommended to always use this in conjunction with the BATT5__ARM_VOLT parameter.

Increment Units
50 milliampere hour

BATT5_BUS: Battery monitor I2C bus number

Battery monitor I2C bus number

Range
0 - 3

BATT6_ Parameters

BATT6_MONITOR: Battery monitoring

Controls enabling monitoring of the battery’s voltage and current

RebootRequired Values
True
Value Meaning
0 Disabled
3 Analog Voltage Only
4 Analog Voltage and Current
5 Solo
6 Bebop
7 SMBus-Generic
8 UAVCAN-BatteryInfo
9 BLHeli ESC
10 SumOfFollowing
11 FuelFlow
12 FuelLevelPWM
13 SMBUS-SUI3
14 SMBUS-SUI6
15 NeoDesign
16 SMBus-Maxell

BATT6_VOLT_PIN: Battery Voltage sensing pin

Sets the analog input pin that should be used for voltage monitoring.

RebootRequired Values
True
Value Meaning
-1 Disabled
2 Pixhawk/Pixracer/Navio2/Pixhawk2_PM1
13 Pixhawk2_PM2/CubeOrange_PM2
14 CubeOrange
16 Durandal
100 PX4-v1

BATT6_CURR_PIN: Battery Current sensing pin

Sets the analog input pin that should be used for current monitoring.

RebootRequired Values
True
Value Meaning
-1 Disabled
3 Pixhawk/Pixracer/Navio2/Pixhawk2_PM1
14 Pixhawk2_PM2
15 CubeOrange
4 CubeOrange_PM2
17 Durandal
101 PX4-v1

BATT6_VOLT_MULT: Voltage Multiplier

Note: This parameter is for advanced users

Used to convert the voltage of the voltage sensing pin (BATT6_VOLT_PIN) to the actual battery’s voltage (pin_voltage * VOLT_MULT). For the 3DR Power brick with a Pixhawk, this should be set to 10.1. For the Pixhawk with the 3DR 4in1 ESC this should be 12.02. For the PX using the PX4IO power supply this should be set to 1.

BATT6_AMP_PERVLT: Amps per volt

Number of amps that a 1V reading on the current sensor corresponds to. With a Pixhawk using the 3DR Power brick this should be set to 17. For the Pixhawk with the 3DR 4in1 ESC this should be 17.

Units
ampere per volt

BATT6_AMP_OFFSET: AMP offset

Voltage offset at zero current on current sensor

Units
volt

BATT6_CAPACITY: Battery capacity

Capacity of the battery in mAh when full

Increment Units
50 milliampere hour

BATT6_SERIAL_NUM: Battery serial number

Note: This parameter is for advanced users

Battery serial number, automatically filled in for SMBus batteries, otherwise will be -1. With UAVCAN it is the battery_id.

BATT6_LOW_TIMER: Low voltage timeout

Note: This parameter is for advanced users

This is the timeout in seconds before a low voltage event will be triggered. For aircraft with low C batteries it may be necessary to raise this in order to cope with low voltage on long takeoffs. A value of zero disables low voltage errors.

Increment Range Units
1 0 - 120 seconds

BATT6_FS_VOLTSRC: Failsafe voltage source

Note: This parameter is for advanced users

Voltage type used for detection of low voltage event

Values
Value Meaning
0 Raw Voltage
1 Sag Compensated Voltage

BATT6_LOW_VOLT: Low battery voltage

Battery voltage that triggers a low battery failsafe. Set to 0 to disable. If the battery voltage drops below this voltage continuously for more then the period specified by the BATT6_LOW_TIMER parameter then the vehicle will perform the failsafe specified by the BATT6_FS_LOW_ACT parameter.

Increment Units
0.1 volt

BATT6_LOW_MAH: Low battery capacity

Battery capacity at which the low battery failsafe is triggered. Set to 0 to disable battery remaining failsafe. If the battery capacity drops below this level the vehicle will perform the failsafe specified by the BATT6_FS_LOW_ACT parameter.

Increment Units
50 milliampere hour

BATT6_CRT_VOLT: Critical battery voltage

Battery voltage that triggers a critical battery failsafe. Set to 0 to disable. If the battery voltage drops below this voltage continuously for more then the period specified by the BATT6_LOW_TIMER parameter then the vehicle will perform the failsafe specified by the BATT6_FS_CRT_ACT parameter.

Increment Units
0.1 volt

BATT6_CRT_MAH: Battery critical capacity

Battery capacity at which the critical battery failsafe is triggered. Set to 0 to disable battery remaining failsafe. If the battery capacity drops below this level the vehicle will perform the failsafe specified by the BATT6__FS_CRT_ACT parameter.

Increment Units
50 milliampere hour

BATT6_FS_LOW_ACT: Low battery failsafe action

What action the vehicle should perform if it hits a low battery failsafe

Values
Value Meaning
0 None
1 RTL
2 Hold
3 SmartRTL
4 SmartRTL or Hold
5 Terminate

BATT6_FS_CRT_ACT: Critical battery failsafe action

What action the vehicle should perform if it hits a critical battery failsafe

Values
Value Meaning
0 None
1 RTL
2 Hold
3 SmartRTL
4 SmartRTL or Hold
5 Terminate

BATT6_ARM_VOLT: Required arming voltage

Note: This parameter is for advanced users

Battery voltage level which is required to arm the aircraft. Set to 0 to allow arming at any voltage.

Increment Units
0.1 volt

BATT6_ARM_MAH: Required arming remaining capacity

Note: This parameter is for advanced users

Battery capacity remaining which is required to arm the aircraft. Set to 0 to allow arming at any capacity. Note that execept for smart batteries rebooting the vehicle will always reset the remaining capacity estimate, which can lead to this check not providing sufficent protection, it is recommended to always use this in conjunction with the BATT6__ARM_VOLT parameter.

Increment Units
50 milliampere hour

BATT6_BUS: Battery monitor I2C bus number

Battery monitor I2C bus number

Range
0 - 3

BATT7_ Parameters

BATT7_MONITOR: Battery monitoring

Controls enabling monitoring of the battery’s voltage and current

RebootRequired Values
True
Value Meaning
0 Disabled
3 Analog Voltage Only
4 Analog Voltage and Current
5 Solo
6 Bebop
7 SMBus-Generic
8 UAVCAN-BatteryInfo
9 BLHeli ESC
10 SumOfFollowing
11 FuelFlow
12 FuelLevelPWM
13 SMBUS-SUI3
14 SMBUS-SUI6
15 NeoDesign
16 SMBus-Maxell

BATT7_VOLT_PIN: Battery Voltage sensing pin

Sets the analog input pin that should be used for voltage monitoring.

RebootRequired Values
True
Value Meaning
-1 Disabled
2 Pixhawk/Pixracer/Navio2/Pixhawk2_PM1
13 Pixhawk2_PM2/CubeOrange_PM2
14 CubeOrange
16 Durandal
100 PX4-v1

BATT7_CURR_PIN: Battery Current sensing pin

Sets the analog input pin that should be used for current monitoring.

RebootRequired Values
True
Value Meaning
-1 Disabled
3 Pixhawk/Pixracer/Navio2/Pixhawk2_PM1
14 Pixhawk2_PM2
15 CubeOrange
4 CubeOrange_PM2
17 Durandal
101 PX4-v1

BATT7_VOLT_MULT: Voltage Multiplier

Note: This parameter is for advanced users

Used to convert the voltage of the voltage sensing pin (BATT7_VOLT_PIN) to the actual battery’s voltage (pin_voltage * VOLT_MULT). For the 3DR Power brick with a Pixhawk, this should be set to 10.1. For the Pixhawk with the 3DR 4in1 ESC this should be 12.02. For the PX using the PX4IO power supply this should be set to 1.

BATT7_AMP_PERVLT: Amps per volt

Number of amps that a 1V reading on the current sensor corresponds to. With a Pixhawk using the 3DR Power brick this should be set to 17. For the Pixhawk with the 3DR 4in1 ESC this should be 17.

Units
ampere per volt

BATT7_AMP_OFFSET: AMP offset

Voltage offset at zero current on current sensor

Units
volt

BATT7_CAPACITY: Battery capacity

Capacity of the battery in mAh when full

Increment Units
50 milliampere hour

BATT7_SERIAL_NUM: Battery serial number

Note: This parameter is for advanced users

Battery serial number, automatically filled in for SMBus batteries, otherwise will be -1. With UAVCAN it is the battery_id.

BATT7_LOW_TIMER: Low voltage timeout

Note: This parameter is for advanced users

This is the timeout in seconds before a low voltage event will be triggered. For aircraft with low C batteries it may be necessary to raise this in order to cope with low voltage on long takeoffs. A value of zero disables low voltage errors.

Increment Range Units
1 0 - 120 seconds

BATT7_FS_VOLTSRC: Failsafe voltage source

Note: This parameter is for advanced users

Voltage type used for detection of low voltage event

Values
Value Meaning
0 Raw Voltage
1 Sag Compensated Voltage

BATT7_LOW_VOLT: Low battery voltage

Battery voltage that triggers a low battery failsafe. Set to 0 to disable. If the battery voltage drops below this voltage continuously for more then the period specified by the BATT7_LOW_TIMER parameter then the vehicle will perform the failsafe specified by the BATT7_FS_LOW_ACT parameter.

Increment Units
0.1 volt

BATT7_LOW_MAH: Low battery capacity

Battery capacity at which the low battery failsafe is triggered. Set to 0 to disable battery remaining failsafe. If the battery capacity drops below this level the vehicle will perform the failsafe specified by the BATT7_FS_LOW_ACT parameter.

Increment Units
50 milliampere hour

BATT7_CRT_VOLT: Critical battery voltage

Battery voltage that triggers a critical battery failsafe. Set to 0 to disable. If the battery voltage drops below this voltage continuously for more then the period specified by the BATT7_LOW_TIMER parameter then the vehicle will perform the failsafe specified by the BATT7_FS_CRT_ACT parameter.

Increment Units
0.1 volt

BATT7_CRT_MAH: Battery critical capacity

Battery capacity at which the critical battery failsafe is triggered. Set to 0 to disable battery remaining failsafe. If the battery capacity drops below this level the vehicle will perform the failsafe specified by the BATT7__FS_CRT_ACT parameter.

Increment Units
50 milliampere hour

BATT7_FS_LOW_ACT: Low battery failsafe action

What action the vehicle should perform if it hits a low battery failsafe

Values
Value Meaning
0 None
1 RTL
2 Hold
3 SmartRTL
4 SmartRTL or Hold
5 Terminate

BATT7_FS_CRT_ACT: Critical battery failsafe action

What action the vehicle should perform if it hits a critical battery failsafe

Values
Value Meaning
0 None
1 RTL
2 Hold
3 SmartRTL
4 SmartRTL or Hold
5 Terminate

BATT7_ARM_VOLT: Required arming voltage

Note: This parameter is for advanced users

Battery voltage level which is required to arm the aircraft. Set to 0 to allow arming at any voltage.

Increment Units
0.1 volt

BATT7_ARM_MAH: Required arming remaining capacity

Note: This parameter is for advanced users

Battery capacity remaining which is required to arm the aircraft. Set to 0 to allow arming at any capacity. Note that execept for smart batteries rebooting the vehicle will always reset the remaining capacity estimate, which can lead to this check not providing sufficent protection, it is recommended to always use this in conjunction with the BATT7__ARM_VOLT parameter.

Increment Units
50 milliampere hour

BATT7_BUS: Battery monitor I2C bus number

Battery monitor I2C bus number

Range
0 - 3

BATT8_ Parameters

BATT8_MONITOR: Battery monitoring

Controls enabling monitoring of the battery’s voltage and current

RebootRequired Values
True
Value Meaning
0 Disabled
3 Analog Voltage Only
4 Analog Voltage and Current
5 Solo
6 Bebop
7 SMBus-Generic
8 UAVCAN-BatteryInfo
9 BLHeli ESC
10 SumOfFollowing
11 FuelFlow
12 FuelLevelPWM
13 SMBUS-SUI3
14 SMBUS-SUI6
15 NeoDesign
16 SMBus-Maxell

BATT8_VOLT_PIN: Battery Voltage sensing pin

Sets the analog input pin that should be used for voltage monitoring.

RebootRequired Values
True
Value Meaning
-1 Disabled
2 Pixhawk/Pixracer/Navio2/Pixhawk2_PM1
13 Pixhawk2_PM2/CubeOrange_PM2
14 CubeOrange
16 Durandal
100 PX4-v1

BATT8_CURR_PIN: Battery Current sensing pin

Sets the analog input pin that should be used for current monitoring.

RebootRequired Values
True
Value Meaning
-1 Disabled
3 Pixhawk/Pixracer/Navio2/Pixhawk2_PM1
14 Pixhawk2_PM2
15 CubeOrange
4 CubeOrange_PM2
17 Durandal
101 PX4-v1

BATT8_VOLT_MULT: Voltage Multiplier

Note: This parameter is for advanced users

Used to convert the voltage of the voltage sensing pin (BATT8_VOLT_PIN) to the actual battery’s voltage (pin_voltage * VOLT_MULT). For the 3DR Power brick with a Pixhawk, this should be set to 10.1. For the Pixhawk with the 3DR 4in1 ESC this should be 12.02. For the PX using the PX4IO power supply this should be set to 1.

BATT8_AMP_PERVLT: Amps per volt

Number of amps that a 1V reading on the current sensor corresponds to. With a Pixhawk using the 3DR Power brick this should be set to 17. For the Pixhawk with the 3DR 4in1 ESC this should be 17.

Units
ampere per volt

BATT8_AMP_OFFSET: AMP offset

Voltage offset at zero current on current sensor

Units
volt

BATT8_CAPACITY: Battery capacity

Capacity of the battery in mAh when full

Increment Units
50 milliampere hour

BATT8_SERIAL_NUM: Battery serial number

Note: This parameter is for advanced users

Battery serial number, automatically filled in for SMBus batteries, otherwise will be -1. With UAVCAN it is the battery_id.

BATT8_LOW_TIMER: Low voltage timeout

Note: This parameter is for advanced users

This is the timeout in seconds before a low voltage event will be triggered. For aircraft with low C batteries it may be necessary to raise this in order to cope with low voltage on long takeoffs. A value of zero disables low voltage errors.

Increment Range Units
1 0 - 120 seconds

BATT8_FS_VOLTSRC: Failsafe voltage source

Note: This parameter is for advanced users

Voltage type used for detection of low voltage event

Values
Value Meaning
0 Raw Voltage
1 Sag Compensated Voltage

BATT8_LOW_VOLT: Low battery voltage

Battery voltage that triggers a low battery failsafe. Set to 0 to disable. If the battery voltage drops below this voltage continuously for more then the period specified by the BATT8_LOW_TIMER parameter then the vehicle will perform the failsafe specified by the BATT8_FS_LOW_ACT parameter.

Increment Units
0.1 volt

BATT8_LOW_MAH: Low battery capacity

Battery capacity at which the low battery failsafe is triggered. Set to 0 to disable battery remaining failsafe. If the battery capacity drops below this level the vehicle will perform the failsafe specified by the BATT8_FS_LOW_ACT parameter.

Increment Units
50 milliampere hour

BATT8_CRT_VOLT: Critical battery voltage

Battery voltage that triggers a critical battery failsafe. Set to 0 to disable. If the battery voltage drops below this voltage continuously for more then the period specified by the BATT8_LOW_TIMER parameter then the vehicle will perform the failsafe specified by the BATT8_FS_CRT_ACT parameter.

Increment Units
0.1 volt

BATT8_CRT_MAH: Battery critical capacity

Battery capacity at which the critical battery failsafe is triggered. Set to 0 to disable battery remaining failsafe. If the battery capacity drops below this level the vehicle will perform the failsafe specified by the BATT8__FS_CRT_ACT parameter.

Increment Units
50 milliampere hour

BATT8_FS_LOW_ACT: Low battery failsafe action

What action the vehicle should perform if it hits a low battery failsafe

Values
Value Meaning
0 None
1 RTL
2 Hold
3 SmartRTL
4 SmartRTL or Hold
5 Terminate

BATT8_FS_CRT_ACT: Critical battery failsafe action

What action the vehicle should perform if it hits a critical battery failsafe

Values
Value Meaning
0 None
1 RTL
2 Hold
3 SmartRTL
4 SmartRTL or Hold
5 Terminate

BATT8_ARM_VOLT: Required arming voltage

Note: This parameter is for advanced users

Battery voltage level which is required to arm the aircraft. Set to 0 to allow arming at any voltage.

Increment Units
0.1 volt

BATT8_ARM_MAH: Required arming remaining capacity

Note: This parameter is for advanced users

Battery capacity remaining which is required to arm the aircraft. Set to 0 to allow arming at any capacity. Note that execept for smart batteries rebooting the vehicle will always reset the remaining capacity estimate, which can lead to this check not providing sufficent protection, it is recommended to always use this in conjunction with the BATT8__ARM_VOLT parameter.

Increment Units
50 milliampere hour

BATT8_BUS: Battery monitor I2C bus number

Battery monitor I2C bus number

Range
0 - 3

BATT9_ Parameters

BATT9_MONITOR: Battery monitoring

Controls enabling monitoring of the battery’s voltage and current

RebootRequired Values
True
Value Meaning
0 Disabled
3 Analog Voltage Only
4 Analog Voltage and Current
5 Solo
6 Bebop
7 SMBus-Generic
8 UAVCAN-BatteryInfo
9 BLHeli ESC
10 SumOfFollowing
11 FuelFlow
12 FuelLevelPWM
13 SMBUS-SUI3
14 SMBUS-SUI6
15 NeoDesign
16 SMBus-Maxell

BATT9_VOLT_PIN: Battery Voltage sensing pin

Sets the analog input pin that should be used for voltage monitoring.

RebootRequired Values
True
Value Meaning
-1 Disabled
2 Pixhawk/Pixracer/Navio2/Pixhawk2_PM1
13 Pixhawk2_PM2/CubeOrange_PM2
14 CubeOrange
16 Durandal
100 PX4-v1

BATT9_CURR_PIN: Battery Current sensing pin

Sets the analog input pin that should be used for current monitoring.

