Complete Parameter List

This is a complete list of the parameters which can be set (e.g. via the MAVLink protocol) to control vehicle behaviour. They are stored in persistent storage on the vehicle.

This list is automatically generated from the latest ardupilot source code, and so may contain parameters which are not yet in the stable released versions of the code.

AP_Periph Parameters

FORMAT_VERSION: Eeprom format version number

Note: This parameter is for advanced users

This value is incremented when changes are made to the eeprom format

CAN_NODE: UAVCAN node that is used for this network

Note: This parameter is for advanced users
Note: Reboot required after change

UAVCAN node should be set implicitly or 0 for dynamic node allocation

Range

0 to 250

CAN_BAUDRATE: Bitrate of CAN interface

Note: This parameter is for advanced users
Note: Reboot required after change

Bit rate can be set up to from 10000 to 1000000

Range

10000 to 1000000

CAN_SLCAN_CPORT: SLCAN Route

Note: Reboot required after change

CAN Interface ID to be routed to SLCAN, 0 means no routing

Values

Value

Meaning

0

Disabled

1

First interface

2

Second interface

CAN_TERMINATE: Enable CAN software temination in this node

Note: This parameter is for advanced users
Note: Reboot required after change

Enable CAN software temination in this node

Values

Value

Meaning

0

Disabled

1

Enabled

CAN_PROTOCOL: Enable use of specific protocol to be used on this port

Note: This parameter is for advanced users
Note: Reboot required after change

Enabling this option starts selected protocol that will use this virtual driver. At least one CAN port must be UAVCAN or else CAN1 gets set to UAVCAN

Values

Value

Meaning

0

Disabled

1

UAVCAN

4

PiccoloCAN

6

EFI_NWPMU

7

USD1

8

KDECAN

CAN2_BAUDRATE: Bitrate of CAN2 interface

Note: This parameter is for advanced users
Note: Reboot required after change

Bit rate can be set up to from 10000 to 1000000

Range

10000 to 1000000

CAN2_PROTOCOL: Enable use of specific protocol to be used on this port

Note: This parameter is for advanced users
Note: Reboot required after change

Enabling this option starts selected protocol that will use this virtual driver. At least one CAN port must be UAVCAN or else CAN1 gets set to UAVCAN

Values

Value

Meaning

0

Disabled

1

UAVCAN

4

PiccoloCAN

6

EFI_NWPMU

7

USD1

8

KDECAN

CAN2_TERMINATE: Enable CAN software temination in this node

Note: This parameter is for advanced users
Note: Reboot required after change

Enable CAN software temination in this node

Values

Value

Meaning

0

Disabled

1

Enabled

CAN3_BAUDRATE: Bitrate of CAN3 interface

Note: This parameter is for advanced users
Note: Reboot required after change

Bit rate can be set up to from 10000 to 1000000

Range

10000 to 1000000

CAN3_PROTOCOL: Enable use of specific protocol to be used on this port

Note: This parameter is for advanced users
Note: Reboot required after change

Enabling this option starts selected protocol that will use this virtual driver. At least one CAN port must be UAVCAN or else CAN1 gets set to UAVCAN

Values

Value

Meaning

0

Disabled

1

UAVCAN

4

PiccoloCAN

6

EFI_NWPMU

7

USD1

8

KDECAN

CAN3_TERMINATE: Enable CAN software temination in this node

Note: This parameter is for advanced users
Note: Reboot required after change

Enable CAN software temination in this node

Values

Value

Meaning

0

Disabled

1

Enabled

CAN_FDMODE: Enable CANFD mode

Note: This parameter is for advanced users
Note: Reboot required after change

Enabling this option sets the CAN bus to be in CANFD mode with BRS.

Values

Value

Meaning

0

Disabled

1

Enabled

CAN_FDBAUDRATE: Set up bitrate for data section on CAN1

Note: This parameter is for advanced users
Note: Reboot required after change

This sets the bitrate for the data section of CAN1.

Values

Value

Meaning

1

1M

2

2M

4

4M

5

5M

8

8M

CAN2_FDBAUDRATE: Set up bitrate for data section on CAN2

Note: This parameter is for advanced users
Note: Reboot required after change

This sets the bitrate for the data section of CAN2.

Values

Value

Meaning

1

1M

2

2M

4

4M

5

5M

8

8M

FLASH_BOOTLOADER: Trigger bootloader update

Note: This parameter is for advanced users

DANGER! When enabled, the App will perform a bootloader update by copying the embedded bootloader over the existing bootloader. This may take a few seconds to perform and should only be done if you know what you're doing.

Range

0 to 1

DEBUG: Debug

Note: This parameter is for advanced users

Debug

Bitmask

Bit

Meaning

0

Show free stack space

1

Auto Reboot after 15sec

2

Enable sending stats

BRD_SERIAL_NUM: Serial number of device

Note: This parameter is for advanced users

Non-zero positive values will be shown on the CAN App Name string

Range

0 to 2147483648

BUZZER_VOLUME: Buzzer volume

Note: This parameter is for advanced users

Control the volume of the buzzer

Increment

Range

Units

1

0 to 100

percent

GPS_PORT: GPS Serial Port

Note: This parameter is for advanced users
Note: Reboot required after change

This is the serial port number where SERIALx_PROTOCOL will be set to GPS.

Increment

Range

1

0 to 10

MB_CAN_PORT: Moving Baseline CAN Port option

Note: This parameter is for advanced users
Note: Reboot required after change

Autoselect dedicated CAN port on which moving baseline data will be transmitted.

Values

Value

Meaning

0

Sends moving baseline data on all ports

1

auto select remaining port for transmitting Moving baseline Data

BATT_HIDE_MASK: Battery hide mask

Note: This parameter is for advanced users

Instance mask of local battery index(es) to prevent transmitting their status over CAN. This is useful for hiding a "battery" instance that is used locally in the peripheral but don't want them to be treated as a battery source(s) to the autopilot. For example, an AP_Periph battery monitor with multiple batteries that monitors each locally for diagnostic or other purposes, but only reports as a single SUM battery monitor to the autopilot.

Bitmask

Bit

Meaning

0

BATT

1

BATT2

2

BATT3

3

BATT4

4

BATT5

5

BATT6

6

BATT7

7

BATT8

8

BATT9

9

BATTA

10

BATTB

11

BATTC

12

BATTD

13

BATTE

14

BATTF

15

BATTG

BARO_ENABLE: Barometer Enable

Barometer Enable

Values

Value

Meaning

0

Disabled

1

Enabled

LED_BRIGHTNESS: LED Brightness

Select the RGB LED brightness level.

Increment

Range

Units

1

0 to 100

percent

RNGFND_BAUDRATE: Rangefinder serial baudrate

Note: Reboot required after change

Rangefinder serial baudrate.

Increment

Values

1

Value

Meaning

1

1200

2

2400

4

4800

9

9600

19

19200

38

38400

57

57600

111

111100

115

115200

230

230400

256

256000

460

460800

500

500000

921

921600

1500

1500000

RNGFND_PORT: Rangefinder Serial Port

Note: This parameter is for advanced users
Note: Reboot required after change

This is the serial port number where SERIALx_PROTOCOL will be set to Rangefinder.

Increment

Range

1

0 to 10

RNGFND_MAX_RATE: Rangefinder max rate

Note: This parameter is for advanced users

This is the maximum rate we send rangefinder data in Hz. Zero means no limit

Increment

Range

Units

1

0 to 200

hertz

ADSB_BAUDRATE: ADSB serial baudrate

Note: Reboot required after change

ADSB serial baudrate.

Increment

Values

1

Value

Meaning

1

1200

2

2400

4

4800

9

9600

19

19200

38

38400

57

57600

111

111100

115

115200

230

230400

256

256000

460

460800

500

500000

921

921600

1500

1500000

ADSB_PORT: ADSB Serial Port

Note: This parameter is for advanced users
Note: Reboot required after change

This is the serial port number where SERIALx_PROTOCOL will be set to ADSB.

Increment

Range

1

0 to 10

HARDPOINT_ID: Hardpoint ID

Note: This parameter is for advanced users

Hardpoint ID

HARDPOINT_RATE: Hardpoint PWM rate

Note: This parameter is for advanced users

Hardpoint PWM rate

Increment

Range

Units

1

10 to 100

hertz

ESC_NUMBER: ESC number

Note: This parameter is for advanced users

This is the ESC number to report as in UAVCAN ESC telemetry feedback packets.

Increment

1

ESC_PWM_TYPE: Output PWM type

Note: This parameter is for advanced users
Note: Reboot required after change

This selects the output PWM type, allowing for normal PWM continuous output, OneShot, brushed or DShot motor output

Values

Value

Meaning

1

Normal

2

OneShot

3

OneShot125

4

Brushed

5

DShot150

6

DShot300

7

DShot600

8

DShot1200

ESC_CMD_TIMO: ESC Command Timeout

Note: This parameter is for advanced users

This is the duration (ms) with which to hold the last driven ESC command before timing out and zeroing the ESC outputs. To disable zeroing of outputs in event of CAN loss, use 0. Use values greater than the expected duration between two CAN frames to ensure Periph is not starved of ESC Raw Commands.

Range

Units

0 to 10000

milliseconds

ESC_TELEM_PORT: ESC Telemetry Serial Port

Note: This parameter is for advanced users
Note: Reboot required after change

This is the serial port number where SERIALx_PROTOCOL will be set to ESC Telemetry

Increment

Range

1

0 to 10

ESC_TELEM_RATE: ESC Telemetry update rate

Note: This parameter is for advanced users
Note: Reboot required after change

This is the rate at which ESC Telemetry will be sent across the CAN bus

Increment

Range

1

0 to 1000

MSP_PORT: MSP Serial Port

Note: This parameter is for advanced users
Note: Reboot required after change

This is the serial port number where SERIALx_PROTOCOL will be set to MSP

Increment

Range

1

0 to 10

LOG_BITMASK: Log bitmask

4 byte bitmap of log types to enable

Bitmask

Bit

Meaning

2

GPS

EFI_BAUDRATE: EFI serial baudrate

Note: Reboot required after change

EFI serial baudrate.

Increment

Values

1

Value

Meaning

1

1200

2

2400

4

4800

9

9600

19

19200

38

38400

57

57600

111

111100

115

115200

230

230400

256

256000

460

460800

500

500000

921

921600

1500

1500000

EFI_PORT: EFI Serial Port

Note: This parameter is for advanced users
Note: Reboot required after change

This is the serial port number where SERIALx_PROTOCOL will be set to EFI.

Increment

Range

1

0 to 10

PRX_BAUDRATE: Proximity Sensor serial baudrate

Note: Reboot required after change

Proximity Sensor serial baudrate.

Increment

Values

1

Value

Meaning

1

1200

2

2400

4

4800

9

9600

19

19200

38

38400

57

57600

111

111100

115

115200

230

230400

256

256000

460

460800

500

500000

921

921600

1500

1500000

PRX_PORT: Proximity Sensor Serial Port

Note: This parameter is for advanced users
Note: Reboot required after change

This is the serial port number where SERIALx_PROTOCOL will be set to Proximity Sensor.

Increment

Range

1

0 to 10

PRX_MAX_RATE: Proximity Sensor max rate

Note: This parameter is for advanced users

This is the maximum rate we send Proximity Sensor data in Hz. Zero means no limit

Increment

Range

Units

1

0 to 200

hertz

ESC_APD_SERIAL_1: ESC APD Serial 1

Note: This parameter is for advanced users
Note: Reboot required after change

Which serial port to use for APD ESC data

Increment

Range

1

0 to 6

ESC_APD_SERIAL_2: ESC APD Serial 2

Note: This parameter is for advanced users
Note: Reboot required after change

Which serial port to use for APD ESC data

Increment

Range

1

0 to 6

CAN_MIRROR_PORTS: CAN ports to mirror traffic between

Note: This parameter is for advanced users

Any set ports will participate in blindly mirroring traffic from one port to the other. It is the users responsibility to ensure that no loops exist that cause traffic to be infinitly repeated, and both ports must be running the same baud rates.

Bitmask

Bit

Meaning

0

CAN1

1

CAN2

2

CAN3

TEMP_MSG_RATE: Temperature sensor message rate

This is the rate Temperature sensor data is sent in Hz. Zero means no send. Each sensor with source DroneCAN is sent in turn.

Increment

Range

Units

1

0 to 200

hertz

AHRS_ Parameters

AHRS_GPS_GAIN: AHRS GPS gain

Note: This parameter is for advanced users

This controls how much to use the GPS to correct the attitude. This should never be set to zero for a plane as it would result in the plane losing control in turns. For a plane please use the default value of 1.0.

Increment

Range

.01

0.0 to 1.0

AHRS_GPS_USE: AHRS use GPS for DCM navigation and position-down

Note: This parameter is for advanced users

This controls whether to use dead-reckoning or GPS based navigation. If set to 0 then the GPS won't be used for navigation, and only dead reckoning will be used. A value of zero should never be used for normal flight. Currently this affects only the DCM-based AHRS: the EKF uses GPS according to its own parameters. A value of 2 means to use GPS for height as well as position - both in DCM estimation and when determining altitude-above-home.