RebootRequired Values
True
Value Meaning
-1 Disabled
3 Pixhawk/Pixracer/Navio2/Pixhawk2_PM1
14 Pixhawk2_PM2
15 CubeOrange
4 CubeOrange_PM2
17 Durandal
101 PX4-v1

BATT9_VOLT_MULT: Voltage Multiplier

Note: This parameter is for advanced users

Used to convert the voltage of the voltage sensing pin (BATT9_VOLT_PIN) to the actual battery’s voltage (pin_voltage * VOLT_MULT). For the 3DR Power brick with a Pixhawk, this should be set to 10.1. For the Pixhawk with the 3DR 4in1 ESC this should be 12.02. For the PX using the PX4IO power supply this should be set to 1.

BATT9_AMP_PERVLT: Amps per volt

Number of amps that a 1V reading on the current sensor corresponds to. With a Pixhawk using the 3DR Power brick this should be set to 17. For the Pixhawk with the 3DR 4in1 ESC this should be 17.

Units
ampere per volt

BATT9_AMP_OFFSET: AMP offset

Voltage offset at zero current on current sensor

Units
volt

BATT9_CAPACITY: Battery capacity

Capacity of the battery in mAh when full

Increment Units
50 milliampere hour

BATT9_SERIAL_NUM: Battery serial number

Note: This parameter is for advanced users

Battery serial number, automatically filled in for SMBus batteries, otherwise will be -1. With UAVCAN it is the battery_id.

BATT9_LOW_TIMER: Low voltage timeout

Note: This parameter is for advanced users

This is the timeout in seconds before a low voltage event will be triggered. For aircraft with low C batteries it may be necessary to raise this in order to cope with low voltage on long takeoffs. A value of zero disables low voltage errors.

Increment Range Units
1 0 - 120 seconds

BATT9_FS_VOLTSRC: Failsafe voltage source

Note: This parameter is for advanced users

Voltage type used for detection of low voltage event

Values
Value Meaning
0 Raw Voltage
1 Sag Compensated Voltage

BATT9_LOW_VOLT: Low battery voltage

Battery voltage that triggers a low battery failsafe. Set to 0 to disable. If the battery voltage drops below this voltage continuously for more then the period specified by the BATT9_LOW_TIMER parameter then the vehicle will perform the failsafe specified by the BATT9_FS_LOW_ACT parameter.

Increment Units
0.1 volt

BATT9_LOW_MAH: Low battery capacity

Battery capacity at which the low battery failsafe is triggered. Set to 0 to disable battery remaining failsafe. If the battery capacity drops below this level the vehicle will perform the failsafe specified by the BATT9_FS_LOW_ACT parameter.

Increment Units
50 milliampere hour

BATT9_CRT_VOLT: Critical battery voltage

Battery voltage that triggers a critical battery failsafe. Set to 0 to disable. If the battery voltage drops below this voltage continuously for more then the period specified by the BATT9_LOW_TIMER parameter then the vehicle will perform the failsafe specified by the BATT9_FS_CRT_ACT parameter.

Increment Units
0.1 volt

BATT9_CRT_MAH: Battery critical capacity

Battery capacity at which the critical battery failsafe is triggered. Set to 0 to disable battery remaining failsafe. If the battery capacity drops below this level the vehicle will perform the failsafe specified by the BATT9__FS_CRT_ACT parameter.

Increment Units
50 milliampere hour

BATT9_FS_LOW_ACT: Low battery failsafe action

What action the vehicle should perform if it hits a low battery failsafe

Values
Value Meaning
0 None
1 RTL
2 Hold
3 SmartRTL
4 SmartRTL or Hold
5 Terminate

BATT9_FS_CRT_ACT: Critical battery failsafe action

What action the vehicle should perform if it hits a critical battery failsafe

Values
Value Meaning
0 None
1 RTL
2 Hold
3 SmartRTL
4 SmartRTL or Hold
5 Terminate

BATT9_ARM_VOLT: Required arming voltage

Note: This parameter is for advanced users

Battery voltage level which is required to arm the aircraft. Set to 0 to allow arming at any voltage.

Increment Units
0.1 volt

BATT9_ARM_MAH: Required arming remaining capacity

Note: This parameter is for advanced users

Battery capacity remaining which is required to arm the aircraft. Set to 0 to allow arming at any capacity. Note that execept for smart batteries rebooting the vehicle will always reset the remaining capacity estimate, which can lead to this check not providing sufficent protection, it is recommended to always use this in conjunction with the BATT9__ARM_VOLT parameter.

Increment Units
50 milliampere hour

BATT9_BUS: Battery monitor I2C bus number

Battery monitor I2C bus number

Range
0 - 3

BATT_ Parameters

BATT_MONITOR: Battery monitoring

Controls enabling monitoring of the battery’s voltage and current

RebootRequired Values
True
Value Meaning
0 Disabled
3 Analog Voltage Only
4 Analog Voltage and Current
5 Solo
6 Bebop
7 SMBus-Generic
8 UAVCAN-BatteryInfo
9 BLHeli ESC
10 SumOfFollowing
11 FuelFlow
12 FuelLevelPWM
13 SMBUS-SUI3
14 SMBUS-SUI6
15 NeoDesign
16 SMBus-Maxell

BATT_VOLT_PIN: Battery Voltage sensing pin

Sets the analog input pin that should be used for voltage monitoring.

RebootRequired Values
True
Value Meaning
-1 Disabled
2 Pixhawk/Pixracer/Navio2/Pixhawk2_PM1
13 Pixhawk2_PM2/CubeOrange_PM2
14 CubeOrange
16 Durandal
100 PX4-v1

BATT_CURR_PIN: Battery Current sensing pin

Sets the analog input pin that should be used for current monitoring.

RebootRequired Values
True
Value Meaning
-1 Disabled
3 Pixhawk/Pixracer/Navio2/Pixhawk2_PM1
14 Pixhawk2_PM2
15 CubeOrange
4 CubeOrange_PM2
17 Durandal
101 PX4-v1

BATT_VOLT_MULT: Voltage Multiplier

Note: This parameter is for advanced users

Used to convert the voltage of the voltage sensing pin (BATT_VOLT_PIN) to the actual battery’s voltage (pin_voltage * VOLT_MULT). For the 3DR Power brick with a Pixhawk, this should be set to 10.1. For the Pixhawk with the 3DR 4in1 ESC this should be 12.02. For the PX using the PX4IO power supply this should be set to 1.

BATT_AMP_PERVLT: Amps per volt

Number of amps that a 1V reading on the current sensor corresponds to. With a Pixhawk using the 3DR Power brick this should be set to 17. For the Pixhawk with the 3DR 4in1 ESC this should be 17.

Units
ampere per volt

BATT_AMP_OFFSET: AMP offset

Voltage offset at zero current on current sensor

Units
volt

BATT_CAPACITY: Battery capacity

Capacity of the battery in mAh when full

Increment Units
50 milliampere hour

BATT_SERIAL_NUM: Battery serial number

Note: This parameter is for advanced users

Battery serial number, automatically filled in for SMBus batteries, otherwise will be -1. With UAVCAN it is the battery_id.

BATT_LOW_TIMER: Low voltage timeout

Note: This parameter is for advanced users

This is the timeout in seconds before a low voltage event will be triggered. For aircraft with low C batteries it may be necessary to raise this in order to cope with low voltage on long takeoffs. A value of zero disables low voltage errors.

Increment Range Units
1 0 - 120 seconds

BATT_FS_VOLTSRC: Failsafe voltage source

Note: This parameter is for advanced users

Voltage type used for detection of low voltage event

Values
Value Meaning
0 Raw Voltage
1 Sag Compensated Voltage

BATT_LOW_VOLT: Low battery voltage

Battery voltage that triggers a low battery failsafe. Set to 0 to disable. If the battery voltage drops below this voltage continuously for more then the period specified by the BATT_LOW_TIMER parameter then the vehicle will perform the failsafe specified by the BATT_FS_LOW_ACT parameter.

Increment Units
0.1 volt

BATT_LOW_MAH: Low battery capacity

Battery capacity at which the low battery failsafe is triggered. Set to 0 to disable battery remaining failsafe. If the battery capacity drops below this level the vehicle will perform the failsafe specified by the BATT_FS_LOW_ACT parameter.

Increment Units
50 milliampere hour

BATT_CRT_VOLT: Critical battery voltage

Battery voltage that triggers a critical battery failsafe. Set to 0 to disable. If the battery voltage drops below this voltage continuously for more then the period specified by the BATT_LOW_TIMER parameter then the vehicle will perform the failsafe specified by the BATT_FS_CRT_ACT parameter.

Increment Units
0.1 volt

BATT_CRT_MAH: Battery critical capacity

Battery capacity at which the critical battery failsafe is triggered. Set to 0 to disable battery remaining failsafe. If the battery capacity drops below this level the vehicle will perform the failsafe specified by the BATT__FS_CRT_ACT parameter.

Increment Units
50 milliampere hour

BATT_FS_LOW_ACT: Low battery failsafe action

What action the vehicle should perform if it hits a low battery failsafe

Values
Value Meaning
0 None
1 RTL
2 Hold
3 SmartRTL
4 SmartRTL or Hold
5 Terminate

BATT_FS_CRT_ACT: Critical battery failsafe action

What action the vehicle should perform if it hits a critical battery failsafe

Values
Value Meaning
0 None
1 RTL
2 Hold
3 SmartRTL
4 SmartRTL or Hold
5 Terminate

BATT_ARM_VOLT: Required arming voltage

Note: This parameter is for advanced users

Battery voltage level which is required to arm the aircraft. Set to 0 to allow arming at any voltage.

Increment Units
0.1 volt

BATT_ARM_MAH: Required arming remaining capacity

Note: This parameter is for advanced users

Battery capacity remaining which is required to arm the aircraft. Set to 0 to allow arming at any capacity. Note that execept for smart batteries rebooting the vehicle will always reset the remaining capacity estimate, which can lead to this check not providing sufficent protection, it is recommended to always use this in conjunction with the BATT__ARM_VOLT parameter.

Increment Units
50 milliampere hour

BATT_BUS: Battery monitor I2C bus number

Battery monitor I2C bus number

Range
0 - 3

BCN Parameters

BCN_TYPE: Beacon based position estimation device type

Note: This parameter is for advanced users

What type of beacon based position estimation device is connected

Values
Value Meaning
0 None
1 Pozyx
2 Marvelmind
3 Nooploop
10 SITL

BCN_LATITUDE: Beacon origin’s latitude

Note: This parameter is for advanced users

Beacon origin’s latitude

Increment Range Units
0.000001 -90 - 90 degrees

BCN_LONGITUDE: Beacon origin’s longitude

Note: This parameter is for advanced users

Beacon origin’s longitude

Increment Range Units
0.000001 -180 - 180 degrees

BCN_ALT: Beacon origin’s altitude above sealevel in meters

Note: This parameter is for advanced users

Beacon origin’s altitude above sealevel in meters

Increment Range Units
1 0 - 10000 meters

BCN_ORIENT_YAW: Beacon systems rotation from north in degrees

Note: This parameter is for advanced users

Beacon systems rotation from north in degrees

Increment Range Units
1 -180 - +180 degrees

BRD_ Parameters

BRD_PWM_COUNT: Auxiliary pin config

Note: This parameter is for advanced users

Controls number of FMU outputs which are setup for PWM. All unassigned pins can be used for GPIO

RebootRequired Values
True
Value Meaning
0 No PWMs
1 One PWMs
2 Two PWMs
3 Three PWMs
4 Four PWMs
5 Five PWMs
6 Six PWMs
7 Seven PWMs
8 Eight PWMs

BRD_SER1_RTSCTS: Serial 1 flow control

Note: This parameter is for advanced users

Enable flow control on serial 1 (telemetry 1) on Pixhawk. You must have the RTS and CTS pins connected to your radio. The standard DF13 6 pin connector for a 3DR radio does have those pins connected. If this is set to 2 then flow control will be auto-detected by checking for the output buffer filling on startup. Note that the PX4v1 does not have hardware flow control pins on this port, so you should leave this disabled.

RebootRequired Values
True
Value Meaning
0 Disabled
1 Enabled
2 Auto

BRD_SER2_RTSCTS: Serial 2 flow control

Note: This parameter is for advanced users

Enable flow control on serial 2 (telemetry 2) on Pixhawk and STATE. You must have the RTS and CTS pins connected to your radio. The standard DF13 6 pin connector for a 3DR radio does have those pins connected. If this is set to 2 then flow control will be auto-detected by checking for the output buffer filling on startup.

RebootRequired Values
True
Value Meaning
0 Disabled
1 Enabled
2 Auto

BRD_SER3_RTSCTS: Serial 3 flow control

Note: This parameter is for advanced users

Enable flow control on serial 3. You must have the RTS and CTS pins connected to your radio. The standard DF13 6 pin connector for a 3DR radio does have those pins connected. If this is set to 2 then flow control will be auto-detected by checking for the output buffer filling on startup.

RebootRequired Values
True
Value Meaning
0 Disabled
1 Enabled
2 Auto

BRD_SER4_RTSCTS: Serial 4 flow control

Note: This parameter is for advanced users

Enable flow control on serial 4. You must have the RTS and CTS pins connected to your radio. The standard DF13 6 pin connector for a 3DR radio does have those pins connected. If this is set to 2 then flow control will be auto-detected by checking for the output buffer filling on startup.

RebootRequired Values
True
Value Meaning
0 Disabled
1 Enabled
2 Auto

BRD_SER5_RTSCTS: Serial 5 flow control

Note: This parameter is for advanced users

Enable flow control on serial 5. You must have the RTS and CTS pins connected to your radio. The standard DF13 6 pin connector for a 3DR radio does have those pins connected. If this is set to 2 then flow control will be auto-detected by checking for the output buffer filling on startup.

RebootRequired Values
True
Value Meaning
0 Disabled
1 Enabled
2 Auto

BRD_SAFETYENABLE: Enable use of safety arming switch

This controls the default state of the safety switch at startup. When set to 1 the safety switch will start in the safe state (flashing) at boot. When set to zero the safety switch will start in the unsafe state (solid) at startup. Note that if a safety switch is fitted the user can still control the safety state after startup using the switch. The safety state can also be controlled in software using a MAVLink message.

RebootRequired Values
True
Value Meaning
0 Disabled
1 Enabled

BRD_SBUS_OUT: SBUS output rate

Note: This parameter is for advanced users

This sets the SBUS output frame rate in Hz

RebootRequired Values
True
Value Meaning
0 Disabled
1 50Hz
2 75Hz
3 100Hz
4 150Hz
5 200Hz
6 250Hz
7 300Hz

BRD_SERIAL_NUM: User-defined serial number

User-defined serial number of this vehicle, it can be any arbitrary number you want and has no effect on the autopilot

Range
-32768 - 32767

BRD_SAFETY_MASK: Outputs which ignore the safety switch state

Note: This parameter is for advanced users

A bitmask which controls what outputs can move while the safety switch has not been pressed

Bitmask RebootRequired Values
Bit Meaning
0 Output1
1 Output2
2 Output3
3 Output4
4 Output5
5 Output6
6 Output7
7 Output8
8 Output9
9 Output10
10 Output11
11 Output12
12 Output13
13 Output14
True
Value Meaning
0 Disabled
1 Enabled

BRD_IMU_TARGTEMP: Target IMU temperature

Note: This parameter is for advanced users

This sets the target IMU temperature for boards with controllable IMU heating units. DO NOT SET -1 on The Cube. A value of -1 sets PH1 behaviour

Range Units
-1 - 80 degrees Celsius

BRD_TYPE: Board type

Note: This parameter is for advanced users

This allows selection of a PX4 or VRBRAIN board type. If set to zero then the board type is auto-detected (PX4)

RebootRequired Values
True
Value Meaning
0 AUTO
1 PX4V1
2 Pixhawk
3 Cube/Pixhawk2
4 Pixracer
5 PixhawkMini
6 Pixhawk2Slim
13 Intel Aero FC
14 Pixhawk Pro
20 AUAV2.1
21 PCNC1
22 MINDPXV2
23 SP01
24 CUAVv5/FMUV5
30 VRX BRAIN51
32 VRX BRAIN52
33 VRX BRAIN52E
34 VRX UBRAIN51
35 VRX UBRAIN52
36 VRX CORE10
38 VRX BRAIN54
39 PX4 FMUV6
100 PX4 OLDDRIVERS

BRD_IO_ENABLE: Enable IO co-processor

Note: This parameter is for advanced users

This allows for the IO co-processor on FMUv1 and FMUv2 to be disabled

RebootRequired Values
True
Value Meaning
0 Disabled
1 Enabled

BRD_SAFETYOPTION: Options for safety button behavior

This controls the activation of the safety button. It allows you to control if the safety button can be used for safety enable and/or disable, and whether the button is only active when disarmed

Bitmask
Bit Meaning
0 ActiveForSafetyEnable
1 ActiveForSafetyDisable
2 ActiveWhenArmed
3 Force safety on when the aircraft disarms

BRD_VBUS_MIN: Autopilot board voltage requirement

Note: This parameter is for advanced users

Minimum voltage on the autopilot power rail to allow the aircraft to arm. 0 to disable the check.

Increment Range Units
0.1 4.0 - 5.5 volt

BRD_VSERVO_MIN: Servo voltage requirement

Note: This parameter is for advanced users

Minimum voltage on the servo rail to allow the aircraft to arm. 0 to disable the check.

Increment Range Units
0.1 3.3 - 12.0 volt

BRD_SD_SLOWDOWN: microSD slowdown

Note: This parameter is for advanced users

This is a scaling factor to slow down microSD operation. It can be used on flight board and microSD card combinations where full speed is not reliable. For normal full speed operation a value of 0 should be used.

Increment Range
1 0 - 32

BRD_PWM_VOLT_SEL: Set PWM Out Voltage

Note: This parameter is for advanced users

This sets the voltage max for PWM output pulses. 0 for 3.3V and 1 for 5V output.