Values

Value

Meaning

0

Disabled

1

Use GPS for DCM position

2

Use GPS for DCM position and height

AHRS_YAW_P: Yaw P

Note: This parameter is for advanced users

This controls the weight the compass or GPS has on the heading. A higher value means the heading will track the yaw source (GPS or compass) more rapidly.

Increment

Range

.01

0.1 to 0.4

AHRS_RP_P: AHRS RP_P

Note: This parameter is for advanced users

This controls how fast the accelerometers correct the attitude

Increment

Range

.01

0.1 to 0.4

AHRS_WIND_MAX: Maximum wind

Note: This parameter is for advanced users

This sets the maximum allowable difference between ground speed and airspeed. A value of zero means to use the airspeed as is. This allows the plane to cope with a failing airspeed sensor by clipping it to groundspeed plus/minus this limit. See ARSPD_OPTIONS and ARSPD_WIND_MAX to disable airspeed sensors.

Increment

Range

Units

1

0 to 127

meters per second

AHRS_TRIM_X: AHRS Trim Roll

Compensates for the roll angle difference between the control board and the frame. Positive values make the vehicle roll right.

Increment

Range

Units

0.01

-0.1745 to +0.1745

radians

AHRS_TRIM_Y: AHRS Trim Pitch

Compensates for the pitch angle difference between the control board and the frame. Positive values make the vehicle pitch up/back.

Increment

Range

Units

0.01

-0.1745 to +0.1745

radians

AHRS_TRIM_Z: AHRS Trim Yaw

Note: This parameter is for advanced users

Not Used

Increment

Range

Units

0.01

-0.1745 to +0.1745

radians

AHRS_ORIENTATION: Board Orientation

Note: This parameter is for advanced users

Overall board orientation relative to the standard orientation for the board type. This rotates the IMU and compass readings to allow the board to be oriented in your vehicle at any 90 or 45 degree angle. The label for each option is specified in the order of rotations for that orientation. This option takes affect on next boot. After changing you will need to re-level your vehicle. Firmware versions 4.2 and prior can use a CUSTOM (100) rotation to set the AHRS_CUSTOM_ROLL/PIT/YAW angles for AHRS orientation. Later versions provide two general custom rotations which can be used, Custom 1 and Custom 2, with CUST_ROT1_ROLL/PIT/YAW or CUST_ROT2_ROLL/PIT/YAW angles.

Values

Value

Meaning

0

None

1

Yaw45

2

Yaw90

3

Yaw135

4

Yaw180

5

Yaw225

6

Yaw270

7

Yaw315

8

Roll180

9

Yaw45Roll180

10

Yaw90Roll180

11

Yaw135Roll180

12

Pitch180

13

Yaw225Roll180

14

Yaw270Roll180

15

Yaw315Roll180

16

Roll90

17

Yaw45Roll90

18

Yaw90Roll90

19

Yaw135Roll90

20

Roll270

21

Yaw45Roll270

22

Yaw90Roll270

23

Yaw135Roll270

24

Pitch90

25

Pitch270

26

Yaw90Pitch180

27

Yaw270Pitch180

28

Pitch90Roll90

29

Pitch90Roll180

30

Pitch90Roll270

31

Pitch180Roll90

32

Pitch180Roll270

33

Pitch270Roll90

34

Pitch270Roll180

35

Pitch270Roll270

36

Yaw90Pitch180Roll90

37

Yaw270Roll90

38

Yaw293Pitch68Roll180

39

Pitch315

40

Pitch315Roll90

42

Roll45

43

Roll315

100

Custom 4.1 and older

101

Custom 1

102

Custom 2

AHRS_COMP_BETA: AHRS Velocity Complementary Filter Beta Coefficient

Note: This parameter is for advanced users

This controls the time constant for the cross-over frequency used to fuse AHRS (airspeed and heading) and GPS data to estimate ground velocity. Time constant is 0.1/beta. A larger time constant will use GPS data less and a small time constant will use air data less.

Increment

Range

.01

0.001 to 0.5

AHRS_GPS_MINSATS: AHRS GPS Minimum satellites

Note: This parameter is for advanced users

Minimum number of satellites visible to use GPS for velocity based corrections attitude correction. This defaults to 6, which is about the point at which the velocity numbers from a GPS become too unreliable for accurate correction of the accelerometers.

Increment

Range

1

0 to 10

AHRS_EKF_TYPE: Use NavEKF Kalman filter for attitude and position estimation

Note: This parameter is for advanced users

This controls which NavEKF Kalman filter version is used for attitude and position estimation

Values

Value

Meaning

0

Disabled

2

Enable EKF2

3

Enable EKF3

11

ExternalAHRS

AHRS_CUSTOM_ROLL: Board orientation roll offset

Note: This parameter is for advanced users

Autopilot mounting position roll offset. Positive values = roll right, negative values = roll left. This parameter is only used when AHRS_ORIENTATION is set to CUSTOM.

Increment

Range

Units

1

-180 to 180

degrees

AHRS_CUSTOM_PIT: Board orientation pitch offset

Note: This parameter is for advanced users

Autopilot mounting position pitch offset. Positive values = pitch up, negative values = pitch down. This parameter is only used when AHRS_ORIENTATION is set to CUSTOM.

Increment

Range

Units

1

-180 to 180

degrees

AHRS_CUSTOM_YAW: Board orientation yaw offset

Note: This parameter is for advanced users

Autopilot mounting position yaw offset. Positive values = yaw right, negative values = yaw left. This parameter is only used when AHRS_ORIENTATION is set to CUSTOM.

Increment

Range

Units

1

-180 to 180

degrees

AHRS_OPTIONS: Optional AHRS behaviour

Note: This parameter is for advanced users

This controls optional AHRS behaviour. Setting DisableDCMFallbackFW will change the AHRS behaviour for fixed wing aircraft in fly-forward flight to not fall back to DCM when the EKF stops navigating. Setting DisableDCMFallbackVTOL will change the AHRS behaviour for fixed wing aircraft in non fly-forward (VTOL) flight to not fall back to DCM when the EKF stops navigating.

Bitmask

Bit

Meaning

0

DisableDCMFallbackFW

1

DisableDCMFallbackVTOL

ARSPD Parameters

ARSPD_ENABLE: Airspeed Enable

Enable airspeed sensor support

Values

Value

Meaning

0

Disable

1

Enable

ARSPD_TUBE_ORDER: Control pitot tube order

Note: This parameter is for advanced users

This parameter allows you to control whether the order in which the tubes are attached to your pitot tube matters. If you set this to 0 then the first (often the top) connector on the sensor needs to be the stagnation pressure (the pressure at the tip of the pitot tube). If set to 1 then the second (often the bottom) connector needs to be the stagnation pressure. If set to 2 (the default) then the airspeed driver will accept either order. The reason you may wish to specify the order is it will allow your airspeed sensor to detect if the aircraft is receiving excessive pressure on the static port compared to the stagnation port such as during a stall, which would otherwise be seen as a positive airspeed.

Values

Value

Meaning

0

Normal

1

Swapped

2

Auto Detect

ARSPD_PRIMARY: Primary airspeed sensor

Note: This parameter is for advanced users

This selects which airspeed sensor will be the primary if multiple sensors are found

Values

Value

Meaning

0

FirstSensor

1

2ndSensor

ARSPD_OPTIONS: Airspeed options bitmask

Note: This parameter is for advanced users

Bitmask of options to use with airspeed. 0:Disable use based on airspeed/groundspeed mismatch (see ARSPD_WIND_MAX), 1:Automatically reenable use based on airspeed/groundspeed mismatch recovery (see ARSPD_WIND_MAX) 2:Disable voltage correction, 3:Check that the airspeed is statistically consistent with the navigation EKF vehicle and wind velocity estimates using EKF3 (requires AHRS_EKF_TYPE = 3)

Bitmask

Bit

Meaning

0

SpeedMismatchDisable

1

AllowSpeedMismatchRecovery

2

DisableVoltageCorrection

3

UseEkf3Consistency

ARSPD_WIND_MAX: Maximum airspeed and ground speed difference

Note: This parameter is for advanced users

If the difference between airspeed and ground speed is greater than this value the sensor will be marked unhealthy. Using ARSPD_OPTION this health value can be used to disable the sensor.

Units

meters per second

ARSPD_WIND_WARN: Airspeed and GPS speed difference that gives a warning

Note: This parameter is for advanced users

If the difference between airspeed and GPS speed is greater than this value the sensor will issue a warning. If 0 ARSPD_WIND_MAX is used.

Units

meters per second

ARSPD_WIND_GATE: Re-enable Consistency Check Gate Size

Note: This parameter is for advanced users

Number of standard deviations applied to the re-enable EKF consistency check that is used when ARSPD_OPTIONS bit position 3 is set. Larger values will make the re-enabling of the airspeed sensor faster, but increase the likelihood of re-enabling a degraded sensor. The value can be tuned by using the ARSP.TR log message by setting ARSPD_WIND_GATE to a value that is higher than the value for ARSP.TR observed with a healthy airspeed sensor. Occasional transients in ARSP.TR above the value set by ARSPD_WIND_GATE can be tolerated provided they are less than 5 seconds in duration and less than 10% duty cycle.

Range

0.0 to 10.0

ARSPD_OFF_PCNT: Maximum offset cal speed error

Note: This parameter is for advanced users

The maximum percentage speed change in airspeed reports that is allowed due to offset changes between calibrations before a warning is issued. This potential speed error is in percent of ASPD_FBW_MIN. 0 disables. Helps warn of calibrations without pitot being covered.

Range

Units

0.0 to 10.0

percent

ARSPD2_ Parameters

ARSPD2_TYPE: Airspeed type

Type of airspeed sensor

Values

Value

Meaning

0

None

1

I2C-MS4525D0

2

Analog

3

I2C-MS5525

4

I2C-MS5525 (0x76)

5

I2C-MS5525 (0x77)

6

I2C-SDP3X

7

I2C-DLVR-5in

8

DroneCAN

9

I2C-DLVR-10in

10

I2C-DLVR-20in

11

I2C-DLVR-30in

12

I2C-DLVR-60in

13

NMEA water speed

14

MSP

15

ASP5033

16

ExternalAHRS

100

SITL

ARSPD2_USE: Airspeed use

Enables airspeed use for automatic throttle modes and replaces control from THR_TRIM. Continues to display and log airspeed if set to 0. Uses airspeed for control if set to 1. Only uses airspeed when throttle = 0 if set to 2 (useful for gliders with airspeed sensors behind propellers).

Values

Value

Meaning

0

DoNotUse

1

Use

2

UseWhenZeroThrottle

ARSPD2_OFFSET: Airspeed offset

Note: This parameter is for advanced users

Airspeed calibration offset

Increment

0.1

ARSPD2_RATIO: Airspeed ratio

Note: This parameter is for advanced users

Calibrates pitot tube pressure to velocity. Increasing this value will indicate a higher airspeed at any given dynamic pressure.

Increment

0.1

ARSPD2_PIN: Airspeed pin

Note: This parameter is for advanced users

The pin number that the airspeed sensor is connected to for analog sensors. Set to 15 on the Pixhawk for the analog airspeed port.

ARSPD2_AUTOCAL: Automatic airspeed ratio calibration

Note: This parameter is for advanced users

Enables automatic adjustment of airspeed ratio during a calibration flight based on estimation of ground speed and true airspeed. New ratio saved every 2 minutes if change is > 5%. Should not be left enabled.

ARSPD2_TUBE_ORDR: Control pitot tube order

Note: This parameter is for advanced users

This parameter allows you to control whether the order in which the tubes are attached to your pitot tube matters. If you set this to 0 then the first (often the top) connector on the sensor needs to be the stagnation pressure (the pressure at the tip of the pitot tube). If set to 1 then the second (often the bottom) connector needs to be the stagnation pressure. If set to 2 (the default) then the airspeed driver will accept either order. The reason you may wish to specify the order is it will allow your airspeed sensor to detect if the aircraft is receiving excessive pressure on the static port compared to the stagnation port such as during a stall, which would otherwise be seen as a positive airspeed.

Values

Value

Meaning

0

Normal

1

Swapped

2

Auto Detect

ARSPD2_SKIP_CAL: Skip airspeed offset calibration on startup

Note: This parameter is for advanced users

This parameter allows you to skip airspeed offset calibration on startup, instead using the offset from the last calibration. This may be desirable if the offset variance between flights for your sensor is low and you want to avoid having to cover the pitot tube on each boot.

Values

Value

Meaning

0

Disable

1

Enable

ARSPD2_PSI_RANGE: The PSI range of the device

Note: This parameter is for advanced users

This parameter allows you to set the PSI (pounds per square inch) range for your sensor. You should not change this unless you examine the datasheet for your device

ARSPD2_BUS: Airspeed I2C bus

Note: This parameter is for advanced users
Note: Reboot required after change

Bus number of the I2C bus where the airspeed sensor is connected. May not correspond to board's I2C bus number labels. Retry another bus and reboot if airspeed sensor fails to initialize.