Values
Value Meaning
0 3.3V
1 5V

BRD_OPTIONS: Board options

Note: This parameter is for advanced users

Board specific option flags

Bitmask
Bit Meaning
0 Enable hardware watchdog

BRD_BOOT_DELAY: Boot delay

Note: This parameter is for advanced users

This adds a delay in milliseconds to boot to ensure peripherals initialise fully

Range Units
0 - 10000 milliseconds

BRD_IMUHEAT_P: IMU Heater P gain

Note: This parameter is for advanced users

IMU Heater P gain

Increment Range
1 1 - 500

BRD_IMUHEAT_I: IMU Heater I gain

Note: This parameter is for advanced users

IMU Heater integrator gain

Increment Range
0.1 0 - 1

BRD_IMUHEAT_IMAX: IMU Heater IMAX

Note: This parameter is for advanced users

IMU Heater integrator maximum

Increment Range
1 0 - 100

BRD_ALT_CONFIG: Alternative HW config

Note: This parameter is for advanced users

Select an alternative hardware configuration. A value of zero selects the default configuration for this board. Other values are board specific. Please see the documentation for your board for details on any alternative configuration values that may be available.

Increment Range RebootRequired
1 0 - 10 True

BRD_RADIO Parameters

BRD_RADIO_TYPE: Set type of direct attached radio

This enables support for direct attached radio receivers

Values
Value Meaning
0 None
1 CYRF6936
2 CC2500
3 BK2425

BRD_RADIO_PROT: protocol

Note: This parameter is for advanced users

Select air protocol

Values
Value Meaning
0 Auto
1 DSM2
2 DSMX

BRD_RADIO_DEBUG: debug level

Note: This parameter is for advanced users

radio debug level

Range
0 - 4

BRD_RADIO_DISCRC: disable receive CRC

Note: This parameter is for advanced users

disable receive CRC (for debug)

Values
Value Meaning
0 NotDisabled
1 Disabled

BRD_RADIO_SIGCH: RSSI signal strength

Note: This parameter is for advanced users

Channel to show receive RSSI signal strength, or zero for disabled

Range
0 - 16

BRD_RADIO_PPSCH: Packet rate channel

Note: This parameter is for advanced users

Channel to show received packet-per-second rate, or zero for disabled

Range
0 - 16

BRD_RADIO_TELEM: Enable telemetry

Note: This parameter is for advanced users

If this is non-zero then telemetry packets will be sent over DSM

Values
Value Meaning
0 Disabled
1 Enabled

BRD_RADIO_TXPOW: Telemetry Transmit power

Note: This parameter is for advanced users

Set telemetry transmit power. This is the power level (from 1 to 8) for telemetry packets sent from the RX to the TX

Range
1 - 8

BRD_RADIO_FCCTST: Put radio into FCC test mode

Note: This parameter is for advanced users

If this is enabled then the radio will continuously transmit as required for FCC testing. The transmit channel is set by the value of the parameter. The radio will not work for RC input while this is enabled

Values
Value Meaning
0 Disabled
1 MinChannel
2 MidChannel
3 MaxChannel
4 MinChannelCW
5 MidChannelCW
6 MaxChannelCW

BRD_RADIO_STKMD: Stick input mode

Note: This parameter is for advanced users

This selects between different stick input modes. The default is mode2, which has throttle on the left stick and pitch on the right stick. You can instead set mode1, which has throttle on the right stick and pitch on the left stick.

Values
Value Meaning
1 Mode1
2 Mode2

BRD_RADIO_TESTCH: Set radio to factory test channel

Note: This parameter is for advanced users

This sets the radio to a fixed test channel for factory testing. Using a fixed channel avoids the need for binding in factory testing.

Values
Value Meaning
0 Disabled
1 TestChan1
2 TestChan2
3 TestChan3
4 TestChan4
5 TestChan5
6 TestChan6
7 TestChan7
8 TestChan8

BRD_RADIO_TSIGCH: RSSI value channel for telemetry data on transmitter

Note: This parameter is for advanced users

Channel to show telemetry RSSI value as received by TX

Range
0 - 16

BRD_RADIO_TPPSCH: Telemetry PPS channel

Note: This parameter is for advanced users

Channel to show telemetry packets-per-second value, as received at TX

Range
0 - 16

BRD_RADIO_TXMAX: Transmitter transmit power

Note: This parameter is for advanced users

Set transmitter maximum transmit power (from 1 to 8)

Range
1 - 8

BRD_RADIO_BZOFS: Transmitter buzzer adjustment

Note: This parameter is for advanced users

Set transmitter buzzer note adjustment (adjust frequency up)

Range
0 - 40

BRD_RADIO_ABTIME: Auto-bind time

Note: This parameter is for advanced users

When non-zero this sets the time with no transmitter packets before we start looking for auto-bind packets.

Range
0 - 120

BRD_RADIO_ABLVL: Auto-bind level

Note: This parameter is for advanced users

This sets the minimum RSSI of an auto-bind packet for it to be accepted. This should be set so that auto-bind will only happen at short range to minimise the change of an auto-bind happening accidentially

Range
0 - 31

BRD_RTC Parameters

BRD_RTC_TYPES: Allowed sources of RTC time

Note: This parameter is for advanced users

Specifies which sources of UTC time will be accepted

Bitmask
Bit Meaning
0 GPS
1 MAVLINK_SYSTEM_TIME
2 HW

BRD_RTC_TZ_MIN: Timezone offset from UTC

Note: This parameter is for advanced users

Adds offset in +- minutes from UTC to calculate local time

Range
-720 - +840

BTN_ Parameters

BTN_ENABLE: Enable button reporting

Note: This parameter is for advanced users

This enables the button checking module. When this is disabled the parameters for setting button inputs are not visible

Values
Value Meaning
0 Disabled
1 Enabled

BTN_PIN1: First button Pin

Digital pin number for first button input.

Values
Value Meaning
-1 Disabled
50 AUXOUT1
51 AUXOUT2
52 AUXOUT3
53 AUXOUT4
54 AUXOUT5
55 AUXOUT6

BTN_PIN2: Second button Pin

Digital pin number for second button input.

Values
Value Meaning
-1 Disabled
50 AUXOUT1
51 AUXOUT2
52 AUXOUT3
53 AUXOUT4
54 AUXOUT5
55 AUXOUT6

BTN_PIN3: Third button Pin

Digital pin number for third button input.

Values
Value Meaning
-1 Disabled
50 AUXOUT1
51 AUXOUT2
52 AUXOUT3
53 AUXOUT4
54 AUXOUT5
55 AUXOUT6

BTN_PIN4: Fourth button Pin

Digital pin number for fourth button input.

Values
Value Meaning
-1 Disabled
50 AUXOUT1
51 AUXOUT2
52 AUXOUT3
53 AUXOUT4
54 AUXOUT5
55 AUXOUT6

BTN_REPORT_SEND: Report send time

The duration in seconds that a BUTTON_CHANGE report is repeatedly sent to the GCS regarding a button changing state. Note that the BUTTON_CHANGE message is MAVLink2 only.

Range
0 - 3600

CAM_ Parameters

CAM_TRIGG_TYPE: Camera shutter (trigger) type

how to trigger the camera to take a picture

Values
Value Meaning
0 Servo
1 Relay
2 GoPro in Solo Gimbal

CAM_DURATION: Duration that shutter is held open

How long the shutter will be held open in 10ths of a second (i.e. enter 10 for 1second, 50 for 5seconds)

Range Units
0 - 50 deciseconds

CAM_SERVO_ON: Servo ON PWM value

PWM value in microseconds to move servo to when shutter is activated

Range Units
1000 - 2000 PWM in microseconds

CAM_SERVO_OFF: Servo OFF PWM value

PWM value in microseconds to move servo to when shutter is deactivated

Range Units
1000 - 2000 PWM in microseconds

CAM_TRIGG_DIST: Camera trigger distance

Distance in meters between camera triggers. If this value is non-zero then the camera will trigger whenever the position changes by this number of meters regardless of what mode the APM is in. Note that this parameter can also be set in an auto mission using the DO_SET_CAM_TRIGG_DIST command, allowing you to enable/disable the triggering of the camera during the flight.

Range Units
0 - 1000 meters

CAM_RELAY_ON: Relay ON value

This sets whether the relay goes high or low when it triggers. Note that you should also set RELAY_DEFAULT appropriately for your camera

Values
Value Meaning
0 Low
1 High

CAM_MIN_INTERVAL: Minimum time between photos

Postpone shooting if previous picture was taken less than preset time(ms) ago.

Range Units
0 - 10000 milliseconds

CAM_MAX_ROLL: Maximum photo roll angle.

Postpone shooting if roll is greater than limit. (0=Disable, will shoot regardless of roll).

Range Units
0 - 180 degrees

CAM_FEEDBACK_PIN: Camera feedback pin

pin number to use for save accurate camera feedback messages. If set to -1 then don’t use a pin flag for this, otherwise this is a pin number which if held high after a picture trigger order, will save camera messages when camera really takes a picture. A universal camera hot shoe is needed. The pin should be held high for at least 2 milliseconds for reliable trigger detection. See also the CAM_FEEDBACK_POL option.

RebootRequired Values
True
Value Meaning
-1 Disabled
50 AUX1
51 AUX2
52 AUX3
53 AUX4
54 AUX5
55 AUX6

CAM_FEEDBACK_POL: Camera feedback pin polarity

Polarity for feedback pin. If this is 1 then the feedback pin should go high on trigger. If set to 0 then it should go low

Values
Value Meaning
0 TriggerLow
1 TriggerHigh

CAM_AUTO_ONLY: Distance-trigging in AUTO mode only

When enabled, trigging by distance is done in AUTO mode only.

Values
Value Meaning
0 Always
1 Only when in AUTO

CAM_TYPE: Type of camera (0: None, 1: BMMCC)

Set the camera type that is being used, certain cameras have custom functions that need further configuration, this enables that.

Values
Value Meaning
0 Default
1 BMMCC

CAM_RC_ Parameters

CAM_RC_TYPE: RunCam device type

RunCam deviee type used to determine OSD menu structure and shutter options.

Values
Value Meaning
0 Disabled
1 RunCam Split Micro/RunCam with UART
2 RunCam Split

CAM_RC_FEATURES: RunCam features available

Note: This parameter is for advanced users

The available features of the attached RunCam device. If 0 then the RunCam device will be queried for the features it supports, otherwise this setting is used.

Bitmask
Bit Meaning
0 Power Button
1 WiFi Button
2 Change Mode
3 5-Key OSD
4 Settings Access
5 DisplayPort
6 Start Recording
7 Stop Recording

CAM_RC_BT_DELAY: RunCam boot delay before allowing updates

Note: This parameter is for advanced users

Time it takes for the RunCam to become fully ready in ms. If this is too short then commands can get out of sync.

CAM_RC_BTN_DELAY: RunCam button delay before allowing further button presses

Note: This parameter is for advanced users

Time it takes for the a RunCam button press to be actived in ms. If this is too short then commands can get out of sync.

CAM_RC_MDE_DELAY: RunCam mode delay before allowing further button presses

Note: This parameter is for advanced users

Time it takes for the a RunCam mode button press to be actived in ms. If a mode change first requires a video recording change then double this value is used. If this is too short then commands can get out of sync.

CAM_RC_CONTROL: RunCam control option

Note: This parameter is for advanced users

Specifies the allowed actions required to enter the OSD menu

Bitmask
Bit Meaning
0 Stick yaw right
1 Stick roll right
2 3-position switch
3 2-position switch
4 Autorecording enabled

CAN_ Parameters

CAN_LOGLEVEL: Loglevel

Note: This parameter is for advanced users

Loglevel for recording initialisation and debug information from CAN Interface

Range Values
0 - 4
Value Meaning
0 Log None
1 Log Error
2 Log Warning and below
3 Log Info and below
4 Log Everything

CAN_D1_ Parameters

CAN_D1_PROTOCOL: Enable use of specific protocol over virtual driver

Note: This parameter is for advanced users

Enabling this option starts selected protocol that will use this virtual driver

RebootRequired Values
True
Value Meaning
0 Disabled
1 UAVCAN
2 KDECAN
3 ToshibaCAN
4 PiccoloCAN
5 CANTester

CAN_D1_KDE_ Parameters

CAN_D1_KDE_NPOLE: Number of motor poles

Sets the number of motor poles to calculate the correct RPM value

CAN_D1_PC_ Parameters

CAN_D1_PC_ESC_BM: ESC channels

Note: This parameter is for advanced users

Bitmask defining which ESC (motor) channels are to be transmitted over Piccolo CAN

Bitmask
0: ESC 1, 1: ESC 2, 2: ESC 3, 3: ESC 4, 4: ESC 5, 5: ESC 6, 6: ESC 7, 7: ESC 8, 8: ESC 9, 9: ESC 10, 10: ESC 11, 11: ESC 12, 12: ESC 13, 13: ESC 14, 14: ESC 15, 15: ESC 16

CAN_D1_PC_ESC_RT: ESC output rate

Note: This parameter is for advanced users

Output rate of ESC command messages

Range Units
1 - 500 hertz

CAN_D1_TST_ Parameters

CAN_D1_TST_ID: CAN Test Index

Note: This parameter is for advanced users

Selects the Index of Test that needs to be run recursively, this value gets reset to 0 at boot.

Range Values
0 - 4
Value Meaning
0 TEST_NONE
1 TEST_LOOPBACK
2 TEST_BUSOFF_RECOVERY
3 TEST_UAVCAN_DNA
4 TEST_TOSHIBA_CAN
5 TEST_KDE_CAN
6 TEST_UAVCAN_ESC

CAN_D1_TST_LPR8: CANTester LoopRate

Note: This parameter is for advanced users

Selects the Looprate of Test methods

Units
microseconds

CAN_D1_UC_ Parameters

CAN_D1_UC_NODE: UAVCAN node that is used for this network

Note: This parameter is for advanced users

UAVCAN node should be set implicitly

Range
1 - 250

CAN_D1_UC_SRV_BM: RC Out channels to be transmitted as servo over UAVCAN

Note: This parameter is for advanced users

Bitmask with one set for channel to be transmitted as a servo command over UAVCAN

Bitmask
0: Servo 1, 1: Servo 2, 2: Servo 3, 3: Servo 4, 4: Servo 5, 5: Servo 6, 6: Servo 7, 7: Servo 8, 8: Servo 9, 9: Servo 10, 10: Servo 11, 11: Servo 12, 12: Servo 13, 13: Servo 14, 14: Servo 15

CAN_D1_UC_ESC_BM: RC Out channels to be transmitted as ESC over UAVCAN

Note: This parameter is for advanced users

Bitmask with one set for channel to be transmitted as a ESC command over UAVCAN

Bitmask
0: ESC 1, 1: ESC 2, 2: ESC 3, 3: ESC 4, 4: ESC 5, 5: ESC 6, 6: ESC 7, 7: ESC 8, 8: ESC 9, 9: ESC 10, 10: ESC 11, 11: ESC 12, 12: ESC 13, 13: ESC 14, 14: ESC 15, 15: ESC 16

CAN_D1_UC_SRV_RT: Servo output rate

Note: This parameter is for advanced users

Maximum transmit rate for servo outputs

Range Units
1 - 200 hertz

CAN_D2_ Parameters

CAN_D2_PROTOCOL: Enable use of specific protocol over virtual driver

Note: This parameter is for advanced users

Enabling this option starts selected protocol that will use this virtual driver

RebootRequired Values
True
Value Meaning
0 Disabled
1 UAVCAN
2 KDECAN
3 ToshibaCAN
4 PiccoloCAN
5 CANTester

CAN_D2_KDE_ Parameters

CAN_D2_KDE_NPOLE: Number of motor poles

Sets the number of motor poles to calculate the correct RPM value

CAN_D2_PC_ Parameters

CAN_D2_PC_ESC_BM: ESC channels

Note: This parameter is for advanced users

Bitmask defining which ESC (motor) channels are to be transmitted over Piccolo CAN

Bitmask
0: ESC 1, 1: ESC 2, 2: ESC 3, 3: ESC 4, 4: ESC 5, 5: ESC 6, 6: ESC 7, 7: ESC 8, 8: ESC 9, 9: ESC 10, 10: ESC 11, 11: ESC 12, 12: ESC 13, 13: ESC 14, 14: ESC 15, 15: ESC 16

CAN_D2_PC_ESC_RT: ESC output rate

Note: This parameter is for advanced users

Output rate of ESC command messages

Range Units
1 - 500 hertz

CAN_D2_TST_ Parameters

CAN_D2_TST_ID: CAN Test Index

Note: This parameter is for advanced users

Selects the Index of Test that needs to be run recursively, this value gets reset to 0 at boot.