Values

Value

Meaning

0

Bus0

1

Bus1

2

Bus2

ARSPD2_DEVID: Airspeed ID

Note: This parameter is for advanced users

Airspeed sensor ID, taking into account its type, bus and instance

ReadOnly

True

ARSPD_ Parameters

ARSPD_TYPE: Airspeed type

Type of airspeed sensor

Values

Value

Meaning

0

None

1

I2C-MS4525D0

2

Analog

3

I2C-MS5525

4

I2C-MS5525 (0x76)

5

I2C-MS5525 (0x77)

6

I2C-SDP3X

7

I2C-DLVR-5in

8

DroneCAN

9

I2C-DLVR-10in

10

I2C-DLVR-20in

11

I2C-DLVR-30in

12

I2C-DLVR-60in

13

NMEA water speed

14

MSP

15

ASP5033

16

ExternalAHRS

100

SITL

ARSPD_USE: Airspeed use

Enables airspeed use for automatic throttle modes and replaces control from THR_TRIM. Continues to display and log airspeed if set to 0. Uses airspeed for control if set to 1. Only uses airspeed when throttle = 0 if set to 2 (useful for gliders with airspeed sensors behind propellers).

Values

Value

Meaning

0

DoNotUse

1

Use

2

UseWhenZeroThrottle

ARSPD_OFFSET: Airspeed offset

Note: This parameter is for advanced users

Airspeed calibration offset

Increment

0.1

ARSPD_RATIO: Airspeed ratio

Note: This parameter is for advanced users

Calibrates pitot tube pressure to velocity. Increasing this value will indicate a higher airspeed at any given dynamic pressure.

Increment

0.1

ARSPD_PIN: Airspeed pin

Note: This parameter is for advanced users

The pin number that the airspeed sensor is connected to for analog sensors. Set to 15 on the Pixhawk for the analog airspeed port.

ARSPD_AUTOCAL: Automatic airspeed ratio calibration

Note: This parameter is for advanced users

Enables automatic adjustment of airspeed ratio during a calibration flight based on estimation of ground speed and true airspeed. New ratio saved every 2 minutes if change is > 5%. Should not be left enabled.

ARSPD_TUBE_ORDR: Control pitot tube order

Note: This parameter is for advanced users

This parameter allows you to control whether the order in which the tubes are attached to your pitot tube matters. If you set this to 0 then the first (often the top) connector on the sensor needs to be the stagnation pressure (the pressure at the tip of the pitot tube). If set to 1 then the second (often the bottom) connector needs to be the stagnation pressure. If set to 2 (the default) then the airspeed driver will accept either order. The reason you may wish to specify the order is it will allow your airspeed sensor to detect if the aircraft is receiving excessive pressure on the static port compared to the stagnation port such as during a stall, which would otherwise be seen as a positive airspeed.

Values

Value

Meaning

0

Normal

1

Swapped

2

Auto Detect

ARSPD_SKIP_CAL: Skip airspeed offset calibration on startup

Note: This parameter is for advanced users

This parameter allows you to skip airspeed offset calibration on startup, instead using the offset from the last calibration. This may be desirable if the offset variance between flights for your sensor is low and you want to avoid having to cover the pitot tube on each boot.

Values

Value

Meaning

0

Disable

1

Enable

ARSPD_PSI_RANGE: The PSI range of the device

Note: This parameter is for advanced users

This parameter allows you to set the PSI (pounds per square inch) range for your sensor. You should not change this unless you examine the datasheet for your device

ARSPD_BUS: Airspeed I2C bus

Note: This parameter is for advanced users
Note: Reboot required after change

Bus number of the I2C bus where the airspeed sensor is connected. May not correspond to board's I2C bus number labels. Retry another bus and reboot if airspeed sensor fails to initialize.

Values

Value

Meaning

0

Bus0

1

Bus1

2

Bus2

ARSPD_DEVID: Airspeed ID

Note: This parameter is for advanced users

Airspeed sensor ID, taking into account its type, bus and instance

ReadOnly

True

BAL Parameters

BAL_NUM_CELLS: Number of battery cells

Number of battery cells to monitor

Range

0 to 64

BAL_ID: Battery ID

Battery ID to match against other batteries

Range

0 to 127

BAL_RATE: Send Rate

Rate to send cell information

Range

0 to 20

BAL_CELL1_PIN: First analog pin

Analog pin of the first cell. Later cells must be sequential

Range

0 to 127

BARO Parameters

BARO1_GND_PRESS: Ground Pressure

Note: This parameter is for advanced users

calibrated ground pressure in Pascals

Increment

ReadOnly

Units

Volatile

1

True

pascal

True

BARO_GND_TEMP: ground temperature

Note: This parameter is for advanced users

User provided ambient ground temperature in degrees Celsius. This is used to improve the calculation of the altitude the vehicle is at. This parameter is not persistent and will be reset to 0 every time the vehicle is rebooted. A value of 0 means use the internal measurement ambient temperature.

Increment

Units

Volatile

1

degrees Celsius

True

BARO_ALT_OFFSET: altitude offset

Note: This parameter is for advanced users

altitude offset in meters added to barometric altitude. This is used to allow for automatic adjustment of the base barometric altitude by a ground station equipped with a barometer. The value is added to the barometric altitude read by the aircraft. It is automatically reset to 0 when the barometer is calibrated on each reboot or when a preflight calibration is performed.

Increment

Units

0.1

meters

BARO_PRIMARY: Primary barometer

Note: This parameter is for advanced users

This selects which barometer will be the primary if multiple barometers are found

Values

Value

Meaning

0

FirstBaro

1

2ndBaro

2

3rdBaro

BARO_EXT_BUS: External baro bus

Note: This parameter is for advanced users

This selects the bus number for looking for an I2C barometer. When set to -1 it will probe all external i2c buses based on the BARO_PROBE_EXT parameter.

Values

Value

Meaning

-1

Disabled

0

Bus0

1

Bus1

6

Bus6

BARO2_GND_PRESS: Ground Pressure

Note: This parameter is for advanced users

calibrated ground pressure in Pascals

Increment

ReadOnly

Units

Volatile

1

True

pascal

True

BARO3_GND_PRESS: Absolute Pressure

Note: This parameter is for advanced users

calibrated ground pressure in Pascals

Increment

ReadOnly

Units

Volatile

1

True

pascal

True

BARO_FLTR_RNG: Range in which sample is accepted

This sets the range around the average value that new samples must be within to be accepted. This can help reduce the impact of noise on sensors that are on long I2C cables. The value is a percentage from the average value. A value of zero disables this filter.

Increment

Range

Units

1

0 to 100

percent

BARO_PROBE_EXT: External barometers to probe

Note: This parameter is for advanced users

This sets which types of external i2c barometer to look for. It is a bitmask of barometer types. The I2C buses to probe is based on BARO_EXT_BUS. If BARO_EXT_BUS is -1 then it will probe all external buses, otherwise it will probe just the bus number given in BARO_EXT_BUS.

Bitmask

Bit

Meaning

0

BMP085

1

BMP280

2

MS5611

3

MS5607

4

MS5637

5

FBM320

6

DPS280

7

LPS25H

8

Keller

9

MS5837

10

BMP388

11

SPL06

12

MSP

BARO1_DEVID: Baro ID

Note: This parameter is for advanced users

Barometer sensor ID, taking into account its type, bus and instance

ReadOnly

True

BARO2_DEVID: Baro ID2

Note: This parameter is for advanced users

Barometer2 sensor ID, taking into account its type, bus and instance

ReadOnly

True

BARO3_DEVID: Baro ID3

Note: This parameter is for advanced users

Barometer3 sensor ID, taking into account its type, bus and instance

ReadOnly

True

BARO_FIELD_ELV: field elevation

Note: This parameter is for advanced users

User provided field elevation in meters. This is used to improve the calculation of the altitude the vehicle is at. This parameter is not persistent and will be reset to 0 every time the vehicle is rebooted. Changes to this parameter will only be used when disarmed. A value of 0 means the EKF origin height is used for takeoff height above sea level.

Increment

Units

Volatile

0.1

meters

True

BARO_ALTERR_MAX: Altitude error maximum

Note: This parameter is for advanced users

This is the maximum acceptable altitude discrepancy between GPS altitude and barometric presssure altitude calculated against a standard atmosphere for arming checks to pass. If you are getting an arming error due to this parameter then you may have a faulty or substituted barometer. A common issue is vendors replacing a MS5611 in a "Pixhawk" with a MS5607. If you have that issue then please see BARO_OPTIONS parameter to force the MS5611 to be treated as a MS5607. This check is disabled if the value is zero.

Increment

Range

Units

1

0 to 5000

meters

BARO_OPTIONS: Barometer options

Note: This parameter is for advanced users

Barometer options

Bitmask

Bit

Meaning

0

Treat MS5611 as MS5607

BARO1_WCF_ Parameters

BARO1_WCF_ENABLE: Wind coefficient enable

Note: This parameter is for advanced users

This enables the use of wind coefficients for barometer compensation

Values

Value

Meaning

0

Disabled

1

Enabled

BARO1_WCF_FWD: Pressure error coefficient in positive X direction (forward)

Note: This parameter is for advanced users

This is the ratio of static pressure error to dynamic pressure generated by a positive wind relative velocity along the X body axis. If the baro height estimate rises during forwards flight, then this will be a negative number. Multirotors can use this feature only if using EKF3 and if the EK3_DRAG_BCOEF_X and EK3_DRAG_BCOEF_Y parameters have been tuned.

Increment

Range

0.05

-1.0 to 1.0

BARO1_WCF_BCK: Pressure error coefficient in negative X direction (backwards)

Note: This parameter is for advanced users

This is the ratio of static pressure error to dynamic pressure generated by a negative wind relative velocity along the X body axis. If the baro height estimate rises during backwards flight, then this will be a negative number. Multirotors can use this feature only if using EKF3 and if the EK3_DRAG_BCOEF_X and EK3_DRAG_BCOEF_Y parameters have been tuned.

Increment

Range

0.05

-1.0 to 1.0

BARO1_WCF_RGT: Pressure error coefficient in positive Y direction (right)

Note: This parameter is for advanced users

This is the ratio of static pressure error to dynamic pressure generated by a positive wind relative velocity along the Y body axis. If the baro height estimate rises during sideways flight to the right, then this should be a negative number. Multirotors can use this feature only if using EKF3 and if the EK3_DRAG_BCOEF_X and EK3_DRAG_BCOEF_Y parameters have been tuned.

Increment

Range

0.05

-1.0 to 1.0

BARO1_WCF_LFT: Pressure error coefficient in negative Y direction (left)

Note: This parameter is for advanced users

This is the ratio of static pressure error to dynamic pressure generated by a negative wind relative velocity along the Y body axis. If the baro height estimate rises during sideways flight to the left, then this should be a negative number. Multirotors can use this feature only if using EKF3 and if the EK3_DRAG_BCOEF_X and EK3_DRAG_BCOEF_Y parameters have been tuned.

Increment

Range

0.05

-1.0 to 1.0

BARO1_WCF_UP: Pressure error coefficient in positive Z direction (up)

Note: This parameter is for advanced users

This is the ratio of static pressure error to dynamic pressure generated by a positive wind relative velocity along the Z body axis. If the baro height estimate rises above truth height during climbing flight (or forward flight with a high forwards lean angle), then this should be a negative number. Multirotors can use this feature only if using EKF3 and if the EK3_DRAG_BCOEF_X and EK3_DRAG_BCOEF_Y parameters have been tuned.

Increment

Range

0.05

-1.0 to 1.0

BARO1_WCF_DN: Pressure error coefficient in negative Z direction (down)

Note: This parameter is for advanced users

This is the ratio of static pressure error to dynamic pressure generated by a negative wind relative velocity along the Z body axis. If the baro height estimate rises above truth height during descending flight (or forward flight with a high backwards lean angle, eg braking manoeuvre), then this should be a negative number. Multirotors can use this feature only if using EKF3 and if the EK3_DRAG_BCOEF_X and EK3_DRAG_BCOEF_Y parameters have been tuned.

Increment

Range

0.05

-1.0 to 1.0

BARO2_WCF_ Parameters

BARO2_WCF_ENABLE: Wind coefficient enable

Note: This parameter is for advanced users

This enables the use of wind coefficients for barometer compensation

Values

Value

Meaning

0

Disabled

1

Enabled

BARO2_WCF_FWD: Pressure error coefficient in positive X direction (forward)

Note: This parameter is for advanced users

This is the ratio of static pressure error to dynamic pressure generated by a positive wind relative velocity along the X body axis. If the baro height estimate rises during forwards flight, then this will be a negative number. Multirotors can use this feature only if using EKF3 and if the EK3_DRAG_BCOEF_X and EK3_DRAG_BCOEF_Y parameters have been tuned.

Increment

Range

0.05

-1.0 to 1.0

BARO2_WCF_BCK: Pressure error coefficient in negative X direction (backwards)

Note: This parameter is for advanced users

This is the ratio of static pressure error to dynamic pressure generated by a negative wind relative velocity along the X body axis. If the baro height estimate rises during backwards flight, then this will be a negative number. Multirotors can use this feature only if using EKF3 and if the EK3_DRAG_BCOEF_X and EK3_DRAG_BCOEF_Y parameters have been tuned.