Range Values
0 - 4
Value Meaning
0 TEST_NONE
1 TEST_LOOPBACK
2 TEST_BUSOFF_RECOVERY
3 TEST_UAVCAN_DNA
4 TEST_TOSHIBA_CAN
5 TEST_KDE_CAN
6 TEST_UAVCAN_ESC

CAN_D2_TST_LPR8: CANTester LoopRate

Note: This parameter is for advanced users

Selects the Looprate of Test methods

Units
microseconds

CAN_D2_UC_ Parameters

CAN_D2_UC_NODE: UAVCAN node that is used for this network

Note: This parameter is for advanced users

UAVCAN node should be set implicitly

Range
1 - 250

CAN_D2_UC_SRV_BM: RC Out channels to be transmitted as servo over UAVCAN

Note: This parameter is for advanced users

Bitmask with one set for channel to be transmitted as a servo command over UAVCAN

Bitmask
0: Servo 1, 1: Servo 2, 2: Servo 3, 3: Servo 4, 4: Servo 5, 5: Servo 6, 6: Servo 7, 7: Servo 8, 8: Servo 9, 9: Servo 10, 10: Servo 11, 11: Servo 12, 12: Servo 13, 13: Servo 14, 14: Servo 15

CAN_D2_UC_ESC_BM: RC Out channels to be transmitted as ESC over UAVCAN

Note: This parameter is for advanced users

Bitmask with one set for channel to be transmitted as a ESC command over UAVCAN

Bitmask
0: ESC 1, 1: ESC 2, 2: ESC 3, 3: ESC 4, 4: ESC 5, 5: ESC 6, 6: ESC 7, 7: ESC 8, 8: ESC 9, 9: ESC 10, 10: ESC 11, 11: ESC 12, 12: ESC 13, 13: ESC 14, 14: ESC 15, 15: ESC 16

CAN_D2_UC_SRV_RT: Servo output rate

Note: This parameter is for advanced users

Maximum transmit rate for servo outputs

Range Units
1 - 200 hertz

CAN_D3_ Parameters

CAN_D3_PROTOCOL: Enable use of specific protocol over virtual driver

Note: This parameter is for advanced users

Enabling this option starts selected protocol that will use this virtual driver

RebootRequired Values
True
Value Meaning
0 Disabled
1 UAVCAN
2 KDECAN
3 ToshibaCAN
4 PiccoloCAN
5 CANTester

CAN_D3_KDE_ Parameters

CAN_D3_KDE_NPOLE: Number of motor poles

Sets the number of motor poles to calculate the correct RPM value

CAN_D3_PC_ Parameters

CAN_D3_PC_ESC_BM: ESC channels

Note: This parameter is for advanced users

Bitmask defining which ESC (motor) channels are to be transmitted over Piccolo CAN

Bitmask
0: ESC 1, 1: ESC 2, 2: ESC 3, 3: ESC 4, 4: ESC 5, 5: ESC 6, 6: ESC 7, 7: ESC 8, 8: ESC 9, 9: ESC 10, 10: ESC 11, 11: ESC 12, 12: ESC 13, 13: ESC 14, 14: ESC 15, 15: ESC 16

CAN_D3_PC_ESC_RT: ESC output rate

Note: This parameter is for advanced users

Output rate of ESC command messages

Range Units
1 - 500 hertz

CAN_D3_TST_ Parameters

CAN_D3_TST_ID: CAN Test Index

Note: This parameter is for advanced users

Selects the Index of Test that needs to be run recursively, this value gets reset to 0 at boot.

Range Values
0 - 4
Value Meaning
0 TEST_NONE
1 TEST_LOOPBACK
2 TEST_BUSOFF_RECOVERY
3 TEST_UAVCAN_DNA
4 TEST_TOSHIBA_CAN
5 TEST_KDE_CAN
6 TEST_UAVCAN_ESC

CAN_D3_TST_LPR8: CANTester LoopRate

Note: This parameter is for advanced users

Selects the Looprate of Test methods

Units
microseconds

CAN_D3_UC_ Parameters

CAN_D3_UC_NODE: UAVCAN node that is used for this network

Note: This parameter is for advanced users

UAVCAN node should be set implicitly

Range
1 - 250

CAN_D3_UC_SRV_BM: RC Out channels to be transmitted as servo over UAVCAN

Note: This parameter is for advanced users

Bitmask with one set for channel to be transmitted as a servo command over UAVCAN

Bitmask
0: Servo 1, 1: Servo 2, 2: Servo 3, 3: Servo 4, 4: Servo 5, 5: Servo 6, 6: Servo 7, 7: Servo 8, 8: Servo 9, 9: Servo 10, 10: Servo 11, 11: Servo 12, 12: Servo 13, 13: Servo 14, 14: Servo 15

CAN_D3_UC_ESC_BM: RC Out channels to be transmitted as ESC over UAVCAN

Note: This parameter is for advanced users

Bitmask with one set for channel to be transmitted as a ESC command over UAVCAN

Bitmask
0: ESC 1, 1: ESC 2, 2: ESC 3, 3: ESC 4, 4: ESC 5, 5: ESC 6, 6: ESC 7, 7: ESC 8, 8: ESC 9, 9: ESC 10, 10: ESC 11, 11: ESC 12, 12: ESC 13, 13: ESC 14, 14: ESC 15, 15: ESC 16

CAN_D3_UC_SRV_RT: Servo output rate

Note: This parameter is for advanced users

Maximum transmit rate for servo outputs

Range Units
1 - 200 hertz

CAN_P1_ Parameters

CAN_P1_DRIVER: Index of virtual driver to be used with physical CAN interface

Enabling this option enables use of CAN buses.

RebootRequired Values
True
Value Meaning
0 Disabled
1 First driver
2 Second driver

CAN_P1_BITRATE: Bitrate of CAN interface

Note: This parameter is for advanced users

Bit rate can be set up to from 10000 to 1000000

Range
10000 - 1000000

CAN_P2_ Parameters

CAN_P2_DRIVER: Index of virtual driver to be used with physical CAN interface

Enabling this option enables use of CAN buses.

RebootRequired Values
True
Value Meaning
0 Disabled
1 First driver
2 Second driver

CAN_P2_BITRATE: Bitrate of CAN interface

Note: This parameter is for advanced users

Bit rate can be set up to from 10000 to 1000000

Range
10000 - 1000000

CAN_P3_ Parameters

CAN_P3_DRIVER: Index of virtual driver to be used with physical CAN interface

Enabling this option enables use of CAN buses.

RebootRequired Values
True
Value Meaning
0 Disabled
1 First driver
2 Second driver

CAN_P3_BITRATE: Bitrate of CAN interface

Note: This parameter is for advanced users

Bit rate can be set up to from 10000 to 1000000

Range
10000 - 1000000

CAN_SLCAN_ Parameters

CAN_SLCAN_CPORT: SLCAN Route

CAN Interface ID to be routed to SLCAN, 0 means no routing

RebootRequired Values
True
Value Meaning
0 Disabled
1 First interface
2 Second interface

CAN_SLCAN_SERNUM: SLCAN Serial Port

Serial Port ID to be used for temporary SLCAN iface, -1 means no temporary serial. This parameter is automatically reset on reboot or on timeout. See CAN_SLCAN_TIMOUT for timeout details

Values
Value Meaning
-1 Disabled
0 Serial0
1 Serial1
2 Serial2
3 Serial3
4 Serial4
5 Serial5
6 Serial6

CAN_SLCAN_TIMOUT: SLCAN Timeout

Duration of inactivity after which SLCAN is switched back to original driver in seconds.

Range
0 - 127

CAN_SLCAN_SDELAY: SLCAN Start Delay

Duration after which slcan starts after setting SERNUM in seconds.

Range
0 - 127

COMPASS_ Parameters

COMPASS_OFS_X: Compass offsets in milligauss on the X axis

Note: This parameter is for advanced users

Offset to be added to the compass x-axis values to compensate for metal in the frame

Calibration Increment Range Units
1 1 -400 - 400 milligauss

COMPASS_OFS_Y: Compass offsets in milligauss on the Y axis

Note: This parameter is for advanced users

Offset to be added to the compass y-axis values to compensate for metal in the frame

Calibration Increment Range Units
1 1 -400 - 400 milligauss

COMPASS_OFS_Z: Compass offsets in milligauss on the Z axis

Note: This parameter is for advanced users

Offset to be added to the compass z-axis values to compensate for metal in the frame

Increment Range Units
1 -400 - 400 milligauss

COMPASS_DEC: Compass declination

An angle to compensate between the true north and magnetic north

Increment Range Units
0.01 -3.142 - 3.142 radians

COMPASS_LEARN: Learn compass offsets automatically

Note: This parameter is for advanced users

Enable or disable the automatic learning of compass offsets. You can enable learning either using a compass-only method that is suitable only for fixed wing aircraft or using the offsets learnt by the active EKF state estimator. If this option is enabled then the learnt offsets are saved when you disarm the vehicle. If InFlight learning is enabled then the compass with automatically start learning once a flight starts (must be armed). While InFlight learning is running you cannot use position control modes.

Values
Value Meaning
0 Disabled
1 Internal-Learning
2 EKF-Learning
3 InFlight-Learning

COMPASS_USE: Use compass for yaw

Note: This parameter is for advanced users

Enable or disable the use of the compass (instead of the GPS) for determining heading

Values
Value Meaning
0 Disabled
1 Enabled

COMPASS_AUTODEC: Auto Declination

Note: This parameter is for advanced users

Enable or disable the automatic calculation of the declination based on gps location

Values
Value Meaning
0 Disabled
1 Enabled

COMPASS_MOTCT: Motor interference compensation type

Note: This parameter is for advanced users

Set motor interference compensation type to disabled, throttle or current. Do not change manually.

Calibration Values
1
Value Meaning
0 Disabled
1 Use Throttle
2 Use Current

COMPASS_MOT_X: Motor interference compensation for body frame X axis

Note: This parameter is for advanced users

Multiplied by the current throttle and added to the compass’s x-axis values to compensate for motor interference (Offset per Amp or at Full Throttle)

Calibration Increment Range Units
1 1 -1000 - 1000 milligauss per ampere

COMPASS_MOT_Y: Motor interference compensation for body frame Y axis

Note: This parameter is for advanced users

Multiplied by the current throttle and added to the compass’s y-axis values to compensate for motor interference (Offset per Amp or at Full Throttle)

Calibration Increment Range Units
1 1 -1000 - 1000 milligauss per ampere

COMPASS_MOT_Z: Motor interference compensation for body frame Z axis

Note: This parameter is for advanced users

Multiplied by the current throttle and added to the compass’s z-axis values to compensate for motor interference (Offset per Amp or at Full Throttle)

Increment Range Units
1 -1000 - 1000 milligauss per ampere

COMPASS_ORIENT: Compass orientation

Note: This parameter is for advanced users

The orientation of the first external compass relative to the vehicle frame. This value will be ignored unless this compass is set as an external compass. When set correctly in the northern hemisphere, pointing the nose and right side down should increase the MagX and MagY values respectively. Rolling the vehicle upside down should decrease the MagZ value. For southern hemisphere, switch increase and decrease. NOTE: For internal compasses, AHRS_ORIENT is used.

Values
Value Meaning
0 None
1 Yaw45
2 Yaw90
3 Yaw135
4 Yaw180
5 Yaw225
6 Yaw270
7 Yaw315
8 Roll180
9 Roll180Yaw45
10 Roll180Yaw90
11 Roll180Yaw135
12 Pitch180
13 Roll180Yaw225
14 Roll180Yaw270
15 Roll180Yaw315
16 Roll90
17 Roll90Yaw45
18 Roll90Yaw90
19 Roll90Yaw135
20 Roll270
21 Roll270Yaw45
22 Roll270Yaw90
23 Roll270Yaw135
24 Pitch90
25 Pitch270
26 Pitch180Yaw90
27 Pitch180Yaw270
28 Roll90Pitch90
29 Roll180Pitch90
30 Roll270Pitch90
31 Roll90Pitch180
32 Roll270Pitch180
33 Roll90Pitch270
34 Roll180Pitch270
35 Roll270Pitch270
36 Roll90Pitch180Yaw90
37 Roll90Yaw270
38 Yaw293Pitch68Roll180
39 Pitch315
40 Roll90Pitch315
100 Custom

COMPASS_EXTERNAL: Compass is attached via an external cable

Note: This parameter is for advanced users

Configure compass so it is attached externally. This is auto-detected on PX4 and Pixhawk. Set to 1 if the compass is externally connected. When externally connected the COMPASS_ORIENT option operates independently of the AHRS_ORIENTATION board orientation option. If set to 0 or 1 then auto-detection by bus connection can override the value. If set to 2 then auto-detection will be disabled.

Values
Value Meaning
0 Internal
1 External
2 ForcedExternal

COMPASS_OFS2_X: Compass2 offsets in milligauss on the X axis

Note: This parameter is for advanced users

Offset to be added to compass2’s x-axis values to compensate for metal in the frame

Calibration Increment Range Units
1 1 -400 - 400 milligauss

COMPASS_OFS2_Y: Compass2 offsets in milligauss on the Y axis

Note: This parameter is for advanced users

Offset to be added to compass2’s y-axis values to compensate for metal in the frame

Calibration Increment Range Units
1 1 -400 - 400 milligauss

COMPASS_OFS2_Z: Compass2 offsets in milligauss on the Z axis

Note: This parameter is for advanced users

Offset to be added to compass2’s z-axis values to compensate for metal in the frame

Increment Range Units
1 -400 - 400 milligauss

COMPASS_MOT2_X: Motor interference compensation to compass2 for body frame X axis

Note: This parameter is for advanced users

Multiplied by the current throttle and added to compass2’s x-axis values to compensate for motor interference (Offset per Amp or at Full Throttle)

Calibration Increment Range Units
1 1 -1000 - 1000 milligauss per ampere

COMPASS_MOT2_Y: Motor interference compensation to compass2 for body frame Y axis

Note: This parameter is for advanced users

Multiplied by the current throttle and added to compass2’s y-axis values to compensate for motor interference (Offset per Amp or at Full Throttle)

Calibration Increment Range Units
1 1 -1000 - 1000 milligauss per ampere

COMPASS_MOT2_Z: Motor interference compensation to compass2 for body frame Z axis

Note: This parameter is for advanced users

Multiplied by the current throttle and added to compass2’s z-axis values to compensate for motor interference (Offset per Amp or at Full Throttle)

Increment Range Units
1 -1000 - 1000 milligauss per ampere

COMPASS_OFS3_X: Compass3 offsets in milligauss on the X axis

Note: This parameter is for advanced users

Offset to be added to compass3’s x-axis values to compensate for metal in the frame

Calibration Increment Range Units
1 1 -400 - 400 milligauss

COMPASS_OFS3_Y: Compass3 offsets in milligauss on the Y axis

Note: This parameter is for advanced users

Offset to be added to compass3’s y-axis values to compensate for metal in the frame

Calibration Increment Range Units
1 1 -400 - 400 milligauss

COMPASS_OFS3_Z: Compass3 offsets in milligauss on the Z axis

Note: This parameter is for advanced users

Offset to be added to compass3’s z-axis values to compensate for metal in the frame

Increment Range Units
1 -400 - 400 milligauss

COMPASS_MOT3_X: Motor interference compensation to compass3 for body frame X axis

Note: This parameter is for advanced users

Multiplied by the current throttle and added to compass3’s x-axis values to compensate for motor interference (Offset per Amp or at Full Throttle)

Calibration Increment Range Units
1 1 -1000 - 1000 milligauss per ampere

COMPASS_MOT3_Y: Motor interference compensation to compass3 for body frame Y axis

Note: This parameter is for advanced users

Multiplied by the current throttle and added to compass3’s y-axis values to compensate for motor interference (Offset per Amp or at Full Throttle)

Calibration Increment Range Units
1 1 -1000 - 1000 milligauss per ampere

COMPASS_MOT3_Z: Motor interference compensation to compass3 for body frame Z axis

Note: This parameter is for advanced users

Multiplied by the current throttle and added to compass3’s z-axis values to compensate for motor interference (Offset per Amp or at Full Throttle)

Increment Range Units
1 -1000 - 1000 milligauss per ampere

COMPASS_DEV_ID: Compass device id

Note: This parameter is for advanced users

Compass device id. Automatically detected, do not set manually

ReadOnly
True

COMPASS_DEV_ID2: Compass2 device id

Note: This parameter is for advanced users

Second compass’s device id. Automatically detected, do not set manually

ReadOnly
True

COMPASS_DEV_ID3: Compass3 device id

Note: This parameter is for advanced users

Third compass’s device id. Automatically detected, do not set manually

ReadOnly
True

COMPASS_USE2: Compass2 used for yaw

Note: This parameter is for advanced users

Enable or disable the secondary compass for determining heading.

Values
Value Meaning
0 Disabled
1 Enabled

COMPASS_ORIENT2: Compass2 orientation

Note: This parameter is for advanced users

The orientation of a second external compass relative to the vehicle frame. This value will be ignored unless this compass is set as an external compass. When set correctly in the northern hemisphere, pointing the nose and right side down should increase the MagX and MagY values respectively. Rolling the vehicle upside down should decrease the MagZ value. For southern hemisphere, switch increase and decrease. NOTE: For internal compasses, AHRS_ORIENT is used.

Values
Value Meaning
0 None
1 Yaw45
2 Yaw90
3 Yaw135
4 Yaw180
5 Yaw225
6 Yaw270
7 Yaw315
8 Roll180
9 Roll180Yaw45
10 Roll180Yaw90
11 Roll180Yaw135
12 Pitch180
13 Roll180Yaw225
14 Roll180Yaw270
15 Roll180Yaw315
16 Roll90
17 Roll90Yaw45
18 Roll90Yaw90
19 Roll90Yaw135
20 Roll270
21 Roll270Yaw45
22 Roll270Yaw90
23 Roll270Yaw135
24 Pitch90
25 Pitch270
26 Pitch180Yaw90
27 Pitch180Yaw270
28 Roll90Pitch90
29 Roll180Pitch90
30 Roll270Pitch90
31 Roll90Pitch180
32 Roll270Pitch180
33 Roll90Pitch270
34 Roll180Pitch270
35 Roll270Pitch270
36 Roll90Pitch180Yaw90
37 Roll90Yaw270
38 Yaw293Pitch68Roll180
39 Pitch315
40 Roll90Pitch315
100 Custom

COMPASS_EXTERN2: Compass2 is attached via an external cable

Note: This parameter is for advanced users

Configure second compass so it is attached externally. This is auto-detected on PX4 and Pixhawk. If set to 0 or 1 then auto-detection by bus connection can override the value. If set to 2 then auto-detection will be disabled.

Values
Value Meaning
0 Internal
1 External
2 ForcedExternal

COMPASS_USE3: Compass3 used for yaw

Note: This parameter is for advanced users

Enable or disable the tertiary compass for determining heading.

Values
Value Meaning
0 Disabled
1 Enabled

COMPASS_ORIENT3: Compass3 orientation

Note: This parameter is for advanced users

The orientation of a third external compass relative to the vehicle frame. This value will be ignored unless this compass is set as an external compass. When set correctly in the northern hemisphere, pointing the nose and right side down should increase the MagX and MagY values respectively. Rolling the vehicle upside down should decrease the MagZ value. For southern hemisphere, switch increase and decrease. NOTE: For internal compasses, AHRS_ORIENT is used.