Increment

Range

0.05

-1.0 to 1.0

BARO2_WCF_RGT: Pressure error coefficient in positive Y direction (right)

Note: This parameter is for advanced users

This is the ratio of static pressure error to dynamic pressure generated by a positive wind relative velocity along the Y body axis. If the baro height estimate rises during sideways flight to the right, then this should be a negative number. Multirotors can use this feature only if using EKF3 and if the EK3_DRAG_BCOEF_X and EK3_DRAG_BCOEF_Y parameters have been tuned.

Increment

Range

0.05

-1.0 to 1.0

BARO2_WCF_LFT: Pressure error coefficient in negative Y direction (left)

Note: This parameter is for advanced users

This is the ratio of static pressure error to dynamic pressure generated by a negative wind relative velocity along the Y body axis. If the baro height estimate rises during sideways flight to the left, then this should be a negative number. Multirotors can use this feature only if using EKF3 and if the EK3_DRAG_BCOEF_X and EK3_DRAG_BCOEF_Y parameters have been tuned.

Increment

Range

0.05

-1.0 to 1.0

BARO2_WCF_UP: Pressure error coefficient in positive Z direction (up)

Note: This parameter is for advanced users

This is the ratio of static pressure error to dynamic pressure generated by a positive wind relative velocity along the Z body axis. If the baro height estimate rises above truth height during climbing flight (or forward flight with a high forwards lean angle), then this should be a negative number. Multirotors can use this feature only if using EKF3 and if the EK3_DRAG_BCOEF_X and EK3_DRAG_BCOEF_Y parameters have been tuned.

Increment

Range

0.05

-1.0 to 1.0

BARO2_WCF_DN: Pressure error coefficient in negative Z direction (down)

Note: This parameter is for advanced users

This is the ratio of static pressure error to dynamic pressure generated by a negative wind relative velocity along the Z body axis. If the baro height estimate rises above truth height during descending flight (or forward flight with a high backwards lean angle, eg braking manoeuvre), then this should be a negative number. Multirotors can use this feature only if using EKF3 and if the EK3_DRAG_BCOEF_X and EK3_DRAG_BCOEF_Y parameters have been tuned.

Increment

Range

0.05

-1.0 to 1.0

BARO3_WCF_ Parameters

BARO3_WCF_ENABLE: Wind coefficient enable

Note: This parameter is for advanced users

This enables the use of wind coefficients for barometer compensation

Values

Value

Meaning

0

Disabled

1

Enabled

BARO3_WCF_FWD: Pressure error coefficient in positive X direction (forward)

Note: This parameter is for advanced users

This is the ratio of static pressure error to dynamic pressure generated by a positive wind relative velocity along the X body axis. If the baro height estimate rises during forwards flight, then this will be a negative number. Multirotors can use this feature only if using EKF3 and if the EK3_DRAG_BCOEF_X and EK3_DRAG_BCOEF_Y parameters have been tuned.

Increment

Range

0.05

-1.0 to 1.0

BARO3_WCF_BCK: Pressure error coefficient in negative X direction (backwards)

Note: This parameter is for advanced users

This is the ratio of static pressure error to dynamic pressure generated by a negative wind relative velocity along the X body axis. If the baro height estimate rises during backwards flight, then this will be a negative number. Multirotors can use this feature only if using EKF3 and if the EK3_DRAG_BCOEF_X and EK3_DRAG_BCOEF_Y parameters have been tuned.

Increment

Range

0.05

-1.0 to 1.0

BARO3_WCF_RGT: Pressure error coefficient in positive Y direction (right)

Note: This parameter is for advanced users

This is the ratio of static pressure error to dynamic pressure generated by a positive wind relative velocity along the Y body axis. If the baro height estimate rises during sideways flight to the right, then this should be a negative number. Multirotors can use this feature only if using EKF3 and if the EK3_DRAG_BCOEF_X and EK3_DRAG_BCOEF_Y parameters have been tuned.

Increment

Range

0.05

-1.0 to 1.0

BARO3_WCF_LFT: Pressure error coefficient in negative Y direction (left)

Note: This parameter is for advanced users

This is the ratio of static pressure error to dynamic pressure generated by a negative wind relative velocity along the Y body axis. If the baro height estimate rises during sideways flight to the left, then this should be a negative number. Multirotors can use this feature only if using EKF3 and if the EK3_DRAG_BCOEF_X and EK3_DRAG_BCOEF_Y parameters have been tuned.

Increment

Range

0.05

-1.0 to 1.0

BARO3_WCF_UP: Pressure error coefficient in positive Z direction (up)

Note: This parameter is for advanced users

This is the ratio of static pressure error to dynamic pressure generated by a positive wind relative velocity along the Z body axis. If the baro height estimate rises above truth height during climbing flight (or forward flight with a high forwards lean angle), then this should be a negative number. Multirotors can use this feature only if using EKF3 and if the EK3_DRAG_BCOEF_X and EK3_DRAG_BCOEF_Y parameters have been tuned.

Increment

Range

0.05

-1.0 to 1.0

BARO3_WCF_DN: Pressure error coefficient in negative Z direction (down)

Note: This parameter is for advanced users

This is the ratio of static pressure error to dynamic pressure generated by a negative wind relative velocity along the Z body axis. If the baro height estimate rises above truth height during descending flight (or forward flight with a high backwards lean angle, eg braking manoeuvre), then this should be a negative number. Multirotors can use this feature only if using EKF3 and if the EK3_DRAG_BCOEF_X and EK3_DRAG_BCOEF_Y parameters have been tuned.

Increment

Range

0.05

-1.0 to 1.0

BATT2_ Parameters

BATT2_MONITOR: Battery monitoring

Note: Reboot required after change

Controls enabling monitoring of the battery's voltage and current

Values

Value

Meaning

0

Disabled

3

Analog Voltage Only

4

Analog Voltage and Current

5

Solo

6

Bebop

7

SMBus-Generic

8

DroneCAN-BatteryInfo

9

ESC

10

Sum Of Selected Monitors

11

FuelFlow

12

FuelLevelPWM

13

SMBUS-SUI3

14

SMBUS-SUI6

15

NeoDesign

16

SMBus-Maxell

17

Generator-Elec

18

Generator-Fuel

19

Rotoye

20

MPPT

21

INA2XX

22

LTC2946

23

Torqeedo

24

FuelLevelAnalog

25

Synthetic Current and Analog Voltage

26

INA239_SPI

27

EFI

28

AD7091R5

29

Scripting

BATT2_CAPACITY: Battery capacity

Capacity of the battery in mAh when full

Increment

Units

50

milliampere hour

BATT2_SERIAL_NUM: Battery serial number

Note: This parameter is for advanced users

Battery serial number, automatically filled in for SMBus batteries, otherwise will be -1. With DroneCan it is the battery_id.

BATT2_LOW_TIMER: Low voltage timeout

Note: This parameter is for advanced users

This is the timeout in seconds before a low voltage event will be triggered. For aircraft with low C batteries it may be necessary to raise this in order to cope with low voltage on long takeoffs. A value of zero disables low voltage errors.

Increment

Range

Units

1

0 to 120

seconds

BATT2_FS_VOLTSRC: Failsafe voltage source

Note: This parameter is for advanced users

Voltage type used for detection of low voltage event

Values

Value

Meaning

0

Raw Voltage

1

Sag Compensated Voltage

BATT2_LOW_VOLT: Low battery voltage

Battery voltage that triggers a low battery failsafe. Set to 0 to disable. If the battery voltage drops below this voltage continuously for more then the period specified by the BATT2_LOW_TIMER parameter then the vehicle will perform the failsafe specified by the BATT2_FS_LOW_ACT parameter.

Increment

Units

0.1

volt

BATT2_LOW_MAH: Low battery capacity

Battery capacity at which the low battery failsafe is triggered. Set to 0 to disable battery remaining failsafe. If the battery capacity drops below this level the vehicle will perform the failsafe specified by the BATT2_FS_LOW_ACT parameter.

Increment

Units

50

milliampere hour

BATT2_CRT_VOLT: Critical battery voltage

Battery voltage that triggers a critical battery failsafe. Set to 0 to disable. If the battery voltage drops below this voltage continuously for more then the period specified by the BATT2_LOW_TIMER parameter then the vehicle will perform the failsafe specified by the BATT2_FS_CRT_ACT parameter.

Increment

Units

0.1

volt

BATT2_CRT_MAH: Battery critical capacity

Battery capacity at which the critical battery failsafe is triggered. Set to 0 to disable battery remaining failsafe. If the battery capacity drops below this level the vehicle will perform the failsafe specified by the BATT2_FS_CRT_ACT parameter.

Increment

Units

50

milliampere hour

BATT2_ARM_VOLT: Required arming voltage

Note: This parameter is for advanced users

Battery voltage level which is required to arm the aircraft. Set to 0 to allow arming at any voltage.

Increment

Units

0.1

volt

BATT2_ARM_MAH: Required arming remaining capacity

Note: This parameter is for advanced users

Battery capacity remaining which is required to arm the aircraft. Set to 0 to allow arming at any capacity. Note that execept for smart batteries rebooting the vehicle will always reset the remaining capacity estimate, which can lead to this check not providing sufficent protection, it is recommended to always use this in conjunction with the BATT2__ARM_VOLT parameter.

Increment

Units

50

milliampere hour

BATT2_OPTIONS: Battery monitor options

Note: This parameter is for advanced users

This sets options to change the behaviour of the battery monitor

Bitmask

Bit

Meaning

0

Ignore DroneCAN SoC

1

MPPT reports input voltage and current

2

MPPT Powered off when disarmed

3

MPPT Powered on when armed

4

MPPT Powered off at boot

5

MPPT Powered on at boot

6

Send resistance compensated voltage to GCS

7

Allow DroneCAN InfoAux to be from a different CAN node

BATT2_ESC_INDEX: ESC Telemetry Index to write to

Note: This parameter is for advanced users

ESC Telemetry Index to write voltage, current, consumption and temperature data to. Use 0 to disable.

Increment

Range

1

0 to 10

BATT2_VOLT_PIN: Battery Voltage sensing pin

Note: Reboot required after change

Sets the analog input pin that should be used for voltage monitoring.

Values

Value

Meaning

-1

Disabled

2

Pixhawk/Pixracer/Navio2/Pixhawk2_PM1

5

Navigator

13

Pixhawk2_PM2/CubeOrange_PM2

14

CubeOrange

16

Durandal

100

PX4-v1

BATT2_CURR_PIN: Battery Current sensing pin

Note: Reboot required after change

Sets the analog input pin that should be used for current monitoring.

Values

Value

Meaning

-1

Disabled

3

Pixhawk/Pixracer/Navio2/Pixhawk2_PM1

4

CubeOrange_PM2/Navigator

14

Pixhawk2_PM2

15

CubeOrange

17

Durandal

101

PX4-v1

BATT2_VOLT_MULT: Voltage Multiplier

Note: This parameter is for advanced users

Used to convert the voltage of the voltage sensing pin (BATT2_VOLT_PIN) to the actual battery's voltage (pin_voltage * VOLT_MULT). For the 3DR Power brick with a Pixhawk, this should be set to 10.1. For the Pixhawk with the 3DR 4in1 ESC this should be 12.02. For the PX using the PX4IO power supply this should be set to 1.

BATT2_AMP_PERVLT: Amps per volt

Number of amps that a 1V reading on the current sensor corresponds to. With a Pixhawk using the 3DR Power brick this should be set to 17. For the Pixhawk with the 3DR 4in1 ESC this should be 17. For Synthetic Current sensor monitors, this is the maximum, full throttle current draw.

Units

ampere per volt

BATT2_AMP_OFFSET: AMP offset

Voltage offset at zero current on current sensor for Analog Sensors. For Synthetic Current sensor, this offset is the zero throttle system current and is added to the calculated throttle base current.

Units

volt

BATT2_VLT_OFFSET: Voltage offset

Note: This parameter is for advanced users

Voltage offset on voltage pin. This allows for an offset due to a diode. This voltage is subtracted before the scaling is applied.

Units

volt

BATT2_I2C_BUS (AP_BattMonitor_SMBus): Battery monitor I2C bus number

Note: This parameter is for advanced users
Note: Reboot required after change

Battery monitor I2C bus number

Range

0 to 3

BATT2_I2C_ADDR (AP_BattMonitor_SMBus): Battery monitor I2C address

Note: This parameter is for advanced users
Note: Reboot required after change

Battery monitor I2C address

Range

0 to 127

BATT2_SUM_MASK: Battery Sum mask

0: sum of remaining battery monitors, If none 0 sum of specified monitors. Current will be summed and voltages averaged.

Bitmask

Bit

Meaning

0

monitor 1

1

monitor 2

2

monitor 3

3

monitor 4

4

monitor 5

5

monitor 6

6

monitor 7

7

monitor 8

8

monitor 9

BATT2_CURR_MULT: Scales reported power monitor current

Note: This parameter is for advanced users

Multiplier applied to all current related reports to allow for adjustment if no UAVCAN param access or current splitting applications

Range

.1 to 10

BATT2_FL_VLT_MIN: Empty fuel level voltage

Note: This parameter is for advanced users

The voltage seen on the analog pin when the fuel tank is empty. Note: For this type of battery monitor, the voltage seen by the analog pin is displayed as battery voltage on a GCS.

Range

Units

0.01 to 10

volt

BATT2_FL_V_MULT: Fuel level voltage multiplier

Note: This parameter is for advanced users

Voltage multiplier to determine what the full tank voltage reading is. This is calculated as 1 / (Voltage_Full - Voltage_Empty) Note: For this type of battery monitor, the voltage seen by the analog pin is displayed as battery voltage on a GCS.

Range

0.01 to 10

BATT2_FL_FLTR: Fuel level filter frequency

Note: This parameter is for advanced users
Note: Reboot required after change

Filter frequency in Hertz where a low pass filter is used. This is used to filter out tank slosh from the fuel level reading. A value of -1 disables the filter and unfiltered voltage is used to determine the fuel level. The suggested values at in the range of 0.2 Hz to 0.5 Hz.

Range

Units

-1 to 1

hertz

BATT2_FL_PIN: Fuel level analog pin number

Analog input pin that fuel level sensor is connected to. Airspeed ports can be used for Analog input. When using analog pin 103, the maximum value of the input in 3.3V.

Values

Value

Meaning

-1

Not Used

11

Pixracer

13

Pixhawk ADC4

14

Pixhawk ADC3

15

Pixhawk ADC6/Pixhawk2 ADC

103

Pixhawk SBUS

BATT2_FL_FF: First order term

Note: This parameter is for advanced users

First order polynomial fit term

Range

0 to 10

BATT2_FL_FS: Second order term

Note: This parameter is for advanced users

Second order polynomial fit term

Range

0 to 10

BATT2_FL_FT: Third order term

Note: This parameter is for advanced users

Third order polynomial fit term

Range

0 to 10

BATT2_FL_OFF: Offset term

Note: This parameter is for advanced users

Offset polynomial fit term

Range

0 to 10

BATT2_MAX_VOLT: Maximum Battery Voltage

Note: This parameter is for advanced users

Maximum voltage of battery. Provides scaling of current versus voltage

Range

7 to 100

BATT2_I2C_BUS (AP_BattMonitor_INA2xx): Battery monitor I2C bus number

Note: This parameter is for advanced users
Note: Reboot required after change

Battery monitor I2C bus number

Range

0 to 3

BATT2_I2C_ADDR (AP_BattMonitor_INA2xx): Battery monitor I2C address

Note: This parameter is for advanced users
Note: Reboot required after change

Battery monitor I2C address. If this is zero then probe list of supported addresses

Range

0 to 127

BATT2_MAX_AMPS: Battery monitor max current

Note: This parameter is for advanced users

This controls the maximum current the INS2XX sensor will work with.

Range

Units

1 to 400

ampere

BATT2_SHUNT: Battery monitor shunt resistor

Note: This parameter is for advanced users

This sets the shunt resistor used in the device

Range

Units

0.0001 to 0.01

Ohm

BATT3_ Parameters

BATT3_MONITOR: Battery monitoring

Note: Reboot required after change

Controls enabling monitoring of the battery's voltage and current

Values

Value

Meaning

0

Disabled

3

Analog Voltage Only

4

Analog Voltage and Current

5

Solo

6

Bebop

7

SMBus-Generic

8

DroneCAN-BatteryInfo

9

ESC

10

Sum Of Selected Monitors

11

FuelFlow

12

FuelLevelPWM

13

SMBUS-SUI3

14

SMBUS-SUI6

15

NeoDesign

16

SMBus-Maxell

17

Generator-Elec

18

Generator-Fuel

19

Rotoye

20

MPPT

21

INA2XX

22

LTC2946

23

Torqeedo

24

FuelLevelAnalog

25

Synthetic Current and Analog Voltage

26

INA239_SPI

27

EFI

28

AD7091R5

29

Scripting

BATT3_CAPACITY: Battery capacity

Capacity of the battery in mAh when full

Increment

Units

50

milliampere hour

BATT3_SERIAL_NUM: Battery serial number

Note: This parameter is for advanced users

Battery serial number, automatically filled in for SMBus batteries, otherwise will be -1. With DroneCan it is the battery_id.

BATT3_LOW_TIMER: Low voltage timeout

Note: This parameter is for advanced users

This is the timeout in seconds before a low voltage event will be triggered. For aircraft with low C batteries it may be necessary to raise this in order to cope with low voltage on long takeoffs. A value of zero disables low voltage errors.

Increment

Range

Units

1

0 to 120

seconds

BATT3_FS_VOLTSRC: Failsafe voltage source

Note: This parameter is for advanced users

Voltage type used for detection of low voltage event

Values

Value

Meaning

0

Raw Voltage

1

Sag Compensated Voltage

BATT3_LOW_VOLT: Low battery voltage

Battery voltage that triggers a low battery failsafe. Set to 0 to disable. If the battery voltage drops below this voltage continuously for more then the period specified by the BATT3_LOW_TIMER parameter then the vehicle will perform the failsafe specified by the BATT3_FS_LOW_ACT parameter.

Increment

Units

0.1

volt

BATT3_LOW_MAH: Low battery capacity

Battery capacity at which the low battery failsafe is triggered. Set to 0 to disable battery remaining failsafe. If the battery capacity drops below this level the vehicle will perform the failsafe specified by the BATT3_FS_LOW_ACT parameter.

Increment

Units

50

milliampere hour

BATT3_CRT_VOLT: Critical battery voltage

Battery voltage that triggers a critical battery failsafe. Set to 0 to disable. If the battery voltage drops below this voltage continuously for more then the period specified by the BATT3_LOW_TIMER parameter then the vehicle will perform the failsafe specified by the BATT3_FS_CRT_ACT parameter.

Increment

Units

0.1

volt

BATT3_CRT_MAH: Battery critical capacity

Battery capacity at which the critical battery failsafe is triggered. Set to 0 to disable battery remaining failsafe. If the battery capacity drops below this level the vehicle will perform the failsafe specified by the BATT3_FS_CRT_ACT parameter.

Increment

Units

50

milliampere hour

BATT3_ARM_VOLT: Required arming voltage

Note: This parameter is for advanced users

Battery voltage level which is required to arm the aircraft. Set to 0 to allow arming at any voltage.

Increment

Units

0.1

volt

BATT3_ARM_MAH: Required arming remaining capacity

Note: This parameter is for advanced users

Battery capacity remaining which is required to arm the aircraft. Set to 0 to allow arming at any capacity. Note that execept for smart batteries rebooting the vehicle will always reset the remaining capacity estimate, which can lead to this check not providing sufficent protection, it is recommended to always use this in conjunction with the BATT3__ARM_VOLT parameter.

Increment

Units

50

milliampere hour

BATT3_OPTIONS: Battery monitor options

Note: This parameter is for advanced users

This sets options to change the behaviour of the battery monitor

Bitmask

Bit

Meaning

0

Ignore DroneCAN SoC

1

MPPT reports input voltage and current

2

MPPT Powered off when disarmed

3

MPPT Powered on when armed

4

MPPT Powered off at boot

5

MPPT Powered on at boot

6

Send resistance compensated voltage to GCS

7

Allow DroneCAN InfoAux to be from a different CAN node

BATT3_ESC_INDEX: ESC Telemetry Index to write to

Note: This parameter is for advanced users

ESC Telemetry Index to write voltage, current, consumption and temperature data to. Use 0 to disable.

Increment

Range

1

0 to 10

BATT3_VOLT_PIN: Battery Voltage sensing pin

Note: Reboot required after change

Sets the analog input pin that should be used for voltage monitoring.

Values

Value

Meaning

-1

Disabled

2

Pixhawk/Pixracer/Navio2/Pixhawk2_PM1

5

Navigator

13

Pixhawk2_PM2/CubeOrange_PM2

14

CubeOrange

16

Durandal

100

PX4-v1

BATT3_CURR_PIN: Battery Current sensing pin

Note: Reboot required after change

Sets the analog input pin that should be used for current monitoring.

Values

Value

Meaning

-1

Disabled

3

Pixhawk/Pixracer/Navio2/Pixhawk2_PM1

4

CubeOrange_PM2/Navigator

14

Pixhawk2_PM2

15

CubeOrange

17

Durandal

101

PX4-v1

BATT3_VOLT_MULT: Voltage Multiplier

Note: This parameter is for advanced users

Used to convert the voltage of the voltage sensing pin (BATT3_VOLT_PIN) to the actual battery's voltage (pin_voltage * VOLT_MULT). For the 3DR Power brick with a Pixhawk, this should be set to 10.1. For the Pixhawk with the 3DR 4in1 ESC this should be 12.02. For the PX using the PX4IO power supply this should be set to 1.

BATT3_AMP_PERVLT: Amps per volt

Number of amps that a 1V reading on the current sensor corresponds to. With a Pixhawk using the 3DR Power brick this should be set to 17. For the Pixhawk with the 3DR 4in1 ESC this should be 17. For Synthetic Current sensor monitors, this is the maximum, full throttle current draw.

Units

ampere per volt

BATT3_AMP_OFFSET: AMP offset

Voltage offset at zero current on current sensor for Analog Sensors. For Synthetic Current sensor, this offset is the zero throttle system current and is added to the calculated throttle base current.

Units

volt

BATT3_VLT_OFFSET: Voltage offset

Note: This parameter is for advanced users

Voltage offset on voltage pin. This allows for an offset due to a diode. This voltage is subtracted before the scaling is applied.

Units

volt

BATT3_I2C_BUS (AP_BattMonitor_SMBus): Battery monitor I2C bus number

Note: This parameter is for advanced users
Note: Reboot required after change

Battery monitor I2C bus number

Range

0 to 3

BATT3_I2C_ADDR (AP_BattMonitor_SMBus): Battery monitor I2C address

Note: This parameter is for advanced users
Note: Reboot required after change

Battery monitor I2C address

Range

0 to 127

BATT3_SUM_MASK: Battery Sum mask

0: sum of remaining battery monitors, If none 0 sum of specified monitors. Current will be summed and voltages averaged.

Bitmask

Bit

Meaning

0

monitor 1

1

monitor 2

2

monitor 3

3

monitor 4

4

monitor 5

5

monitor 6

6

monitor 7

7

monitor 8

8

monitor 9

BATT3_CURR_MULT: Scales reported power monitor current

Note: This parameter is for advanced users

Multiplier applied to all current related reports to allow for adjustment if no UAVCAN param access or current splitting applications

Range

.1 to 10

BATT3_FL_VLT_MIN: Empty fuel level voltage

Note: This parameter is for advanced users

The voltage seen on the analog pin when the fuel tank is empty. Note: For this type of battery monitor, the voltage seen by the analog pin is displayed as battery voltage on a GCS.

Range

Units

0.01 to 10

volt

BATT3_FL_V_MULT: Fuel level voltage multiplier

Note: This parameter is for advanced users

Voltage multiplier to determine what the full tank voltage reading is. This is calculated as 1 / (Voltage_Full - Voltage_Empty) Note: For this type of battery monitor, the voltage seen by the analog pin is displayed as battery voltage on a GCS.

Range

0.01 to 10

BATT3_FL_FLTR: Fuel level filter frequency

Note: This parameter is for advanced users
Note: Reboot required after change

Filter frequency in Hertz where a low pass filter is used. This is used to filter out tank slosh from the fuel level reading. A value of -1 disables the filter and unfiltered voltage is used to determine the fuel level. The suggested values at in the range of 0.2 Hz to 0.5 Hz.

Range

Units

-1 to 1

hertz

BATT3_FL_PIN: Fuel level analog pin number

Analog input pin that fuel level sensor is connected to. Airspeed ports can be used for Analog input. When using analog pin 103, the maximum value of the input in 3.3V.

Values

Value

Meaning

-1

Not Used

11

Pixracer

13

Pixhawk ADC4

14

Pixhawk ADC3

15

Pixhawk ADC6/Pixhawk2 ADC

103

Pixhawk SBUS

BATT3_FL_FF: First order term

Note: This parameter is for advanced users

First order polynomial fit term

Range

0 to 10

BATT3_FL_FS: Second order term

Note: This parameter is for advanced users

Second order polynomial fit term

Range

0 to 10

BATT3_FL_FT: Third order term

Note: This parameter is for advanced users

Third order polynomial fit term

Range

0 to 10

BATT3_FL_OFF: Offset term

Note: This parameter is for advanced users

Offset polynomial fit term

Range

0 to 10

BATT3_MAX_VOLT: Maximum Battery Voltage

Note: This parameter is for advanced users

Maximum voltage of battery. Provides scaling of current versus voltage

Range

7 to 100

BATT3_I2C_BUS (AP_BattMonitor_INA2xx): Battery monitor I2C bus number

Note: This parameter is for advanced users
Note: Reboot required after change

Battery monitor I2C bus number

Range

0 to 3

BATT3_I2C_ADDR (AP_BattMonitor_INA2xx): Battery monitor I2C address

Note: This parameter is for advanced users
Note: Reboot required after change

Battery monitor I2C address. If this is zero then probe list of supported addresses

Range

0 to 127

BATT3_MAX_AMPS: Battery monitor max current

Note: This parameter is for advanced users

This controls the maximum current the INS2XX sensor will work with.