Values
Value Meaning
0 None
1 Yaw45
2 Yaw90
3 Yaw135
4 Yaw180
5 Yaw225
6 Yaw270
7 Yaw315
8 Roll180
9 Roll180Yaw45
10 Roll180Yaw90
11 Roll180Yaw135
12 Pitch180
13 Roll180Yaw225
14 Roll180Yaw270
15 Roll180Yaw315
16 Roll90
17 Roll90Yaw45
18 Roll90Yaw90
19 Roll90Yaw135
20 Roll270
21 Roll270Yaw45
22 Roll270Yaw90
23 Roll270Yaw135
24 Pitch90
25 Pitch270
26 Pitch180Yaw90
27 Pitch180Yaw270
28 Roll90Pitch90
29 Roll180Pitch90
30 Roll270Pitch90
31 Roll90Pitch180
32 Roll270Pitch180
33 Roll90Pitch270
34 Roll180Pitch270
35 Roll270Pitch270
36 Roll90Pitch180Yaw90
37 Roll90Yaw270
38 Yaw293Pitch68Roll180
39 Pitch315
40 Roll90Pitch315
100 Custom

COMPASS_EXTERN3: Compass3 is attached via an external cable

Note: This parameter is for advanced users

Configure third compass so it is attached externally. This is auto-detected on PX4 and Pixhawk. If set to 0 or 1 then auto-detection by bus connection can override the value. If set to 2 then auto-detection will be disabled.

Values
Value Meaning
0 Internal
1 External
2 ForcedExternal

COMPASS_DIA_X: Compass soft-iron diagonal X component

Note: This parameter is for advanced users

DIA_X in the compass soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

Calibration
1

COMPASS_DIA_Y: Compass soft-iron diagonal Y component

Note: This parameter is for advanced users

DIA_Y in the compass soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

Calibration
1

COMPASS_DIA_Z: Compass soft-iron diagonal Z component

Note: This parameter is for advanced users

DIA_Z in the compass soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

COMPASS_ODI_X: Compass soft-iron off-diagonal X component

Note: This parameter is for advanced users

ODI_X in the compass soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

Calibration
1

COMPASS_ODI_Y: Compass soft-iron off-diagonal Y component

Note: This parameter is for advanced users

ODI_Y in the compass soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

Calibration
1

COMPASS_ODI_Z: Compass soft-iron off-diagonal Z component

Note: This parameter is for advanced users

ODI_Z in the compass soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

COMPASS_DIA2_X: Compass2 soft-iron diagonal X component

Note: This parameter is for advanced users

DIA_X in the compass2 soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

Calibration
1

COMPASS_DIA2_Y: Compass2 soft-iron diagonal Y component

Note: This parameter is for advanced users

DIA_Y in the compass2 soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

Calibration
1

COMPASS_DIA2_Z: Compass2 soft-iron diagonal Z component

Note: This parameter is for advanced users

DIA_Z in the compass2 soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

COMPASS_ODI2_X: Compass2 soft-iron off-diagonal X component

Note: This parameter is for advanced users

ODI_X in the compass2 soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

Calibration
1

COMPASS_ODI2_Y: Compass2 soft-iron off-diagonal Y component

Note: This parameter is for advanced users

ODI_Y in the compass2 soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

Calibration
1

COMPASS_ODI2_Z: Compass2 soft-iron off-diagonal Z component

Note: This parameter is for advanced users

ODI_Z in the compass2 soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

COMPASS_DIA3_X: Compass3 soft-iron diagonal X component

Note: This parameter is for advanced users

DIA_X in the compass3 soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

Calibration
1

COMPASS_DIA3_Y: Compass3 soft-iron diagonal Y component

Note: This parameter is for advanced users

DIA_Y in the compass3 soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

Calibration
1

COMPASS_DIA3_Z: Compass3 soft-iron diagonal Z component

Note: This parameter is for advanced users

DIA_Z in the compass3 soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

COMPASS_ODI3_X: Compass3 soft-iron off-diagonal X component

Note: This parameter is for advanced users

ODI_X in the compass3 soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

Calibration
1

COMPASS_ODI3_Y: Compass3 soft-iron off-diagonal Y component

Note: This parameter is for advanced users

ODI_Y in the compass3 soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

Calibration
1

COMPASS_ODI3_Z: Compass3 soft-iron off-diagonal Z component

Note: This parameter is for advanced users

ODI_Z in the compass3 soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

COMPASS_CAL_FIT: Compass calibration fitness

Note: This parameter is for advanced users

This controls the fitness level required for a successful compass calibration. A lower value makes for a stricter fit (less likely to pass). This is the value used for the primary magnetometer. Other magnetometers get double the value.

Increment Range Values
0.1 4 - 32
Value Meaning
4 Very Strict
8 Strict
16 Default
32 Relaxed

COMPASS_OFFS_MAX: Compass maximum offset

Note: This parameter is for advanced users

This sets the maximum allowed compass offset in calibration and arming checks

Increment Range
1 500 - 3000

COMPASS_TYPEMASK: Compass disable driver type mask

Note: This parameter is for advanced users

This is a bitmask of driver types to disable. If a driver type is set in this mask then that driver will not try to find a sensor at startup

Bitmask
Bit Meaning
0 HMC5883
1 LSM303D
2 AK8963
3 BMM150
4 LSM9DS1
5 LIS3MDL
6 AK09916
7 IST8310
8 ICM20948
9 MMC3416
11 UAVCAN
12 QMC5883
14 MAG3110
15 IST8308

COMPASS_FLTR_RNG: Range in which sample is accepted

This sets the range around the average value that new samples must be within to be accepted. This can help reduce the impact of noise on sensors that are on long I2C cables. The value is a percentage from the average value. A value of zero disables this filter.

Increment Range Units
1 0 - 100 percent

COMPASS_AUTO_ROT: Automatically check orientation

When enabled this will automatically check the orientation of compasses on successful completion of compass calibration. If set to 2 then external compasses will have their orientation automatically corrected.

Values
Value Meaning
0 Disabled
1 CheckOnly
2 CheckAndFix

COMPASS_PRIO1_ID: Compass device id with 1st order priority

Note: This parameter is for advanced users

Compass device id with 1st order priority, set automatically if 0. Reboot required after change.

RebootRequired
True

COMPASS_PRIO2_ID: Compass device id with 2nd order priority

Note: This parameter is for advanced users

Compass device id with 2nd order priority, set automatically if 0. Reboot required after change.

RebootRequired
True

COMPASS_PRIO3_ID: Compass device id with 3rd order priority

Note: This parameter is for advanced users

Compass device id with 3rd order priority, set automatically if 0. Reboot required after change.

RebootRequired
True

COMPASS_ENABLE: Enable Compass

Setting this to Enabled(1) will enable the compass. Setting this to Disabled(0) will disable the compass. Note that this is separate from COMPASS_USE. This will enable the low level senor, and will enable logging of magnetometer data. To use the compass for navigation you must also set COMPASS_USE to 1.

Values
Value Meaning
0 Disabled
1 Enabled

COMPASS_SCALE: Compass1 scale factor

Scaling factor for first compass to compensate for sensor scaling errors. If this is 0 then no scaling is done

Range
0 - 1.3

COMPASS_SCALE2: Compass2 scale factor

Scaling factor for 2nd compass to compensate for sensor scaling errors. If this is 0 then no scaling is done

Range
0 - 1.3

COMPASS_SCALE3: Compass3 scale factor

Scaling factor for 3rd compass to compensate for sensor scaling errors. If this is 0 then no scaling is done

Range
0 - 1.3

COMPASS_OPTIONS: Compass options

Note: This parameter is for advanced users

This sets options to change the behaviour of the compass

Bitmask
Bit Meaning
0 CalRequireGPS

COMPASS_DEV_ID4: Compass4 device id

Note: This parameter is for advanced users

Extra 4th compass’s device id. Automatically detected, do not set manually

ReadOnly
True

COMPASS_DEV_ID5: Compass5 device id

Note: This parameter is for advanced users

Extra 5th compass’s device id. Automatically detected, do not set manually

ReadOnly
True

COMPASS_DEV_ID6: Compass6 device id

Note: This parameter is for advanced users

Extra 6th compass’s device id. Automatically detected, do not set manually

ReadOnly
True

COMPASS_DEV_ID7: Compass7 device id

Note: This parameter is for advanced users

Extra 7th compass’s device id. Automatically detected, do not set manually

ReadOnly
True

COMPASS_DEV_ID8: Compass8 device id

Note: This parameter is for advanced users

Extra 8th compass’s device id. Automatically detected, do not set manually

ReadOnly
True

COMPASS_CUS_ROLL: Custom orientation roll offset

Note: This parameter is for advanced users

Compass mounting position roll offset. Positive values = roll right, negative values = roll left. This parameter is only used when COMPASS_ORIENT/2/3 is set to CUSTOM.

Increment Range RebootRequired Units
1 -180 - 180 True degrees

COMPASS_CUS_PIT: Custom orientation pitch offset

Note: This parameter is for advanced users

Compass mounting position pitch offset. Positive values = pitch up, negative values = pitch down. This parameter is only used when COMPASS_ORIENT/2/3 is set to CUSTOM.

Increment Range RebootRequired Units
1 -180 - 180 True degrees

COMPASS_CUS_YAW: Custom orientation yaw offset

Note: This parameter is for advanced users

Compass mounting position yaw offset. Positive values = yaw right, negative values = yaw left. This parameter is only used when COMPASS_ORIENT/2/3 is set to CUSTOM.

Increment Range RebootRequired Units
1 -180 - 180 True degrees

COMPASS_PMOT Parameters

COMPASS_PMOT_EN: per-motor compass correction enable

Note: This parameter is for advanced users

This enables per-motor compass corrections

Values
Value Meaning
0 Disabled
1 Enabled

COMPASS_PMOT_EXP: per-motor exponential correction

Note: This parameter is for advanced users

This is the exponential correction for the power output of the motor for per-motor compass correction

Increment Range
0.01 0 - 2

COMPASS_PMOT1_X: Compass per-motor1 X

Note: This parameter is for advanced users

Compensation for X axis of motor1

COMPASS_PMOT1_Y: Compass per-motor1 Y

Note: This parameter is for advanced users

Compensation for Y axis of motor1

COMPASS_PMOT1_Z: Compass per-motor1 Z

Note: This parameter is for advanced users

Compensation for Z axis of motor1

COMPASS_PMOT2_X: Compass per-motor2 X

Note: This parameter is for advanced users

Compensation for X axis of motor2

COMPASS_PMOT2_Y: Compass per-motor2 Y

Note: This parameter is for advanced users

Compensation for Y axis of motor2

COMPASS_PMOT2_Z: Compass per-motor2 Z

Note: This parameter is for advanced users

Compensation for Z axis of motor2

COMPASS_PMOT3_X: Compass per-motor3 X

Note: This parameter is for advanced users

Compensation for X axis of motor3

COMPASS_PMOT3_Y: Compass per-motor3 Y

Note: This parameter is for advanced users

Compensation for Y axis of motor3

COMPASS_PMOT3_Z: Compass per-motor3 Z

Note: This parameter is for advanced users

Compensation for Z axis of motor3

COMPASS_PMOT4_X: Compass per-motor4 X

Note: This parameter is for advanced users

Compensation for X axis of motor4

COMPASS_PMOT4_Y: Compass per-motor4 Y

Note: This parameter is for advanced users

Compensation for Y axis of motor4

COMPASS_PMOT4_Z: Compass per-motor4 Z

Note: This parameter is for advanced users

Compensation for Z axis of motor4

EK2_ Parameters

EK2_ENABLE: Enable EKF2

Note: This parameter is for advanced users

This enables EKF2. Enabling EKF2 only makes the maths run, it does not mean it will be used for flight control. To use it for flight control set AHRS_EKF_TYPE=2. A reboot or restart will need to be performed after changing the value of EK2_ENABLE for it to take effect.

RebootRequired Values
True
Value Meaning
0 Disabled
1 Enabled

EK2_GPS_TYPE: GPS mode control

Note: This parameter is for advanced users

This controls use of GPS measurements : 0 = use 3D velocity & 2D position, 1 = use 2D velocity and 2D position, 2 = use 2D position, 3 = Inhibit GPS use - this can be useful when flying with an optical flow sensor in an environment where GPS quality is poor and subject to large multipath errors.

Values
Value Meaning
0 GPS 3D Vel and 2D Pos
1 GPS 2D vel and 2D pos
2 GPS 2D pos
3 No GPS

EK2_VELNE_M_NSE: GPS horizontal velocity measurement noise (m/s)

Note: This parameter is for advanced users

This sets a lower limit on the speed accuracy reported by the GPS receiver that is used to set horizontal velocity observation noise. If the model of receiver used does not provide a speed accurcy estimate, then the parameter value will be used. Increasing it reduces the weighting of the GPS horizontal velocity measurements.

Increment Range Units
0.05 0.05 - 5.0 meters per second

EK2_VELD_M_NSE: GPS vertical velocity measurement noise (m/s)

Note: This parameter is for advanced users

This sets a lower limit on the speed accuracy reported by the GPS receiver that is used to set vertical velocity observation noise. If the model of receiver used does not provide a speed accurcy estimate, then the parameter value will be used. Increasing it reduces the weighting of the GPS vertical velocity measurements.

Increment Range Units
0.05 0.05 - 5.0 meters per second

EK2_VEL_I_GATE: GPS velocity innovation gate size

Note: This parameter is for advanced users

This sets the percentage number of standard deviations applied to the GPS velocity measurement innovation consistency check. Decreasing it makes it more likely that good measurements willbe rejected. Increasing it makes it more likely that bad measurements will be accepted.

Increment Range
25 100 - 1000

EK2_POSNE_M_NSE: GPS horizontal position measurement noise (m)

Note: This parameter is for advanced users

This sets the GPS horizontal position observation noise. Increasing it reduces the weighting of GPS horizontal position measurements.

Increment Range Units
0.1 0.1 - 10.0 meters

EK2_POS_I_GATE: GPS position measurement gate size

Note: This parameter is for advanced users

This sets the percentage number of standard deviations applied to the GPS position measurement innovation consistency check. Decreasing it makes it more likely that good measurements will be rejected. Increasing it makes it more likely that bad measurements will be accepted.

Increment Range
25 100 - 1000

EK2_GLITCH_RAD: GPS glitch radius gate size (m)

Note: This parameter is for advanced users

This controls the maximum radial uncertainty in position between the value predicted by the filter and the value measured by the GPS before the filter position and velocity states are reset to the GPS. Making this value larger allows the filter to ignore larger GPS glitches but also means that non-GPS errors such as IMU and compass can create a larger error in position before the filter is forced back to the GPS position.

Increment Range Units
5 10 - 100 meters

EK2_ALT_SOURCE: Primary altitude sensor source

Note: This parameter is for advanced users

Primary height sensor used by the EKF. If a sensor other than Baro is selected and becomes unavailable, then the Baro sensor will be used as a fallback. NOTE: The EK2_RNG_USE_HGT parameter can be used to switch to range-finder when close to the ground in conjunction with EK2_ALT_SOURCE = 0 or 2 (Baro or GPS).

RebootRequired Values
True
Value Meaning
0 Use Baro
1 Use Range Finder
2 Use GPS
3 Use Range Beacon

EK2_ALT_M_NSE: Altitude measurement noise (m)

Note: This parameter is for advanced users

This is the RMS value of noise in the altitude measurement. Increasing it reduces the weighting of the baro measurement and will make the filter respond more slowly to baro measurement errors, but will make it more sensitive to GPS and accelerometer errors.

Increment Range Units
0.1 0.1 - 10.0 meters

EK2_HGT_I_GATE: Height measurement gate size

Note: This parameter is for advanced users

This sets the percentage number of standard deviations applied to the height measurement innovation consistency check. Decreasing it makes it more likely that good measurements will be rejected. Increasing it makes it more likely that bad measurements will be accepted.

Increment Range
25 100 - 1000

EK2_HGT_DELAY: Height measurement delay (msec)

Note: This parameter is for advanced users

This is the number of msec that the Height measurements lag behind the inertial measurements.

Increment Range RebootRequired Units
10 0 - 250 True milliseconds

EK2_MAG_M_NSE: Magnetometer measurement noise (Gauss)

Note: This parameter is for advanced users

This is the RMS value of noise in magnetometer measurements. Increasing it reduces the weighting on these measurements.

Increment Range Units
0.01 0.01 - 0.5 gauss

EK2_MAG_CAL: Magnetometer default fusion mode

Note: This parameter is for advanced users

This determines when the filter will use the 3-axis magnetometer fusion model that estimates both earth and body fixed magnetic field states, when it will use a simpler magnetic heading fusion model that does not use magnetic field states and when it will use an alternative method of yaw determination to the magnetometer. The 3-axis magnetometer fusion is only suitable for use when the external magnetic field environment is stable. EK2_MAG_CAL = 0 uses heading fusion on ground, 3-axis fusion in-flight, and is the default setting for Plane users. EK2_MAG_CAL = 1 uses 3-axis fusion only when manoeuvring. EK2_MAG_CAL = 2 uses heading fusion at all times, is recommended if the external magnetic field is varying and is the default for rovers. EK2_MAG_CAL = 3 uses heading fusion on the ground and 3-axis fusion after the first in-air field and yaw reset has completed, and is the default for copters. EK2_MAG_CAL = 4 uses 3-axis fusion at all times. NOTE: The fusion mode can be forced to 2 for specific EKF cores using the EK2_MAG_MASK parameter. NOTE: limited operation without a magnetometer or any other yaw sensor is possible by setting all COMPASS_USE, COMPASS_USE2, COMPASS_USE3, etc parameters to 0 with COMPASS_ENABLE set to 1. If this is done, the EK2_GSF_RUN and EK2_GSF_USE masks must be set to the same as EK2_IMU_MASK.

Values
Value Meaning
0 When flying
1 When manoeuvring
2 Never
3 After first climb yaw reset
4 Always

EK2_MAG_I_GATE: Magnetometer measurement gate size

Note: This parameter is for advanced users

This sets the percentage number of standard deviations applied to the magnetometer measurement innovation consistency check. Decreasing it makes it more likely that good measurements will be rejected. Increasing it makes it more likely that bad measurements will be accepted.

Increment Range
25 100 - 1000

EK2_EAS_M_NSE: Equivalent airspeed measurement noise (m/s)

Note: This parameter is for advanced users

This is the RMS value of noise in equivalent airspeed measurements used by planes. Increasing it reduces the weighting of airspeed measurements and will make wind speed estimates less noisy and slower to converge. Increasing also increases navigation errors when dead-reckoning without GPS measurements.

Increment Range Units
0.1 0.5 - 5.0 meters per second

EK2_EAS_I_GATE: Airspeed measurement gate size

Note: This parameter is for advanced users

This sets the percentage number of standard deviations applied to the airspeed measurement innovation consistency check. Decreasing it makes it more likely that good measurements will be rejected. Increasing it makes it more likely that bad measurements will be accepted.

Increment Range
25 100 - 1000

EK2_RNG_M_NSE: Range finder measurement noise (m)

Note: This parameter is for advanced users

This is the RMS value of noise in the range finder measurement. Increasing it reduces the weighting on this measurement.

Increment Range Units
0.1 0.1 - 10.0 meters

EK2_RNG_I_GATE: Range finder measurement gate size

Note: This parameter is for advanced users

This sets the percentage number of standard deviations applied to the range finder innovation consistency check. Decreasing it makes it more likely that good measurements will be rejected. Increasing it makes it more likely that bad measurements will be accepted.

Increment Range
25 100 - 1000

EK2_MAX_FLOW: Maximum valid optical flow rate

Note: This parameter is for advanced users

This sets the magnitude maximum optical flow rate in rad/sec that will be accepted by the filter

Increment Range Units
0.1 1.0 - 4.0 radians per second

EK2_FLOW_M_NSE: Optical flow measurement noise (rad/s)

Note: This parameter is for advanced users

This is the RMS value of noise and errors in optical flow measurements. Increasing it reduces the weighting on these measurements.

Increment Range Units
0.05 0.05 - 1.0 radians per second

EK2_FLOW_I_GATE: Optical Flow measurement gate size

Note: This parameter is for advanced users

This sets the percentage number of standard deviations applied to the optical flow innovation consistency check. Decreasing it makes it more likely that good measurements will be rejected. Increasing it makes it more likely that bad measurements will be accepted.

Increment Range
25 100 - 1000

EK2_FLOW_DELAY: Optical Flow measurement delay (msec)

Note: This parameter is for advanced users

This is the number of msec that the optical flow measurements lag behind the inertial measurements. It is the time from the end of the optical flow averaging period and does not include the time delay due to the 100msec of averaging within the flow sensor.

Increment Range RebootRequired Units
10 0 - 127 True milliseconds

EK2_GYRO_P_NSE: Rate gyro noise (rad/s)

Note: This parameter is for advanced users

This control disturbance noise controls the growth of estimated error due to gyro measurement errors excluding bias. Increasing it makes the flter trust the gyro measurements less and other measurements more.

Increment Range Units
0.0001 0.0001 - 0.1 radians per second

EK2_ACC_P_NSE: Accelerometer noise (m/s^2)

Note: This parameter is for advanced users

This control disturbance noise controls the growth of estimated error due to accelerometer measurement errors excluding bias. Increasing it makes the flter trust the accelerometer measurements less and other measurements more.

Increment Range Units
0.01 0.01 - 1.0 meters per square second

EK2_GBIAS_P_NSE: Rate gyro bias stability (rad/s/s)

Note: This parameter is for advanced users

This state process noise controls growth of the gyro delta angle bias state error estimate. Increasing it makes rate gyro bias estimation faster and noisier.

Range Units
0.00001 - 0.001 radians per square second

EK2_GSCL_P_NSE: Rate gyro scale factor stability (1/s)

Note: This parameter is for advanced users

This noise controls the rate of gyro scale factor learning. Increasing it makes rate gyro scale factor estimation faster and noisier.

Range Units
0.000001 - 0.001 hertz

EK2_ABIAS_P_NSE: Accelerometer bias stability (m/s^3)

Note: This parameter is for advanced users

This noise controls the growth of the vertical accelerometer delta velocity bias state error estimate. Increasing it makes accelerometer bias estimation faster and noisier.

Range Units
0.00001 - 0.005 meters per cubic second

EK2_WIND_P_NSE: Wind velocity process noise (m/s^2)

Note: This parameter is for advanced users

This state process noise controls the growth of wind state error estimates. Increasing it makes wind estimation faster and noisier.

Increment Range Units
0.1 0.01 - 1.0 meters per square second

EK2_WIND_PSCALE: Height rate to wind process noise scaler

Note: This parameter is for advanced users

This controls how much the process noise on the wind states is increased when gaining or losing altitude to take into account changes in wind speed and direction with altitude. Increasing this parameter increases how rapidly the wind states adapt when changing altitude, but does make wind velocity estimation noiser.

Increment Range
0.1 0.0 - 1.0

EK2_GPS_CHECK: GPS preflight check

Note: This parameter is for advanced users

This is a 1 byte bitmap controlling which GPS preflight checks are performed. Set to 0 to bypass all checks. Set to 255 perform all checks. Set to 3 to check just the number of satellites and HDoP. Set to 31 for the most rigorous checks that will still allow checks to pass when the copter is moving, eg launch from a boat.

Bitmask
Bit Meaning
0 NSats
1 HDoP
2 speed error
3 position error
4 yaw error
5 pos drift
6 vert speed
7 horiz speed

EK2_IMU_MASK: Bitmask of active IMUs

Note: This parameter is for advanced users

1 byte bitmap of IMUs to use in EKF2. A separate instance of EKF2 will be started for each IMU selected. Set to 1 to use the first IMU only (default), set to 2 to use the second IMU only, set to 3 to use the first and second IMU. Additional IMU’s can be used up to a maximum of 6 if memory and processing resources permit. There may be insufficient memory and processing resources to run multiple instances. If this occurs EKF2 will fail to start.

Bitmask RebootRequired
Bit Meaning
0 FirstIMU
1 SecondIMU
2 ThirdIMU
3 FourthIMU
4 FifthIMU
5 SixthIMU
True

EK2_CHECK_SCALE: GPS accuracy check scaler (%)

Note: This parameter is for advanced users

This scales the thresholds that are used to check GPS accuracy before it is used by the EKF. A value of 100 is the default. Values greater than 100 increase and values less than 100 reduce the maximum GPS error the EKF will accept. A value of 200 will double the allowable GPS error.

Range Units
50 - 200 percent

EK2_NOAID_M_NSE: Non-GPS operation position uncertainty (m)

Note: This parameter is for advanced users

This sets the amount of position variation that the EKF allows for when operating without external measurements (eg GPS or optical flow). Increasing this parameter makes the EKF attitude estimate less sensitive to vehicle manoeuvres but more sensitive to IMU errors.

Range Units
0.5 - 50.0 meters

EK2_LOG_MASK: EKF sensor logging IMU mask

Note: This parameter is for advanced users

This sets the IMU mask of sensors to do full logging for

Bitmask RebootRequired
Bit Meaning
0 FirstIMU
1 SecondIMU
2 ThirdIMU
3 FourthIMU
4 FifthIMU
5 SixthIMU
True

EK2_YAW_M_NSE: Yaw measurement noise (rad)

Note: This parameter is for advanced users

This is the RMS value of noise in yaw measurements from the magnetometer. Increasing it reduces the weighting on these measurements.

Increment Range Units
0.05 0.05 - 1.0 radians

EK2_YAW_I_GATE: Yaw measurement gate size

Note: This parameter is for advanced users

This sets the percentage number of standard deviations applied to the magnetometer yaw measurement innovation consistency check. Decreasing it makes it more likely that good measurements will be rejected. Increasing it makes it more likely that bad measurements will be accepted.

Increment Range
25 100 - 1000

EK2_TAU_OUTPUT: Output complementary filter time constant (centi-sec)

Note: This parameter is for advanced users

Sets the time constant of the output complementary filter/predictor in centi-seconds.

Increment Range Units
5 10 - 50 centiseconds

EK2_MAGE_P_NSE: Earth magnetic field process noise (gauss/s)

Note: This parameter is for advanced users

This state process noise controls the growth of earth magnetic field state error estimates. Increasing it makes earth magnetic field estimation faster and noisier.

Range Units
0.00001 - 0.01 gauss per second

EK2_MAGB_P_NSE: Body magnetic field process noise (gauss/s)

Note: This parameter is for advanced users

This state process noise controls the growth of body magnetic field state error estimates. Increasing it makes magnetometer bias error estimation faster and noisier.

Range Units
0.00001 - 0.01 gauss per second

EK2_RNG_USE_HGT: Range finder switch height percentage

Note: This parameter is for advanced users

Range finder can be used as the primary height source when below this percentage of its maximum range (see RNGFND_MAX_CM). This will not work unless Baro or GPS height is selected as the primary height source vis EK2_ALT_SOURCE = 0 or 2 respectively. This feature should not be used for terrain following as it is designed for vertical takeoff and landing with climb above the range finder use height before commencing the mission, and with horizontal position changes below that height being limited to a flat region around the takeoff and landing point.

Increment Range Units
1 -1 - 70 percent

EK2_TERR_GRAD: Maximum terrain gradient

Note: This parameter is for advanced users

Specifies the maximum gradient of the terrain below the vehicle assumed when it is fusing range finder or optical flow to estimate terrain height.

Increment Range
0.01 0 - 0.2

EK2_BCN_M_NSE: Range beacon measurement noise (m)

Note: This parameter is for advanced users

This is the RMS value of noise in the range beacon measurement. Increasing it reduces the weighting on this measurement.

Increment Range Units
0.1 0.1 - 10.0 meters

EK2_BCN_I_GTE: Range beacon measurement gate size

Note: This parameter is for advanced users

This sets the percentage number of standard deviations applied to the range beacon measurement innovation consistency check. Decreasing it makes it more likely that good measurements will be rejected. Increasing it makes it more likely that bad measurements will be accepted.

Increment Range
25 100 - 1000

EK2_BCN_DELAY: Range beacon measurement delay (msec)

Note: This parameter is for advanced users

This is the number of msec that the range beacon measurements lag behind the inertial measurements. It is the time from the end of the optical flow averaging period and does not include the time delay due to the 100msec of averaging within the flow sensor.

Increment Range RebootRequired Units
10 0 - 127 True milliseconds

EK2_RNG_USE_SPD: Range finder max ground speed

Note: This parameter is for advanced users

The range finder will not be used as the primary height source when the horizontal ground speed is greater than this value.

Increment Range Units
0.5 2.0 - 6.0 meters per second

EK2_MAG_MASK: Bitmask of active EKF cores that will always use heading fusion

Note: This parameter is for advanced users

1 byte bitmap of EKF cores that will disable magnetic field states and use simple magnetic heading fusion at all times. This parameter enables specified cores to be used as a backup for flight into an environment with high levels of external magnetic interference which may degrade the EKF attitude estimate when using 3-axis magnetometer fusion. NOTE : Use of a different magnetometer fusion algorithm on different cores makes unwanted EKF core switches due to magnetometer errors more likely.

Bitmask RebootRequired
Bit Meaning
0 FirstEKF
1 SecondEKF
2 ThirdEKF
3 FourthEKF
4 FifthEKF
5 SixthEKF
True

EK2_OGN_HGT_MASK: Bitmask control of EKF reference height correction

Note: This parameter is for advanced users

When a height sensor other than GPS is used as the primary height source by the EKF, the position of the zero height datum is defined by that sensor and its frame of reference. If a GPS height measurement is also available, then the height of the WGS-84 height datum used by the EKF can be corrected so that the height returned by the getLLH() function is compensated for primary height sensor drift and change in datum over time. The first two bit positions control when the height datum will be corrected. Correction is performed using a Bayes filter and only operates when GPS quality permits. The third bit position controls where the corrections to the GPS reference datum are applied. Corrections can be applied to the local vertical position or to the reported EKF origin height (default).

Bitmask RebootRequired
Bit Meaning
0 Correct when using Baro height
1 Correct when using range finder height
2 Apply corrections to local position
True

EK2_FLOW_USE: Optical flow use bitmask

Note: This parameter is for advanced users

Controls if the optical flow data is fused into the 24-state navigation estimator OR the 1-state terrain height estimator.

RebootRequired Values
True
Value Meaning
0 None
1 Navigation
2 Terrain

EK2_MAG_EF_LIM: EarthField error limit

Note: This parameter is for advanced users

This limits the difference between the learned earth magnetic field and the earth field from the world magnetic model tables. A value of zero means to disable the use of the WMM tables.

Range Units
0 - 500 milligauss

EK2_HRT_FILT: Height rate filter crossover frequency

Specifies the crossover frequency of the complementary filter used to calculate the output predictor height rate derivative.

Range RebootRequired Units
0.1 - 30.0 False hertz

EK2_GSF_RUN_MASK: Bitmask of which EKF-GSF yaw estimators run

Note: This parameter is for advanced users

1 byte bitmap of which EKF2 instances run an independant EKF-GSF yaw estimator to provide a backup yaw estimate that doesn’t rely on magnetometer data. This estimator uses IMU, GPS and, if available, airspeed data. EKF-GSF yaw estimator data for the primary EKF2 instance will be logged as GSF0 and GSF1 messages. Use of the yaw estimate generated by this algorithm is controlled by the EK2_GSF_USE, EK2_GSF_DELAY and EK2_GSF_MAXCOUNT parameters. To run the EKF-GSF yaw estimator in ride-along and logging only, set EK2_GSF_USE to 0.

Bitmask RebootRequired
Bit Meaning
0 FirstEKF
1 SecondEKF
2 ThirdEKF
3 FourthEKF
4 FifthEKF
5 SixthEKF
True

EK2_GSF_USE_MASK: Bitmask of which EKF-GSF yaw estimators are used

Note: This parameter is for advanced users

1 byte bitmap of which EKF2 instances will use the output from the EKF-GSF yaw estimator that has been turned on by the EK2_GSF_RUN parameter. If the inertial navigation calculation stops following the GPS, then the vehicle code can request EKF2 to attempt to resolve the issue, either by performing a yaw reset if enabled by this parameter by switching to another EKF2 instance. Additionally the EKF2 will initiate a reset internally if navigation is lost for more than EK2_GSF_DELAY milli seconds.

Bitmask RebootRequired
Bit Meaning
0 FirstEKF
1 SecondEKF
2 ThirdEKF
3 FourthEKF
4 FifthEKF
5 SixthEKF
True

EK2_GSF_DELAY: Delay from loss of navigation to yaw reset

Note: This parameter is for advanced users

If the inertial navigation calculation stops following the GPS and other positioning sensors for longer than EK2_GSF_DELAY milli-seconds, then the EKF2 code will generate a reset request internally and reset the yaw to the estimate from the EKF-GSF filter and reset the horizontal velocity and position to the GPS. This reset will not be performed unless the use of the EKF-GSF yaw estimate is enabled via the EK2_GSF_USE parameter.

Increment Range RebootRequired Units
100 500 - 5000 True milliseconds

EK2_GSF_RST_MAX: Maximum number of resets to the EKF-GSF yaw estimate allowed

Note: This parameter is for advanced users

Sets the maximum number of times the EKF2 will be allowed to reset it’s yaw to the estimate from the EKF-GSF yaw estimator. No resets will be allowed unless the use of the EKF-GSF yaw estimate is enabled via the EK2_GSF_USE parameter.

Increment Range RebootRequired
1 1 - 10 True

EK3_ Parameters

EK3_ENABLE: Enable EKF3

Note: This parameter is for advanced users

This enables EKF3. Enabling EKF3 only makes the maths run, it does not mean it will be used for flight control. To use it for flight control set AHRS_EKF_TYPE=3. A reboot or restart will need to be performed after changing the value of EK3_ENABLE for it to take effect.

RebootRequired Values
True
Value Meaning
0 Disabled
1 Enabled

EK3_GPS_TYPE: GPS mode control

Note: This parameter is for advanced users

This controls use of GPS measurements : 0 = use 3D velocity & 2D position, 1 = use 2D velocity and 2D position, 2 = use 2D position, 3 = Inhibit GPS use - this can be useful when flying with an optical flow sensor in an environment where GPS quality is poor and subject to large multipath errors.

Values
Value Meaning
0 GPS 3D Vel and 2D Pos
1 GPS 2D vel and 2D pos
2 GPS 2D pos
3 No GPS

EK3_VELNE_M_NSE: GPS horizontal velocity measurement noise (m/s)

Note: This parameter is for advanced users

This sets a lower limit on the speed accuracy reported by the GPS receiver that is used to set horizontal velocity observation noise. If the model of receiver used does not provide a speed accurcy estimate, then the parameter value will be used. Increasing it reduces the weighting of the GPS horizontal velocity measurements.

Increment Range Units
0.05 0.05 - 5.0 meters per second

EK3_VELD_M_NSE: GPS vertical velocity measurement noise (m/s)

Note: This parameter is for advanced users

This sets a lower limit on the speed accuracy reported by the GPS receiver that is used to set vertical velocity observation noise. If the model of receiver used does not provide a speed accurcy estimate, then the parameter value will be used. Increasing it reduces the weighting of the GPS vertical velocity measurements.

Increment Range Units
0.05 0.05 - 5.0 meters per second

EK3_VEL_I_GATE: GPS velocity innovation gate size

Note: This parameter is for advanced users

This sets the percentage number of standard deviations applied to the GPS velocity measurement innovation consistency check. Decreasing it makes it more likely that good measurements willbe rejected. Increasing it makes it more likely that bad measurements will be accepted.

Increment Range
25 100 - 1000

EK3_POSNE_M_NSE: GPS horizontal position measurement noise (m)

Note: This parameter is for advanced users

This sets the GPS horizontal position observation noise. Increasing it reduces the weighting of GPS horizontal position measurements.

Increment Range Units
0.1 0.1 - 10.0 meters

EK3_POS_I_GATE: GPS position measurement gate size

Note: This parameter is for advanced users

This sets the percentage number of standard deviations applied to the GPS position measurement innovation consistency check. Decreasing it makes it more likely that good measurements will be rejected. Increasing it makes it more likely that bad measurements will be accepted.