Range

Units

1 to 400

ampere

BATT3_SHUNT: Battery monitor shunt resistor

Note: This parameter is for advanced users

This sets the shunt resistor used in the device

Range

Units

0.0001 to 0.01

Ohm

BATT4_ Parameters

BATT4_MONITOR: Battery monitoring

Note: Reboot required after change

Controls enabling monitoring of the battery's voltage and current

Values

Value

Meaning

0

Disabled

3

Analog Voltage Only

4

Analog Voltage and Current

5

Solo

6

Bebop

7

SMBus-Generic

8

DroneCAN-BatteryInfo

9

ESC

10

Sum Of Selected Monitors

11

FuelFlow

12

FuelLevelPWM

13

SMBUS-SUI3

14

SMBUS-SUI6

15

NeoDesign

16

SMBus-Maxell

17

Generator-Elec

18

Generator-Fuel

19

Rotoye

20

MPPT

21

INA2XX

22

LTC2946

23

Torqeedo

24

FuelLevelAnalog

25

Synthetic Current and Analog Voltage

26

INA239_SPI

27

EFI

28

AD7091R5

29

Scripting

BATT4_CAPACITY: Battery capacity

Capacity of the battery in mAh when full

Increment

Units

50

milliampere hour

BATT4_SERIAL_NUM: Battery serial number

Note: This parameter is for advanced users

Battery serial number, automatically filled in for SMBus batteries, otherwise will be -1. With DroneCan it is the battery_id.

BATT4_LOW_TIMER: Low voltage timeout

Note: This parameter is for advanced users

This is the timeout in seconds before a low voltage event will be triggered. For aircraft with low C batteries it may be necessary to raise this in order to cope with low voltage on long takeoffs. A value of zero disables low voltage errors.

Increment

Range

Units

1

0 to 120

seconds

BATT4_FS_VOLTSRC: Failsafe voltage source

Note: This parameter is for advanced users

Voltage type used for detection of low voltage event

Values

Value

Meaning

0

Raw Voltage

1

Sag Compensated Voltage

BATT4_LOW_VOLT: Low battery voltage

Battery voltage that triggers a low battery failsafe. Set to 0 to disable. If the battery voltage drops below this voltage continuously for more then the period specified by the BATT4_LOW_TIMER parameter then the vehicle will perform the failsafe specified by the BATT4_FS_LOW_ACT parameter.

Increment

Units

0.1

volt

BATT4_LOW_MAH: Low battery capacity

Battery capacity at which the low battery failsafe is triggered. Set to 0 to disable battery remaining failsafe. If the battery capacity drops below this level the vehicle will perform the failsafe specified by the BATT4_FS_LOW_ACT parameter.

Increment

Units

50

milliampere hour

BATT4_CRT_VOLT: Critical battery voltage

Battery voltage that triggers a critical battery failsafe. Set to 0 to disable. If the battery voltage drops below this voltage continuously for more then the period specified by the BATT4_LOW_TIMER parameter then the vehicle will perform the failsafe specified by the BATT4_FS_CRT_ACT parameter.

Increment

Units

0.1

volt

BATT4_CRT_MAH: Battery critical capacity

Battery capacity at which the critical battery failsafe is triggered. Set to 0 to disable battery remaining failsafe. If the battery capacity drops below this level the vehicle will perform the failsafe specified by the BATT4_FS_CRT_ACT parameter.

Increment

Units

50

milliampere hour

BATT4_ARM_VOLT: Required arming voltage

Note: This parameter is for advanced users

Battery voltage level which is required to arm the aircraft. Set to 0 to allow arming at any voltage.

Increment

Units

0.1

volt

BATT4_ARM_MAH: Required arming remaining capacity

Note: This parameter is for advanced users

Battery capacity remaining which is required to arm the aircraft. Set to 0 to allow arming at any capacity. Note that execept for smart batteries rebooting the vehicle will always reset the remaining capacity estimate, which can lead to this check not providing sufficent protection, it is recommended to always use this in conjunction with the BATT4__ARM_VOLT parameter.

Increment

Units

50

milliampere hour

BATT4_OPTIONS: Battery monitor options

Note: This parameter is for advanced users

This sets options to change the behaviour of the battery monitor

Bitmask

Bit

Meaning

0

Ignore DroneCAN SoC

1

MPPT reports input voltage and current

2

MPPT Powered off when disarmed

3

MPPT Powered on when armed

4

MPPT Powered off at boot

5

MPPT Powered on at boot

6

Send resistance compensated voltage to GCS

7

Allow DroneCAN InfoAux to be from a different CAN node

BATT4_ESC_INDEX: ESC Telemetry Index to write to

Note: This parameter is for advanced users

ESC Telemetry Index to write voltage, current, consumption and temperature data to. Use 0 to disable.

Increment

Range

1

0 to 10

BATT4_VOLT_PIN: Battery Voltage sensing pin

Note: Reboot required after change

Sets the analog input pin that should be used for voltage monitoring.

Values

Value

Meaning

-1

Disabled

2

Pixhawk/Pixracer/Navio2/Pixhawk2_PM1

5

Navigator

13

Pixhawk2_PM2/CubeOrange_PM2

14

CubeOrange

16

Durandal

100

PX4-v1

BATT4_CURR_PIN: Battery Current sensing pin

Note: Reboot required after change

Sets the analog input pin that should be used for current monitoring.

Values

Value

Meaning

-1

Disabled

3

Pixhawk/Pixracer/Navio2/Pixhawk2_PM1

4

CubeOrange_PM2/Navigator

14

Pixhawk2_PM2

15

CubeOrange

17

Durandal

101

PX4-v1

BATT4_VOLT_MULT: Voltage Multiplier

Note: This parameter is for advanced users

Used to convert the voltage of the voltage sensing pin (BATT4_VOLT_PIN) to the actual battery's voltage (pin_voltage * VOLT_MULT). For the 3DR Power brick with a Pixhawk, this should be set to 10.1. For the Pixhawk with the 3DR 4in1 ESC this should be 12.02. For the PX using the PX4IO power supply this should be set to 1.

BATT4_AMP_PERVLT: Amps per volt

Number of amps that a 1V reading on the current sensor corresponds to. With a Pixhawk using the 3DR Power brick this should be set to 17. For the Pixhawk with the 3DR 4in1 ESC this should be 17. For Synthetic Current sensor monitors, this is the maximum, full throttle current draw.

Units

ampere per volt

BATT4_AMP_OFFSET: AMP offset

Voltage offset at zero current on current sensor for Analog Sensors. For Synthetic Current sensor, this offset is the zero throttle system current and is added to the calculated throttle base current.

Units

volt

BATT4_VLT_OFFSET: Voltage offset

Note: This parameter is for advanced users

Voltage offset on voltage pin. This allows for an offset due to a diode. This voltage is subtracted before the scaling is applied.

Units

volt

BATT4_I2C_BUS (AP_BattMonitor_SMBus): Battery monitor I2C bus number

Note: This parameter is for advanced users
Note: Reboot required after change

Battery monitor I2C bus number

Range

0 to 3

BATT4_I2C_ADDR (AP_BattMonitor_SMBus): Battery monitor I2C address

Note: This parameter is for advanced users
Note: Reboot required after change

Battery monitor I2C address

Range

0 to 127

BATT4_SUM_MASK: Battery Sum mask

0: sum of remaining battery monitors, If none 0 sum of specified monitors. Current will be summed and voltages averaged.

Bitmask

Bit

Meaning

0

monitor 1

1

monitor 2

2

monitor 3

3

monitor 4

4

monitor 5

5

monitor 6

6

monitor 7

7

monitor 8

8

monitor 9

BATT4_CURR_MULT: Scales reported power monitor current

Note: This parameter is for advanced users

Multiplier applied to all current related reports to allow for adjustment if no UAVCAN param access or current splitting applications

Range

.1 to 10

BATT4_FL_VLT_MIN: Empty fuel level voltage

Note: This parameter is for advanced users

The voltage seen on the analog pin when the fuel tank is empty. Note: For this type of battery monitor, the voltage seen by the analog pin is displayed as battery voltage on a GCS.

Range

Units

0.01 to 10

volt

BATT4_FL_V_MULT: Fuel level voltage multiplier

Note: This parameter is for advanced users

Voltage multiplier to determine what the full tank voltage reading is. This is calculated as 1 / (Voltage_Full - Voltage_Empty) Note: For this type of battery monitor, the voltage seen by the analog pin is displayed as battery voltage on a GCS.

Range

0.01 to 10

BATT4_FL_FLTR: Fuel level filter frequency

Note: This parameter is for advanced users
Note: Reboot required after change

Filter frequency in Hertz where a low pass filter is used. This is used to filter out tank slosh from the fuel level reading. A value of -1 disables the filter and unfiltered voltage is used to determine the fuel level. The suggested values at in the range of 0.2 Hz to 0.5 Hz.

Range

Units

-1 to 1

hertz

BATT4_FL_PIN: Fuel level analog pin number

Analog input pin that fuel level sensor is connected to. Airspeed ports can be used for Analog input. When using analog pin 103, the maximum value of the input in 3.3V.

Values

Value

Meaning

-1

Not Used

11

Pixracer

13

Pixhawk ADC4

14

Pixhawk ADC3

15

Pixhawk ADC6/Pixhawk2 ADC

103

Pixhawk SBUS

BATT4_FL_FF: First order term

Note: This parameter is for advanced users

First order polynomial fit term

Range

0 to 10

BATT4_FL_FS: Second order term

Note: This parameter is for advanced users

Second order polynomial fit term

Range

0 to 10

BATT4_FL_FT: Third order term

Note: This parameter is for advanced users

Third order polynomial fit term

Range

0 to 10

BATT4_FL_OFF: Offset term

Note: This parameter is for advanced users

Offset polynomial fit term

Range

0 to 10

BATT4_MAX_VOLT: Maximum Battery Voltage

Note: This parameter is for advanced users

Maximum voltage of battery. Provides scaling of current versus voltage

Range

7 to 100

BATT4_I2C_BUS (AP_BattMonitor_INA2xx): Battery monitor I2C bus number

Note: This parameter is for advanced users
Note: Reboot required after change

Battery monitor I2C bus number

Range

0 to 3

BATT4_I2C_ADDR (AP_BattMonitor_INA2xx): Battery monitor I2C address

Note: This parameter is for advanced users
Note: Reboot required after change

Battery monitor I2C address. If this is zero then probe list of supported addresses

Range

0 to 127

BATT4_MAX_AMPS: Battery monitor max current

Note: This parameter is for advanced users

This controls the maximum current the INS2XX sensor will work with.

Range

Units

1 to 400

ampere

BATT4_SHUNT: Battery monitor shunt resistor

Note: This parameter is for advanced users

This sets the shunt resistor used in the device

Range

Units

0.0001 to 0.01

Ohm

BATT5_ Parameters

BATT5_MONITOR: Battery monitoring

Note: Reboot required after change

Controls enabling monitoring of the battery's voltage and current

Values

Value

Meaning

0

Disabled

3

Analog Voltage Only

4

Analog Voltage and Current

5

Solo

6

Bebop

7

SMBus-Generic

8

DroneCAN-BatteryInfo

9

ESC

10

Sum Of Selected Monitors

11

FuelFlow

12

FuelLevelPWM

13

SMBUS-SUI3

14

SMBUS-SUI6

15

NeoDesign

16

SMBus-Maxell

17

Generator-Elec

18

Generator-Fuel

19

Rotoye

20

MPPT

21

INA2XX

22

LTC2946

23

Torqeedo

24

FuelLevelAnalog

25

Synthetic Current and Analog Voltage

26

INA239_SPI

27

EFI

28

AD7091R5

29

Scripting

BATT5_CAPACITY: Battery capacity

Capacity of the battery in mAh when full

Increment

Units

50

milliampere hour

BATT5_SERIAL_NUM: Battery serial number

Note: This parameter is for advanced users

Battery serial number, automatically filled in for SMBus batteries, otherwise will be -1. With DroneCan it is the battery_id.

BATT5_LOW_TIMER: Low voltage timeout

Note: This parameter is for advanced users

This is the timeout in seconds before a low voltage event will be triggered. For aircraft with low C batteries it may be necessary to raise this in order to cope with low voltage on long takeoffs. A value of zero disables low voltage errors.

Increment

Range

Units

1

0 to 120

seconds

BATT5_FS_VOLTSRC: Failsafe voltage source

Note: This parameter is for advanced users

Voltage type used for detection of low voltage event

Values

Value

Meaning

0

Raw Voltage

1

Sag Compensated Voltage

BATT5_LOW_VOLT: Low battery voltage

Battery voltage that triggers a low battery failsafe. Set to 0 to disable. If the battery voltage drops below this voltage continuously for more then the period specified by the BATT5_LOW_TIMER parameter then the vehicle will perform the failsafe specified by the BATT5_FS_LOW_ACT parameter.

Increment

Units

0.1

volt

BATT5_LOW_MAH: Low battery capacity

Battery capacity at which the low battery failsafe is triggered. Set to 0 to disable battery remaining failsafe. If the battery capacity drops below this level the vehicle will perform the failsafe specified by the BATT5_FS_LOW_ACT parameter.

Increment

Units

50

milliampere hour

BATT5_CRT_VOLT: Critical battery voltage

Battery voltage that triggers a critical battery failsafe. Set to 0 to disable. If the battery voltage drops below this voltage continuously for more then the period specified by the BATT5_LOW_TIMER parameter then the vehicle will perform the failsafe specified by the BATT5_FS_CRT_ACT parameter.