Increment Range
25 100 - 1000

EK3_GLITCH_RAD: GPS glitch radius gate size (m)

Note: This parameter is for advanced users

This controls the maximum radial uncertainty in position between the value predicted by the filter and the value measured by the GPS before the filter position and velocity states are reset to the GPS. Making this value larger allows the filter to ignore larger GPS glitches but also means that non-GPS errors such as IMU and compass can create a larger error in position before the filter is forced back to the GPS position.

Increment Range Units
5 10 - 100 meters

EK3_ALT_SOURCE: Primary altitude sensor source

Note: This parameter is for advanced users

Primary height sensor used by the EKF. If a sensor other than Baro is selected and becomes unavailable, then the Baro sensor will be used as a fallback. NOTE: the EK3_RNG_USE_HGT parameter can be used to switch to range-finder when close to the ground in conjunction with EK3_ALT_SOURCE = 0 or 2 (Baro or GPS). NOTE: Setting EK3_ALT_SOURCE = 4 uses external nav system data only if data is also being used for horizontal position

RebootRequired Values
True
Value Meaning
0 Use Baro
1 Use Range Finder
2 Use GPS
3 Use Range Beacon
4 Use External Nav

EK3_ALT_M_NSE: Altitude measurement noise (m)

Note: This parameter is for advanced users

This is the RMS value of noise in the altitude measurement. Increasing it reduces the weighting of the baro measurement and will make the filter respond more slowly to baro measurement errors, but will make it more sensitive to GPS and accelerometer errors.

Increment Range Units
0.1 0.1 - 10.0 meters

EK3_HGT_I_GATE: Height measurement gate size

Note: This parameter is for advanced users

This sets the percentage number of standard deviations applied to the height measurement innovation consistency check. Decreasing it makes it more likely that good measurements will be rejected. Increasing it makes it more likely that bad measurements will be accepted.

Increment Range
25 100 - 1000

EK3_HGT_DELAY: Height measurement delay (msec)

Note: This parameter is for advanced users

This is the number of msec that the Height measurements lag behind the inertial measurements.

Increment Range RebootRequired Units
10 0 - 250 True milliseconds

EK3_MAG_M_NSE: Magnetometer measurement noise (Gauss)

Note: This parameter is for advanced users

This is the RMS value of noise in magnetometer measurements. Increasing it reduces the weighting on these measurements.

Increment Range Units
0.01 0.01 - 0.5 gauss

EK3_MAG_CAL: Magnetometer default fusion mode

Note: This parameter is for advanced users

This determines when the filter will use the 3-axis magnetometer fusion model that estimates both earth and body fixed magnetic field states and when it will use a simpler magnetic heading fusion model that does not use magnetic field states. The 3-axis magnetometer fusion is only suitable for use when the external magnetic field environment is stable. EK3_MAG_CAL = 0 uses heading fusion on ground, 3-axis fusion in-flight, and is the default setting for Plane users. EK3_MAG_CAL = 1 uses 3-axis fusion only when manoeuvring. EK3_MAG_CAL = 2 uses heading fusion at all times, is recommended if the external magnetic field is varying and is the default for rovers. EK3_MAG_CAL = 3 uses heading fusion on the ground and 3-axis fusion after the first in-air field and yaw reset has completed, and is the default for copters. EK3_MAG_CAL = 4 uses 3-axis fusion at all times. EK3_MAG_CAL = 5 uses an external yaw sensor with simple heading fusion. NOTE : Use of simple heading magnetometer fusion makes vehicle compass calibration and alignment errors harder for the EKF to detect which reduces the sensitivity of the Copter EKF failsafe algorithm. NOTE: The fusion mode can be forced to 2 for specific EKF cores using the EK3_MAG_MASK parameter. EK3_MAG_CAL = 6 uses an external yaw sensor with fallback to compass when the external sensor is not available if we are flying. NOTE: The fusion mode can be forced to 2 for specific EKF cores using the EK3_MAG_MASK parameter. NOTE: limited operation without a magnetometer or any other yaw sensor is possible by setting all COMPASS_USE, COMPASS_USE2, COMPASS_USE3, etc parameters to 0 and setting COMPASS_ENABLE to 0. If this is done, the EK3_GSF_RUN and EK3_GSF_USE masks must be set to the same as EK3_IMU_MASK. A yaw angle derived from IMU and GPS velocity data using a Gaussian Sum Filter (GSF) will then be used to align the yaw when flight commences and there is sufficient movement.

RebootRequired Values
True
Value Meaning
0 When flying
1 When manoeuvring
2 Never
3 After first climb yaw reset
4 Always
5 Use external yaw sensor
6 External yaw sensor with compass fallback

EK3_MAG_I_GATE: Magnetometer measurement gate size

Note: This parameter is for advanced users

This sets the percentage number of standard deviations applied to the magnetometer measurement innovation consistency check. Decreasing it makes it more likely that good measurements will be rejected. Increasing it makes it more likely that bad measurements will be accepted.

Increment Range
25 100 - 1000

EK3_EAS_M_NSE: Equivalent airspeed measurement noise (m/s)

Note: This parameter is for advanced users

This is the RMS value of noise in equivalent airspeed measurements used by planes. Increasing it reduces the weighting of airspeed measurements and will make wind speed estimates less noisy and slower to converge. Increasing also increases navigation errors when dead-reckoning without GPS measurements.

Increment Range Units
0.1 0.5 - 5.0 meters per second

EK3_EAS_I_GATE: Airspeed measurement gate size

Note: This parameter is for advanced users

This sets the percentage number of standard deviations applied to the airspeed measurement innovation consistency check. Decreasing it makes it more likely that good measurements will be rejected. Increasing it makes it more likely that bad measurements will be accepted.

Increment Range
25 100 - 1000

EK3_RNG_M_NSE: Range finder measurement noise (m)

Note: This parameter is for advanced users

This is the RMS value of noise in the range finder measurement. Increasing it reduces the weighting on this measurement.

Increment Range Units
0.1 0.1 - 10.0 meters

EK3_RNG_I_GATE: Range finder measurement gate size

Note: This parameter is for advanced users

This sets the percentage number of standard deviations applied to the range finder innovation consistency check. Decreasing it makes it more likely that good measurements will be rejected. Increasing it makes it more likely that bad measurements will be accepted.

Increment Range
25 100 - 1000

EK3_MAX_FLOW: Maximum valid optical flow rate

Note: This parameter is for advanced users

This sets the magnitude maximum optical flow rate in rad/sec that will be accepted by the filter

Increment Range Units
0.1 1.0 - 4.0 radians per second

EK3_FLOW_M_NSE: Optical flow measurement noise (rad/s)

Note: This parameter is for advanced users

This is the RMS value of noise and errors in optical flow measurements. Increasing it reduces the weighting on these measurements.

Increment Range Units
0.05 0.05 - 1.0 radians per second

EK3_FLOW_I_GATE: Optical Flow measurement gate size

Note: This parameter is for advanced users

This sets the percentage number of standard deviations applied to the optical flow innovation consistency check. Decreasing it makes it more likely that good measurements will be rejected. Increasing it makes it more likely that bad measurements will be accepted.

Increment Range
25 100 - 1000

EK3_FLOW_DELAY: Optical Flow measurement delay (msec)

Note: This parameter is for advanced users

This is the number of msec that the optical flow measurements lag behind the inertial measurements. It is the time from the end of the optical flow averaging period and does not include the time delay due to the 100msec of averaging within the flow sensor.

Increment Range RebootRequired Units
10 0 - 250 True milliseconds

EK3_GYRO_P_NSE: Rate gyro noise (rad/s)

Note: This parameter is for advanced users

This control disturbance noise controls the growth of estimated error due to gyro measurement errors excluding bias. Increasing it makes the flter trust the gyro measurements less and other measurements more.

Increment Range Units
0.0001 0.0001 - 0.1 radians per second

EK3_ACC_P_NSE: Accelerometer noise (m/s^2)

Note: This parameter is for advanced users

This control disturbance noise controls the growth of estimated error due to accelerometer measurement errors excluding bias. Increasing it makes the flter trust the accelerometer measurements less and other measurements more.

Increment Range Units
0.01 0.01 - 1.0 meters per square second

EK3_GBIAS_P_NSE: Rate gyro bias stability (rad/s/s)

Note: This parameter is for advanced users

This state process noise controls growth of the gyro delta angle bias state error estimate. Increasing it makes rate gyro bias estimation faster and noisier.

Range Units
0.00001 - 0.001 radians per square second

EK3_ABIAS_P_NSE: Accelerometer bias stability (m/s^3)

Note: This parameter is for advanced users

This noise controls the growth of the vertical accelerometer delta velocity bias state error estimate. Increasing it makes accelerometer bias estimation faster and noisier.

Range Units
0.00001 - 0.005 meters per cubic second

EK3_WIND_P_NSE: Wind velocity process noise (m/s^2)

Note: This parameter is for advanced users

This state process noise controls the growth of wind state error estimates. Increasing it makes wind estimation faster and noisier.

Increment Range Units
0.1 0.01 - 1.0 meters per square second

EK3_WIND_PSCALE: Height rate to wind process noise scaler

Note: This parameter is for advanced users

This controls how much the process noise on the wind states is increased when gaining or losing altitude to take into account changes in wind speed and direction with altitude. Increasing this parameter increases how rapidly the wind states adapt when changing altitude, but does make wind velocity estimation noiser.

Increment Range
0.1 0.0 - 1.0

EK3_GPS_CHECK: GPS preflight check

Note: This parameter is for advanced users

This is a 1 byte bitmap controlling which GPS preflight checks are performed. Set to 0 to bypass all checks. Set to 255 perform all checks. Set to 3 to check just the number of satellites and HDoP. Set to 31 for the most rigorous checks that will still allow checks to pass when the copter is moving, eg launch from a boat.

Bitmask
Bit Meaning
0 NSats
1 HDoP
2 speed error
3 position error
4 yaw error
5 pos drift
6 vert speed
7 horiz speed

EK3_IMU_MASK: Bitmask of active IMUs

Note: This parameter is for advanced users

1 byte bitmap of IMUs to use in EKF3. A separate instance of EKF3 will be started for each IMU selected. Set to 1 to use the first IMU only (default), set to 2 to use the second IMU only, set to 3 to use the first and second IMU. Additional IMU’s can be used up to a maximum of 6 if memory and processing resources permit. There may be insufficient memory and processing resources to run multiple instances. If this occurs EKF3 will fail to start.

Bitmask RebootRequired
Bit Meaning
0 FirstIMU
1 SecondIMU
2 ThirdIMU
3 FourthIMU
4 FifthIMU
5 SixthIMU
True

EK3_CHECK_SCALE: GPS accuracy check scaler (%)

Note: This parameter is for advanced users

This scales the thresholds that are used to check GPS accuracy before it is used by the EKF. A value of 100 is the default. Values greater than 100 increase and values less than 100 reduce the maximum GPS error the EKF will accept. A value of 200 will double the allowable GPS error.

Range Units
50 - 200 percent

EK3_NOAID_M_NSE: Non-GPS operation position uncertainty (m)

Note: This parameter is for advanced users

This sets the amount of position variation that the EKF allows for when operating without external measurements (eg GPS or optical flow). Increasing this parameter makes the EKF attitude estimate less sensitive to vehicle manoeuvres but more sensitive to IMU errors.

Range Units
0.5 - 50.0 meters

EK3_LOG_MASK: EKF sensor logging IMU mask

Note: This parameter is for advanced users

This sets the IMU mask of sensors to do full logging for

Bitmask RebootRequired
Bit Meaning
0 FirstIMU
1 SecondIMU
2 ThirdIMU
3 FourthIMU
4 FifthIMU
5 SixthIMU
True

EK3_YAW_M_NSE: Yaw measurement noise (rad)

Note: This parameter is for advanced users

This is the RMS value of noise in yaw measurements from the magnetometer. Increasing it reduces the weighting on these measurements.

Increment Range Units
0.05 0.05 - 1.0 radians

EK3_YAW_I_GATE: Yaw measurement gate size

Note: This parameter is for advanced users

This sets the percentage number of standard deviations applied to the magnetometer yaw measurement innovation consistency check. Decreasing it makes it more likely that good measurements will be rejected. Increasing it makes it more likely that bad measurements will be accepted.

Increment Range
25 100 - 1000

EK3_TAU_OUTPUT: Output complementary filter time constant (centi-sec)

Note: This parameter is for advanced users

Sets the time constant of the output complementary filter/predictor in centi-seconds.

Increment Range Units
5 10 - 50 centiseconds

EK3_MAGE_P_NSE: Earth magnetic field process noise (gauss/s)

Note: This parameter is for advanced users

This state process noise controls the growth of earth magnetic field state error estimates. Increasing it makes earth magnetic field estimation faster and noisier.

Range Units
0.00001 - 0.01 gauss per second

EK3_MAGB_P_NSE: Body magnetic field process noise (gauss/s)

Note: This parameter is for advanced users

This state process noise controls the growth of body magnetic field state error estimates. Increasing it makes magnetometer bias error estimation faster and noisier.

Range Units
0.00001 - 0.01 gauss per second

EK3_RNG_USE_HGT: Range finder switch height percentage

Note: This parameter is for advanced users

Range finder can be used as the primary height source when below this percentage of its maximum range (see RNGFND_MAX_CM). This will not work unless Baro or GPS height is selected as the primary height source vis EK3_ALT_SOURCE = 0 or 2 respectively. This feature should not be used for terrain following as it is designed for vertical takeoff and landing with climb above the range finder use height before commencing the mission, and with horizontal position changes below that height being limited to a flat region around the takeoff and landing point.

Increment Range Units
1 -1 - 70 percent

EK3_TERR_GRAD: Maximum terrain gradient

Note: This parameter is for advanced users

Specifies the maximum gradient of the terrain below the vehicle when it is using range finder as a height reference

Increment Range
0.01 0 - 0.2

EK3_BCN_M_NSE: Range beacon measurement noise (m)

Note: This parameter is for advanced users

This is the RMS value of noise in the range beacon measurement. Increasing it reduces the weighting on this measurement.

Increment Range Units
0.1 0.1 - 10.0 meters

EK3_BCN_I_GTE: Range beacon measurement gate size

Note: This parameter is for advanced users

This sets the percentage number of standard deviations applied to the range beacon measurement innovation consistency check. Decreasing it makes it more likely that good measurements will be rejected. Increasing it makes it more likely that bad measurements will be accepted.

Increment Range
25 100 - 1000

EK3_BCN_DELAY: Range beacon measurement delay (msec)

Note: This parameter is for advanced users

This is the number of msec that the range beacon measurements lag behind the inertial measurements.

Increment Range RebootRequired Units
10 0 - 250 True milliseconds

EK3_RNG_USE_SPD: Range finder max ground speed

Note: This parameter is for advanced users

The range finder will not be used as the primary height source when the horizontal ground speed is greater than this value.

Increment Range Units
0.5 2.0 - 6.0 meters per second

EK3_ACC_BIAS_LIM: Accelerometer bias limit

Note: This parameter is for advanced users

The accelerometer bias state will be limited to +- this value

Increment Range Units
0.1 0.5 - 2.5 meters per square second

EK3_MAG_MASK: Bitmask of active EKF cores that will always use heading fusion

Note: This parameter is for advanced users

1 byte bitmap of EKF cores that will disable magnetic field states and use simple magnetic heading fusion at all times. This parameter enables specified cores to be used as a backup for flight into an environment with high levels of external magnetic interference which may degrade the EKF attitude estimate when using 3-axis magnetometer fusion. NOTE : Use of a different magnetometer fusion algorithm on different cores makes unwanted EKF core switches due to magnetometer errors more likely.

Bitmask RebootRequired
Bit Meaning
0 FirstEKF
1 SecondEKF
2 ThirdEKF
3 FourthEKF
4 FifthEKF
5 SixthEKF
True

EK3_OGN_HGT_MASK: Bitmask control of EKF reference height correction

Note: This parameter is for advanced users

When a height sensor other than GPS is used as the primary height source by the EKF, the position of the zero height datum is defined by that sensor and its frame of reference. If a GPS height measurement is also available, then the height of the WGS-84 height datum used by the EKF can be corrected so that the height returned by the getLLH() function is compensated for primary height sensor drift and change in datum over time. The first two bit positions control when the height datum will be corrected. Correction is performed using a Bayes filter and only operates when GPS quality permits. The third bit position controls where the corrections to the GPS reference datum are applied. Corrections can be applied to the local vertical position or to the reported EKF origin height (default).

Bitmask RebootRequired
Bit Meaning
0 Correct when using Baro height
1 Correct when using range finder height
2 Apply corrections to local position
True

EK3_VIS_VERR_MIN: Visual odometry minimum velocity error

Note: This parameter is for advanced users

This is the 1-STD odometry velocity observation error that will be assumed when maximum quality is reported by the sensor. When quality is between max and min, the error will be calculated using linear interpolation between VIS_VERR_MIN and VIS_VERR_MAX.

Increment Range Units
0.05 0.05 - 0.5 meters per second

EK3_VIS_VERR_MAX: Visual odometry maximum velocity error

Note: This parameter is for advanced users

This is the 1-STD odometry velocity observation error that will be assumed when minimum quality is reported by the sensor. When quality is between max and min, the error will be calculated using linear interpolation between VIS_VERR_MIN and VIS_VERR_MAX.

Increment Range Units
0.1 0.5 - 5.0 meters per second

EK3_WENC_VERR: Wheel odometry velocity error

Note: This parameter is for advanced users

This is the 1-STD odometry velocity observation error that will be assumed when wheel encoder data is being fused.

Increment Range Units
0.1 0.01 - 1.0 meters per second

EK3_FLOW_USE: Optical flow use bitmask

Note: This parameter is for advanced users

Controls if the optical flow data is fused into the 24-state navigation estimator OR the 1-state terrain height estimator.

RebootRequired Values
True
Value Meaning
0 None
1 Navigation
2 Terrain

EK3_HRT_FILT: Height rate filter crossover frequency

Specifies the crossover frequency of the complementary filter used to calculate the output predictor height rate derivative.

Range RebootRequired Units
0.1 - 30.0 False hertz

EK3_MAG_EF_LIM: EarthField error limit

Note: This parameter is for advanced users

This limits the difference between the learned earth magnetic field and the earth field from the world magnetic model tables. A value of zero means to disable the use of the WMM tables.

Range Units
0 - 500 milligauss

EK3_GSF_RUN_MASK: Bitmask of which EKF-GSF yaw estimators run

Note: This parameter is for advanced users

1 byte bitmap of which EKF3 instances run an independant EKF-GSF yaw estimator to provide a backup yaw estimate that doesn’t rely on magnetometer data. This estimator uses IMU, GPS and, if available, airspeed data. EKF-GSF yaw estimator data for the primary EKF3 instance will be logged as GSF0 and GSF1 messages. Use of the yaw estimate generated by this algorithm is controlled by the EK3_GSF_USE, EK3_GSF_DELAY and EK3_GSF_MAXCOUNT parameters. To run the EKF-GSF yaw estimator in ride-along and logging only, set EK3_GSF_USE to 0.

Bitmask RebootRequired
Bit Meaning
0 FirstEKF
1 SecondEKF
2 ThirdEKF
3 FourthEKF
4 FifthEKF
5 SixthEKF
True

EK3_GSF_USE_MASK: Bitmask of which EKF-GSF yaw estimators are used

Note: This parameter is for advanced users

1 byte bitmap of which EKF3 instances will use the output from the EKF-GSF yaw estimator that has been turned on by the EK3_GSF_RUN parameter. If the inertial navigation calculation stops following the GPS, then the vehicle code can request EKF3 to attempt to resolve the issue, either by performing a yaw reset if enabled by this parameter by switching to another EKF3 instance. Additionally the EKF3 will initiate a reset internally if navigation is lost for more than EK3_GSF_DELAY milli seconds.

Bitmask RebootRequired
Bit Meaning
0 FirstEKF
1 SecondEKF
2 ThirdEKF
3 FourthEKF
4 FifthEKF
5 SixthEKF
True

EK3_GSF_DELAY: Delay from loss of navigation to yaw reset

Note: This parameter is for advanced users

If the inertial navigation calculation stops following the GPS and other positioning sensors for longer than EK3_GSF_DELAY milli-seconds, then the EKF3 code will generate a reset request internally and reset the yaw to the estimate from the EKF-GSF filter and reset the horizontal velocity and position to the GPS. This reset will not be performed unless the use of the EKF-GSF yaw estimate is enabled via the EK3_GSF_USE parameter.

Increment Range RebootRequired Units
100 500 - 5000 True milliseconds

EK3_GSF_RST_MAX: Maximum number of resets to the EKF-GSF yaw estimate allowed

Note: This parameter is for advanced users

Sets the maximum number of times the EKF3 will be allowed to reset it’s yaw to the estimate from the EKF-GSF yaw estimator. No resets will be allowed unless the use of the EKF-GSF yaw estimate is enabled via the EK3_GSF_USE parameter.

Increment Range RebootRequired
1 1 - 10 True

EK3_ERR_THRESH: EKF3 Lane Relative Error Sensitivity Threshold

Note: This parameter is for advanced users

lanes have to be consistently better than the primary by at least this threshold to reduce their overall relativeCoreError, lowering this makes lane switching more sensitive to smaller error differences

Increment Range
0.05 0.05 - 1

EK3_AFFINITY: EKF3 Sensor Affinity Options

Note: This parameter is for advanced users

These options control the affinity between sensor instances and EKF cores

Bitmask RebootRequired
Bit Meaning
0 EnableGPSAffinity
1 EnableBaroAffinity
2 EnableCompassAffinity
3 EnableAirspeedAffinity
True

FENCE_ Parameters

FENCE_ENABLE: Fence enable/disable

Allows you to enable (1) or disable (0) the fence functionality

Values
Value Meaning
0 Disabled
1 Enabled

FENCE_TYPE: Fence Type

Enabled fence types held as bitmask

Bitmask Values
Bit Meaning
0 Altitude
1 Circle
2 Polygon
Value Meaning
0 None
1 Altitude
2 Circle
3 Altitude and Circle
4 Polygon
5 Altitude and Polygon
6 Circle and Polygon
7 All

FENCE_ACTION: Fence Action

What action should be taken when fence is breached

Values
Value Meaning
0 Report Only
1 RTL
2 Hold
3 SmartRTL
4 SmartRTL or Hold

FENCE_RADIUS: Circular Fence Radius

Circle fence radius which when breached will cause an RTL

Range Units
30 - 10000 meters

FENCE_MARGIN: Fence Margin

Distance that autopilot’s should maintain from the fence to avoid a breach

Range Units
1 - 10 meters

FENCE_TOTAL: Fence polygon point total

Number of polygon points saved in eeprom (do not update manually)

Range
1 - 20

FENCE_ALT_MIN: Fence Minimum Altitude

Minimum altitude allowed before geofence triggers

Increment Range Units
1 -100 - 100 meters

FFT_ Parameters

FFT_ENABLE: Enable

Note: This parameter is for advanced users

Enable Gyro FFT analyser

RebootRequired Values
True
Value Meaning
0 Disabled
1 Enabled

FFT_MINHZ: Minimum Frequency

Note: This parameter is for advanced users

Lower bound of FFT frequency detection in Hz. On larger vehicles the minimum motor frequency is likely to be significantly lower than for smaller vehicles.

Range Units
20 - 400 hertz

FFT_MAXHZ: Maximum Frequency

Note: This parameter is for advanced users

Upper bound of FFT frequency detection in Hz. On smaller vehicles the maximum motor frequency is likely to be significantly higher than for larger vehicles.

Range Units
20 - 495 hertz

FFT_SAMPLE_MODE: Sample Mode

Note: This parameter is for advanced users

Sampling mode (and therefore rate). 0: Gyro rate sampling, 1: Fast loop rate sampling, 2: Fast loop rate / 2 sampling, 3: Fast loop rate / 3 sampling. Takes effect on reboot.

Range RebootRequired
0 - 4 True

FFT_WINDOW_SIZE: FFT window size

Note: This parameter is for advanced users

Size of window to be used in FFT calculations. Takes effect on reboot. Must be a power of 2 and between 32 and 512. Larger windows give greater frequency resolution but poorer time resolution, consume more CPU time and may not be appropriate for all vehicles. Time and frequency resolution are given by the sample-rate / window-size. Windows of 256 are only really recommended for F7 class boards, windows of 512 or more H7 class.

Range RebootRequired
32 - 1024 True

FFT_WINDOW_OLAP: FFT window overlap

Note: This parameter is for advanced users

Percentage of window to be overlapped before another frame is process. Takes effect on reboot. A good default is 50% overlap. Higher overlap results in more processed frames but not necessarily more temporal resolution. Lower overlap results in lost information at the frame edges.

Range RebootRequired
0 - 0.9 True

FFT_FREQ_HOVER: FFT learned hover frequency

Note: This parameter is for advanced users

The learned hover noise frequency

Range
0 - 250

FFT_THR_REF: FFT learned thrust reference

Note: This parameter is for advanced users

FFT learned thrust reference for the hover frequency and FFT minimum frequency.

Range
0.01 - 0.9

FFT_SNR_REF: FFT SNR reference threshold

Note: This parameter is for advanced users

FFT SNR reference threshold in dB at which a signal is determined to be present.

Range
0.0 - 100.0

FFT_ATT_REF: FFT attenuation for bandwidth calculation

Note: This parameter is for advanced users

FFT attenuation level in dB for bandwidth calculation and peak detection. The bandwidth is calculated by comparing peak power output with the attenuated version. The default of 15 has shown to be a good compromise in both simulations and real flight.

Range
0 - 100

FFT_BW_HOVER: FFT learned bandwidth at hover

Note: This parameter is for advanced users

FFT learned bandwidth at hover for the attenuation frequencies.

Range
0 - 200

FFT_HMNC_FIT: FFT harmonic fit frequency threshold

Note: This parameter is for advanced users

FFT harmonic fit frequency threshold percentage at which a signal of the appropriate frequency is determined to be the harmonic of another. Signals that have a harmonic relationship that varies at most by this percentage are considered harmonics of each other for the purpose of selecting the harmonic notch frequency. If a match is found then the lower frequency harmonic is always used as the basis for the dynamic harmonic notch. A value of zero completely disables harmonic matching.

Range RebootRequired
0 - 100 True

FFT_HMNC_PEAK: FFT harmonic peak target

Note: This parameter is for advanced users

The FFT harmonic peak target that should be returned by FTN1.PkAvg. The resulting value will be used by the harmonic notch if configured to track the FFT frequency. By default the appropriate peak is auto-detected based on the harmonic fit between peaks and the energy-weighted average frequency on roll on pitch is used. Setting this to 1 will always target the highest energy peak. Setting this to 2 will target the highest energy peak that is lower in frequency than the highest energy peak. Setting this to 3 will target the highest energy peak that is higher in frequency than the highest energy peak. Setting this to 4 will target the highest energy peak on the roll axis only and only the roll frequency will be used (some vehicles have a much more pronounced peak on roll). Setting this to 5 will target the highest energy peak on the pitch axis only and only the pitch frequency will be used (some vehicles have a much more pronounced peak on roll).

Values
Value Meaning
0 Auto
1 Center Frequency
2 Lower-Shoulder Frequency
3 Upper-Shoulder Frequency
4 Roll-Axis
5 Pitch-Axis

FOLL Parameters

FOLL_ENABLE: Follow enable/disable

Enabled/disable following a target

Values
Value Meaning
0 Disabled
1 Enabled

FOLL_DIST_MAX: Follow distance maximum

Follow distance maximum. targets further than this will be ignored

Range Units
1 - 1000 meters

FOLL_OFS_TYPE: Follow offset type

Follow offset type

Values
Value Meaning
0 North-East-Down
1 Relative to lead vehicle heading

FOLL_OFS_X: Follow offsets in meters north/forward

Follow offsets in meters north/forward. If positive, this vehicle fly ahead or north of lead vehicle. Depends on FOLL_OFS_TYPE

Increment Range Units
1 -100 - 100 meters

FOLL_OFS_Y: Follow offsets in meters east/right

Follow offsets in meters east/right. If positive, this vehicle will fly to the right or east of lead vehicle. Depends on FOLL_OFS_TYPE

Increment Range Units
1 -100 - 100 meters

FOLL_OFS_Z: Follow offsets in meters down

Follow offsets in meters down. If positive, this vehicle will fly below the lead vehicle

Increment Range Units
1 -100 - 100 meters

FOLL_YAW_BEHAVE: Follow yaw behaviour

Follow yaw behaviour

Values
Value Meaning
0 None
1 Face Lead Vehicle
2 Same as Lead vehicle
3 Direction of Flight

FOLL_POS_P: Follow position error P gain

Follow position error P gain. Converts the difference between desired vertical speed and actual speed into a desired acceleration that is passed to the throttle acceleration controller

Increment Range
0.01 0.01 - 1.00

FOLL_ALT_TYPE: Follow altitude type

Follow altitude type

Values
Value Meaning
0 absolute
1 relative

GND_ Parameters

GND_ABS_PRESS: Absolute Pressure

Note: This parameter is for advanced users

calibrated ground pressure in Pascals

Increment ReadOnly Units Volatile
1 True pascal True

GND_TEMP: ground temperature

Note: This parameter is for advanced users

User provided ambient ground temperature in degrees Celsius. This is used to improve the calculation of the altitude the vehicle is at. This parameter is not persistent and will be reset to 0 every time the vehicle is rebooted. A value of 0 means use the internal measurement ambient temperature.

Increment Units Volatile
1 degrees Celsius True

GND_ALT_OFFSET: altitude offset

Note: This parameter is for advanced users

altitude offset in meters added to barometric altitude. This is used to allow for automatic adjustment of the base barometric altitude by a ground station equipped with a barometer. The value is added to the barometric altitude read by the aircraft. It is automatically reset to 0 when the barometer is calibrated on each reboot or when a preflight calibration is performed.

Increment Units
0.1 meters

GND_PRIMARY: Primary barometer

Note: This parameter is for advanced users

This selects which barometer will be the primary if multiple barometers are found

Values
Value Meaning
0 FirstBaro
1 2ndBaro
2 3rdBaro

GND_EXT_BUS: External baro bus

Note: This parameter is for advanced users

This selects the bus number for looking for an I2C barometer. When set to -1 it will probe all external i2c buses based on the GND_PROBE_EXT parameter.

Values
Value Meaning
-1 Disabled
0 Bus0
1 Bus1

GND_SPEC_GRAV: Specific Gravity (For water depth measurement)

This sets the specific gravity of the fluid when flying an underwater ROV.

Values
1.0:Freshwater,1.024:Saltwater

GND_ABS_PRESS2: Absolute Pressure

Note: This parameter is for advanced users

calibrated ground pressure in Pascals

Increment ReadOnly Units Volatile
1 True pascal True

GND_ABS_PRESS3: Absolute Pressure

Note: This parameter is for advanced users

calibrated ground pressure in Pascals

Increment ReadOnly Units Volatile
1 True pascal True

GND_FLTR_RNG: Range in which sample is accepted

This sets the range around the average value that new samples must be within to be accepted. This can help reduce the impact of noise on sensors that are on long I2C cables. The value is a percentage from the average value. A value of zero disables this filter.

Increment Range Units
1 0 - 100 percent

GND_PROBE_EXT: External barometers to probe

Note: This parameter is for advanced users

This sets which types of external i2c barometer to look for. It is a bitmask of barometer types. The I2C buses to probe is based on GND_EXT_BUS. If GND_EXT_BUS is -1 then it will probe all external buses, otherwise it will probe just the bus number given in GND_EXT_BUS.

Bitmask Values
Bit Meaning
0 BMP085
1 BMP280
2 MS5611
3 MS5607
4 MS5637
5 FBM320
6 DPS280
7 LPS25H
8 Keller
9 MS5837
10 BMP388
11 SPL06
12 MSP
Value Meaning
1 BMP085
2 BMP280
4 MS5611
8 MS5607
16 MS5637
32 FBM320
64 DPS280
128 LPS25H
256 Keller
512 MS5837
1024 BMP388
2048 SPL06
4096 MSP

GND_BARO_ID: Baro ID

Note: This parameter is for advanced users

Barometer sensor ID, taking into account its type, bus and instance

ReadOnly
True

GND_BARO2_ID: Baro ID2

Note: This parameter is for advanced users

Barometer2 sensor ID, taking into account its type, bus and instance

ReadOnly
True

GND_BARO3_ID: Baro ID3

Note: This parameter is for advanced users

Barometer3 sensor ID, taking into account its type, bus and instance

ReadOnly
True

GPS_ Parameters

GPS_TYPE: GPS type

Note: This parameter is for advanced users

GPS type

RebootRequired Values
True
Value Meaning
0 None
1 AUTO
2 uBlox
3 MTK
4 MTK19
5 NMEA
6 SiRF
7 HIL
8 SwiftNav
9 UAVCAN
10 SBF
11 GSOF
13 ERB
14 MAV
15 NOVA
16 HemisphereNMEA
17 uBlox-MovingBaseline-Base
18 uBlox-MovingBaseline-Rover
19 MSP

GPS_TYPE2: 2nd GPS type

Note: This parameter is for advanced users

GPS type of 2nd GPS

RebootRequired Values
True
Value Meaning
0 None
1 AUTO
2 uBlox
3 MTK
4 MTK19
5 NMEA
6 SiRF
7 HIL
8 SwiftNav
9 UAVCAN
10 SBF
11 GSOF
13 ERB
14 MAV
15 NOVA
16 HemisphereNMEA
17 uBlox-MovingBaseline-Base
18 uBlox-MovingBaseline-Rover
19 MSP

GPS_NAVFILTER: Navigation filter setting

Note: This parameter is for advanced users

Navigation filter engine setting

Values
Value Meaning
0 Portable
2 Stationary
3 Pedestrian
4 Automotive
5 Sea
6 Airborne1G
7 Airborne2G
8 Airborne4G

GPS_AUTO_SWITCH: Automatic Switchover Setting

Note: This parameter is for advanced users

Automatic switchover to GPS reporting best lock

Values
Value Meaning
0 Disabled
1 UseBest
2 Blend
3 UseSecond

GPS_MIN_DGPS: Minimum Lock Type Accepted for DGPS

Note: This parameter is for advanced users

Sets the minimum type of differential GPS corrections required before allowing to switch into DGPS mode.

RebootRequired Values
True
Value Meaning
0 Any
50 FloatRTK
100 IntegerRTK

GPS_SBAS_MODE: SBAS Mode

Note: This parameter is for advanced users

This sets the SBAS (satellite based augmentation system) mode if available on this GPS. If set to 2 then the SBAS mode is not changed in the GPS. Otherwise the GPS will be reconfigured to enable/disable SBAS. Disabling SBAS may be worthwhile in some parts of the world where an SBAS signal is available but the baseline is too long to be useful.

Values
Value Meaning
0 Disabled
1 Enabled
2 NoChange

GPS_MIN_ELEV: Minimum elevation

Note: This parameter is for advanced users

This sets the minimum elevation of satellites above the horizon for them to be used for navigation. Setting this to -100 leaves the minimum elevation set to the GPS modules default.

Range Units
-100 - 90 degrees

GPS_SBP_LOGMASK: Swift Binary Protocol Logging Mask

Note: This parameter is for advanced users

Masked with the SBP msg_type field to determine whether SBR1/SBR2 data is logged

Values
Value Meaning
0 None (0x0000)
-1 All (0xFFFF)
-256 External only (0xFF00)

GPS_RAW_DATA: Raw data logging

Note: This parameter is for advanced users

Handles logging raw data; on uBlox chips that support raw data this will log RXM messages into logger; on Septentrio this will log on the equipment’s SD card and when set to 2, the autopilot will try to stop logging after disarming and restart after arming

RebootRequired Values
True
Value Meaning
0 Ignore
1 Always log
2 Stop logging when disarmed (SBF only)
5 Only log every five samples (uBlox only)

GPS_GNSS_MODE: GNSS system configuration

Note: This parameter is for advanced users

Bitmask for what GNSS system to use on the first GPS (all unchecked or zero to leave GPS as configured)

Bitmask Values
Bit Meaning
0 GPS
1 SBAS
2 Galileo