Increment

Units

0.1

volt

BATT5_CRT_MAH: Battery critical capacity

Battery capacity at which the critical battery failsafe is triggered. Set to 0 to disable battery remaining failsafe. If the battery capacity drops below this level the vehicle will perform the failsafe specified by the BATT5_FS_CRT_ACT parameter.

Increment

Units

50

milliampere hour

BATT5_ARM_VOLT: Required arming voltage

Note: This parameter is for advanced users

Battery voltage level which is required to arm the aircraft. Set to 0 to allow arming at any voltage.

Increment

Units

0.1

volt

BATT5_ARM_MAH: Required arming remaining capacity

Note: This parameter is for advanced users

Battery capacity remaining which is required to arm the aircraft. Set to 0 to allow arming at any capacity. Note that execept for smart batteries rebooting the vehicle will always reset the remaining capacity estimate, which can lead to this check not providing sufficent protection, it is recommended to always use this in conjunction with the BATT5__ARM_VOLT parameter.

Increment

Units

50

milliampere hour

BATT5_OPTIONS: Battery monitor options

Note: This parameter is for advanced users

This sets options to change the behaviour of the battery monitor

Bitmask

Bit

Meaning

0

Ignore DroneCAN SoC

1

MPPT reports input voltage and current

2

MPPT Powered off when disarmed

3

MPPT Powered on when armed

4

MPPT Powered off at boot

5

MPPT Powered on at boot

6

Send resistance compensated voltage to GCS

7

Allow DroneCAN InfoAux to be from a different CAN node

BATT5_ESC_INDEX: ESC Telemetry Index to write to

Note: This parameter is for advanced users

ESC Telemetry Index to write voltage, current, consumption and temperature data to. Use 0 to disable.

Increment

Range

1

0 to 10

BATT5_VOLT_PIN: Battery Voltage sensing pin

Note: Reboot required after change

Sets the analog input pin that should be used for voltage monitoring.

Values

Value

Meaning

-1

Disabled

2

Pixhawk/Pixracer/Navio2/Pixhawk2_PM1

5

Navigator

13

Pixhawk2_PM2/CubeOrange_PM2

14

CubeOrange

16

Durandal

100

PX4-v1

BATT5_CURR_PIN: Battery Current sensing pin

Note: Reboot required after change

Sets the analog input pin that should be used for current monitoring.

Values

Value

Meaning

-1

Disabled

3

Pixhawk/Pixracer/Navio2/Pixhawk2_PM1

4

CubeOrange_PM2/Navigator

14

Pixhawk2_PM2

15

CubeOrange

17

Durandal

101

PX4-v1

BATT5_VOLT_MULT: Voltage Multiplier

Note: This parameter is for advanced users

Used to convert the voltage of the voltage sensing pin (BATT5_VOLT_PIN) to the actual battery's voltage (pin_voltage * VOLT_MULT). For the 3DR Power brick with a Pixhawk, this should be set to 10.1. For the Pixhawk with the 3DR 4in1 ESC this should be 12.02. For the PX using the PX4IO power supply this should be set to 1.

BATT5_AMP_PERVLT: Amps per volt

Number of amps that a 1V reading on the current sensor corresponds to. With a Pixhawk using the 3DR Power brick this should be set to 17. For the Pixhawk with the 3DR 4in1 ESC this should be 17. For Synthetic Current sensor monitors, this is the maximum, full throttle current draw.

Units

ampere per volt

BATT5_AMP_OFFSET: AMP offset

Voltage offset at zero current on current sensor for Analog Sensors. For Synthetic Current sensor, this offset is the zero throttle system current and is added to the calculated throttle base current.

Units

volt

BATT5_VLT_OFFSET: Voltage offset

Note: This parameter is for advanced users

Voltage offset on voltage pin. This allows for an offset due to a diode. This voltage is subtracted before the scaling is applied.

Units

volt

BATT5_I2C_BUS (AP_BattMonitor_SMBus): Battery monitor I2C bus number

Note: This parameter is for advanced users
Note: Reboot required after change

Battery monitor I2C bus number

Range

0 to 3

BATT5_I2C_ADDR (AP_BattMonitor_SMBus): Battery monitor I2C address

Note: This parameter is for advanced users
Note: Reboot required after change

Battery monitor I2C address

Range

0 to 127

BATT5_SUM_MASK: Battery Sum mask

0: sum of remaining battery monitors, If none 0 sum of specified monitors. Current will be summed and voltages averaged.

Bitmask

Bit

Meaning

0

monitor 1

1

monitor 2

2

monitor 3

3

monitor 4

4

monitor 5

5

monitor 6

6

monitor 7

7

monitor 8

8

monitor 9

BATT5_CURR_MULT: Scales reported power monitor current

Note: This parameter is for advanced users

Multiplier applied to all current related reports to allow for adjustment if no UAVCAN param access or current splitting applications

Range

.1 to 10

BATT5_FL_VLT_MIN: Empty fuel level voltage

Note: This parameter is for advanced users

The voltage seen on the analog pin when the fuel tank is empty. Note: For this type of battery monitor, the voltage seen by the analog pin is displayed as battery voltage on a GCS.

Range

Units

0.01 to 10

volt

BATT5_FL_V_MULT: Fuel level voltage multiplier

Note: This parameter is for advanced users

Voltage multiplier to determine what the full tank voltage reading is. This is calculated as 1 / (Voltage_Full - Voltage_Empty) Note: For this type of battery monitor, the voltage seen by the analog pin is displayed as battery voltage on a GCS.

Range

0.01 to 10

BATT5_FL_FLTR: Fuel level filter frequency

Note: This parameter is for advanced users
Note: Reboot required after change

Filter frequency in Hertz where a low pass filter is used. This is used to filter out tank slosh from the fuel level reading. A value of -1 disables the filter and unfiltered voltage is used to determine the fuel level. The suggested values at in the range of 0.2 Hz to 0.5 Hz.

Range

Units

-1 to 1

hertz

BATT5_FL_PIN: Fuel level analog pin number

Analog input pin that fuel level sensor is connected to. Airspeed ports can be used for Analog input. When using analog pin 103, the maximum value of the input in 3.3V.

Values

Value

Meaning

-1

Not Used

11

Pixracer

13

Pixhawk ADC4

14

Pixhawk ADC3

15

Pixhawk ADC6/Pixhawk2 ADC

103

Pixhawk SBUS

BATT5_FL_FF: First order term

Note: This parameter is for advanced users

First order polynomial fit term

Range

0 to 10

BATT5_FL_FS: Second order term

Note: This parameter is for advanced users

Second order polynomial fit term

Range

0 to 10

BATT5_FL_FT: Third order term

Note: This parameter is for advanced users

Third order polynomial fit term

Range

0 to 10

BATT5_FL_OFF: Offset term

Note: This parameter is for advanced users

Offset polynomial fit term

Range

0 to 10

BATT5_MAX_VOLT: Maximum Battery Voltage

Note: This parameter is for advanced users

Maximum voltage of battery. Provides scaling of current versus voltage

Range

7 to 100

BATT5_I2C_BUS (AP_BattMonitor_INA2xx): Battery monitor I2C bus number

Note: This parameter is for advanced users
Note: Reboot required after change

Battery monitor I2C bus number

Range

0 to 3

BATT5_I2C_ADDR (AP_BattMonitor_INA2xx): Battery monitor I2C address

Note: This parameter is for advanced users
Note: Reboot required after change

Battery monitor I2C address. If this is zero then probe list of supported addresses

Range

0 to 127

BATT5_MAX_AMPS: Battery monitor max current

Note: This parameter is for advanced users

This controls the maximum current the INS2XX sensor will work with.

Range

Units

1 to 400

ampere

BATT5_SHUNT: Battery monitor shunt resistor

Note: This parameter is for advanced users

This sets the shunt resistor used in the device

Range

Units

0.0001 to 0.01

Ohm

BATT6_ Parameters

BATT6_MONITOR: Battery monitoring

Note: Reboot required after change

Controls enabling monitoring of the battery's voltage and current

Values

Value

Meaning

0

Disabled

3

Analog Voltage Only

4

Analog Voltage and Current

5

Solo

6

Bebop

7

SMBus-Generic

8

DroneCAN-BatteryInfo

9

ESC

10

Sum Of Selected Monitors

11

FuelFlow

12

FuelLevelPWM

13

SMBUS-SUI3

14

SMBUS-SUI6

15

NeoDesign

16

SMBus-Maxell

17

Generator-Elec

18

Generator-Fuel

19

Rotoye

20

MPPT

21

INA2XX

22

LTC2946

23

Torqeedo

24

FuelLevelAnalog

25

Synthetic Current and Analog Voltage

26

INA239_SPI

27

EFI

28

AD7091R5

29

Scripting

BATT6_CAPACITY: Battery capacity

Capacity of the battery in mAh when full

Increment

Units

50

milliampere hour

BATT6_SERIAL_NUM: Battery serial number

Note: This parameter is for advanced users

Battery serial number, automatically filled in for SMBus batteries, otherwise will be -1. With DroneCan it is the battery_id.

BATT6_LOW_TIMER: Low voltage timeout

Note: This parameter is for advanced users

This is the timeout in seconds before a low voltage event will be triggered. For aircraft with low C batteries it may be necessary to raise this in order to cope with low voltage on long takeoffs. A value of zero disables low voltage errors.

Increment

Range

Units

1

0 to 120

seconds

BATT6_FS_VOLTSRC: Failsafe voltage source

Note: This parameter is for advanced users

Voltage type used for detection of low voltage event

Values

Value

Meaning

0

Raw Voltage

1

Sag Compensated Voltage

BATT6_LOW_VOLT: Low battery voltage

Battery voltage that triggers a low battery failsafe. Set to 0 to disable. If the battery voltage drops below this voltage continuously for more then the period specified by the BATT6_LOW_TIMER parameter then the vehicle will perform the failsafe specified by the BATT6_FS_LOW_ACT parameter.

Increment

Units

0.1

volt

BATT6_LOW_MAH: Low battery capacity

Battery capacity at which the low battery failsafe is triggered. Set to 0 to disable battery remaining failsafe. If the battery capacity drops below this level the vehicle will perform the failsafe specified by the BATT6_FS_LOW_ACT parameter.

Increment

Units

50

milliampere hour

BATT6_CRT_VOLT: Critical battery voltage

Battery voltage that triggers a critical battery failsafe. Set to 0 to disable. If the battery voltage drops below this voltage continuously for more then the period specified by the BATT6_LOW_TIMER parameter then the vehicle will perform the failsafe specified by the BATT6_FS_CRT_ACT parameter.

Increment

Units

0.1

volt

BATT6_CRT_MAH: Battery critical capacity

Battery capacity at which the critical battery failsafe is triggered. Set to 0 to disable battery remaining failsafe. If the battery capacity drops below this level the vehicle will perform the failsafe specified by the BATT6_FS_CRT_ACT parameter.

Increment

Units

50

milliampere hour

BATT6_ARM_VOLT: Required arming voltage

Note: This parameter is for advanced users

Battery voltage level which is required to arm the aircraft. Set to 0 to allow arming at any voltage.

Increment

Units

0.1

volt

BATT6_ARM_MAH: Required arming remaining capacity

Note: This parameter is for advanced users

Battery capacity remaining which is required to arm the aircraft. Set to 0 to allow arming at any capacity. Note that execept for smart batteries rebooting the vehicle will always reset the remaining capacity estimate, which can lead to this check not providing sufficent protection, it is recommended to always use this in conjunction with the BATT6__ARM_VOLT parameter.

Increment

Units

50

milliampere hour

BATT6_OPTIONS: Battery monitor options

Note: This parameter is for advanced users

This sets options to change the behaviour of the battery monitor

Bitmask

Bit

Meaning

0

Ignore DroneCAN SoC

1

MPPT reports input voltage and current

2

MPPT Powered off when disarmed

3

MPPT Powered on when armed

4

MPPT Powered off at boot

5

MPPT Powered on at boot

6

Send resistance compensated voltage to GCS

7

Allow DroneCAN InfoAux to be from a different CAN node

BATT6_ESC_INDEX: ESC Telemetry Index to write to

Note: This parameter is for advanced users

ESC Telemetry Index to write voltage, current, consumption and temperature data to. Use 0 to disable.

Increment

Range

1

0 to 10

BATT6_VOLT_PIN: Battery Voltage sensing pin

Note: Reboot required after change

Sets the analog input pin that should be used for voltage monitoring.

Values

Value

Meaning

-1

Disabled

2

Pixhawk/Pixracer/Navio2/Pixhawk2_PM1

5

Navigator

13

Pixhawk2_PM2/CubeOrange_PM2

14

CubeOrange

16

Durandal

100

PX4-v1

BATT6_CURR_PIN: Battery Current sensing pin

Note: Reboot required after change

Sets the analog input pin that should be used for current monitoring.

Values

Value

Meaning

-1

Disabled

3

Pixhawk/Pixracer/Navio2/Pixhawk2_PM1

4

CubeOrange_PM2/Navigator

14

Pixhawk2_PM2

15

CubeOrange

17

Durandal

101

PX4-v1

BATT6_VOLT_MULT: Voltage Multiplier

Note: This parameter is for advanced users

Used to convert the voltage of the voltage sensing pin (BATT6_VOLT_PIN) to the actual battery's voltage (pin_voltage * VOLT_MULT). For the 3DR Power brick with a Pixhawk, this should be set to 10.1. For the Pixhawk with the 3DR 4in1 ESC this should be 12.02. For the PX using the PX4IO power supply this should be set to 1.

BATT6_AMP_PERVLT: Amps per volt

Number of amps that a 1V reading on the current sensor corresponds to. With a Pixhawk using the 3DR Power brick this should be set to 17. For the Pixhawk with the 3DR 4in1 ESC this should be 17. For Synthetic Current sensor monitors, this is the maximum, full throttle current draw.

Units

ampere per volt

BATT6_AMP_OFFSET: AMP offset

Voltage offset at zero current on current sensor for Analog Sensors. For Synthetic Current sensor, this offset is the zero throttle system current and is added to the calculated throttle base current.

Units

volt

BATT6_VLT_OFFSET: Voltage offset

Note: This parameter is for advanced users

Voltage offset on voltage pin. This allows for an offset due to a diode. This voltage is subtracted before the scaling is applied.

Units

volt

BATT6_I2C_BUS (AP_BattMonitor_SMBus): Battery monitor I2C bus number

Note: This parameter is for advanced users
Note: Reboot required after change

Battery monitor I2C bus number

Range

0 to 3

BATT6_I2C_ADDR (AP_BattMonitor_SMBus): Battery monitor I2C address

Note: This parameter is for advanced users
Note: Reboot required after change

Battery monitor I2C address

Range

0 to 127

BATT6_SUM_MASK: Battery Sum mask

0: sum of remaining battery monitors, If none 0 sum of specified monitors. Current will be summed and voltages averaged.

Bitmask

Bit

Meaning

0

monitor 1

1

monitor 2

2

monitor 3

3

monitor 4

4

monitor 5

5

monitor 6

6

monitor 7

7

monitor 8

8

monitor 9

BATT6_CURR_MULT: Scales reported power monitor current

Note: This parameter is for advanced users

Multiplier applied to all current related reports to allow for adjustment if no UAVCAN param access or current splitting applications

Range

.1 to 10

BATT6_FL_VLT_MIN: Empty fuel level voltage

Note: This parameter is for advanced users

The voltage seen on the analog pin when the fuel tank is empty. Note: For this type of battery monitor, the voltage seen by the analog pin is displayed as battery voltage on a GCS.

Range

Units

0.01 to 10

volt

BATT6_FL_V_MULT: Fuel level voltage multiplier

Note: This parameter is for advanced users

Voltage multiplier to determine what the full tank voltage reading is. This is calculated as 1 / (Voltage_Full - Voltage_Empty) Note: For this type of battery monitor, the voltage seen by the analog pin is displayed as battery voltage on a GCS.

Range

0.01 to 10

BATT6_FL_FLTR: Fuel level filter frequency

Note: This parameter is for advanced users
Note: Reboot required after change

Filter frequency in Hertz where a low pass filter is used. This is used to filter out tank slosh from the fuel level reading. A value of -1 disables the filter and unfiltered voltage is used to determine the fuel level. The suggested values at in the range of 0.2 Hz to 0.5 Hz.

Range

Units

-1 to 1

hertz

BATT6_FL_PIN: Fuel level analog pin number

Analog input pin that fuel level sensor is connected to. Airspeed ports can be used for Analog input. When using analog pin 103, the maximum value of the input in 3.3V.

Values

Value

Meaning

-1

Not Used

11

Pixracer

13

Pixhawk ADC4

14

Pixhawk ADC3

15

Pixhawk ADC6/Pixhawk2 ADC

103

Pixhawk SBUS

BATT6_FL_FF: First order term

Note: This parameter is for advanced users

First order polynomial fit term

Range

0 to 10

BATT6_FL_FS: Second order term

Note: This parameter is for advanced users

Second order polynomial fit term

Range

0 to 10

BATT6_FL_FT: Third order term

Note: This parameter is for advanced users

Third order polynomial fit term

Range

0 to 10

BATT6_FL_OFF: Offset term

Note: This parameter is for advanced users

Offset polynomial fit term

Range

0 to 10

BATT6_MAX_VOLT: Maximum Battery Voltage

Note: This parameter is for advanced users

Maximum voltage of battery. Provides scaling of current versus voltage

Range

7 to 100

BATT6_I2C_BUS (AP_BattMonitor_INA2xx): Battery monitor I2C bus number

Note: This parameter is for advanced users
Note: Reboot required after change

Battery monitor I2C bus number

Range

0 to 3

BATT6_I2C_ADDR (AP_BattMonitor_INA2xx): Battery monitor I2C address

Note: This parameter is for advanced users
Note: Reboot required after change

Battery monitor I2C address. If this is zero then probe list of supported addresses

Range

0 to 127

BATT6_MAX_AMPS: Battery monitor max current

Note: This parameter is for advanced users

This controls the maximum current the INS2XX sensor will work with.

Range

Units

1 to 400

ampere

BATT6_SHUNT: Battery monitor shunt resistor

Note: This parameter is for advanced users

This sets the shunt resistor used in the device

Range

Units

0.0001 to 0.01

Ohm

BATT7_ Parameters

BATT7_MONITOR: Battery monitoring

Note: Reboot required after change

Controls enabling monitoring of the battery's voltage and current

Values

Value

Meaning

0

Disabled

3

Analog Voltage Only

4

Analog Voltage and Current

5

Solo

6

Bebop

7

SMBus-Generic

8

DroneCAN-BatteryInfo

9

ESC

10

Sum Of Selected Monitors

11

FuelFlow

12

FuelLevelPWM

13

SMBUS-SUI3

14

SMBUS-SUI6

15

NeoDesign

16

SMBus-Maxell

17

Generator-Elec

18

Generator-Fuel

19

Rotoye

20

MPPT

21

INA2XX

22

LTC2946

23

Torqeedo

24

FuelLevelAnalog

25

Synthetic Current and Analog Voltage

26

INA239_SPI

27

EFI

28

AD7091R5

29

Scripting

BATT7_CAPACITY: Battery capacity

Capacity of the battery in mAh when full

Increment

Units

50

milliampere hour

BATT7_SERIAL_NUM: Battery serial number

Note: This parameter is for advanced users

Battery serial number, automatically filled in for SMBus batteries, otherwise will be -1. With DroneCan it is the battery_id.

BATT7_LOW_TIMER: Low voltage timeout

Note: This parameter is for advanced users

This is the timeout in seconds before a low voltage event will be triggered. For aircraft with low C batteries it may be necessary to raise this in order to cope with low voltage on long takeoffs. A value of zero disables low voltage errors.

Increment

Range

Units

1

0 to 120

seconds

BATT7_FS_VOLTSRC: Failsafe voltage source

Note: This parameter is for advanced users

Voltage type used for detection of low voltage event

Values

Value

Meaning

0

Raw Voltage

1

Sag Compensated Voltage

BATT7_LOW_VOLT: Low battery voltage

Battery voltage that triggers a low battery failsafe. Set to 0 to disable. If the battery voltage drops below this voltage continuously for more then the period specified by the BATT7_LOW_TIMER parameter then the vehicle will perform the failsafe specified by the BATT7_FS_LOW_ACT parameter.

Increment

Units

0.1

volt

BATT7_LOW_MAH: Low battery capacity

Battery capacity at which the low battery failsafe is triggered. Set to 0 to disable battery remaining failsafe. If the battery capacity drops below this level the vehicle will perform the failsafe specified by the BATT7_FS_LOW_ACT parameter.

Increment

Units

50

milliampere hour

BATT7_CRT_VOLT: Critical battery voltage

Battery voltage that triggers a critical battery failsafe. Set to 0 to disable. If the battery voltage drops below this voltage continuously for more then the period specified by the BATT7_LOW_TIMER parameter then the vehicle will perform the failsafe specified by the BATT7_FS_CRT_ACT parameter.

Increment

Units

0.1

volt

BATT7_CRT_MAH: Battery critical capacity

Battery capacity at which the critical battery failsafe is triggered. Set to 0 to disable battery remaining failsafe. If the battery capacity drops below this level the vehicle will perform the failsafe specified by the BATT7_FS_CRT_ACT parameter.

Increment

Units

50

milliampere hour

BATT7_ARM_VOLT: Required arming voltage

Note: This parameter is for advanced users

Battery voltage level which is required to arm the aircraft. Set to 0 to allow arming at any voltage.

Increment

Units

0.1

volt

BATT7_ARM_MAH: Required arming remaining capacity

Note: This parameter is for advanced users

Battery capacity remaining which is required to arm the aircraft. Set to 0 to allow arming at any capacity. Note that execept for smart batteries rebooting the vehicle will always reset the remaining capacity estimate, which can lead to this check not providing sufficent protection, it is recommended to always use this in conjunction with the BATT7__ARM_VOLT parameter.

Increment

Units

50

milliampere hour

BATT7_OPTIONS: Battery monitor options

Note: This parameter is for advanced users

This sets options to change the behaviour of the battery monitor

Bitmask

Bit

Meaning

0

Ignore DroneCAN SoC

1

MPPT reports input voltage and current

2

MPPT Powered off when disarmed

3

MPPT Powered on when armed

4

MPPT Powered off at boot

5

MPPT Powered on at boot

6

Send resistance compensated voltage to GCS

7

Allow DroneCAN InfoAux to be from a different CAN node

BATT7_ESC_INDEX: ESC Telemetry Index to write to

Note: This parameter is for advanced users

ESC Telemetry Index to write voltage, current, consumption and temperature data to. Use 0 to disable.

Increment

Range

1

0 to 10

BATT7_VOLT_PIN: Battery Voltage sensing pin

Note: Reboot required after change

Sets the analog input pin that should be used for voltage monitoring.

Values

Value

Meaning

-1

Disabled

2

Pixhawk/Pixracer/Navio2/Pixhawk2_PM1

5

Navigator

13

Pixhawk2_PM2/CubeOrange_PM2

14

CubeOrange

16

Durandal

100

PX4-v1

BATT7_CURR_PIN: Battery Current sensing pin

Note: Reboot required after change

Sets the analog input pin that should be used for current monitoring.

Values

Value

Meaning

-1

Disabled

3

Pixhawk/Pixracer/Navio2/Pixhawk2_PM1

4

CubeOrange_PM2/Navigator

14

Pixhawk2_PM2

15

CubeOrange

17

Durandal

101

PX4-v1

BATT7_VOLT_MULT: Voltage Multiplier

Note: This parameter is for advanced users

Used to convert the voltage of the voltage sensing pin (BATT7_VOLT_PIN) to the actual battery's voltage (pin_voltage * VOLT_MULT). For the 3DR Power brick with a Pixhawk, this should be set to 10.1. For the Pixhawk with the 3DR 4in1 ESC this should be 12.02. For the PX using the PX4IO power supply this should be set to 1.

BATT7_AMP_PERVLT: Amps per volt

Number of amps that a 1V reading on the current sensor corresponds to. With a Pixhawk using the 3DR Power brick this should be set to 17. For the Pixhawk with the 3DR 4in1 ESC this should be 17. For Synthetic Current sensor monitors, this is the maximum, full throttle current draw.

Units

ampere per volt

BATT7_AMP_OFFSET: AMP offset

Voltage offset at zero current on current sensor for Analog Sensors. For Synthetic Current sensor, this offset is the zero throttle system current and is added to the calculated throttle base current.

Units

volt

BATT7_VLT_OFFSET: Voltage offset

Note: This parameter is for advanced users

Voltage offset on voltage pin. This allows for an offset due to a diode. This voltage is subtracted before the scaling is applied.

Units

volt

BATT7_I2C_BUS (AP_BattMonitor_SMBus): Battery monitor I2C bus number

Note: This parameter is for advanced users
Note: Reboot required after change

Battery monitor I2C bus number

Range

0 to 3

BATT7_I2C_ADDR (AP_BattMonitor_SMBus): Battery monitor I2C address

Note: This parameter is for advanced users
Note: Reboot required after change

Battery monitor I2C address

Range

0 to 127

BATT7_SUM_MASK: Battery Sum mask

0: sum of remaining battery monitors, If none 0 sum of specified monitors. Current will be summed and voltages averaged.

Bitmask

Bit

Meaning

0

monitor 1

1

monitor 2

2

monitor 3

3

monitor 4

4

monitor 5

5

monitor 6

6

monitor 7

7

monitor 8

8

monitor 9

BATT7_CURR_MULT: Scales reported power monitor current

Note: This parameter is for advanced users

Multiplier applied to all current related reports to allow for adjustment if no UAVCAN param access or current splitting applications

Range

.1 to 10

BATT7_FL_VLT_MIN: Empty fuel level voltage

Note: This parameter is for advanced users

The voltage seen on the analog pin when the fuel tank is empty. Note: For this type of battery monitor, the voltage seen by the analog pin is displayed as battery voltage on a GCS.

Range

Units

0.01 to 10

volt

BATT7_FL_V_MULT: Fuel level voltage multiplier

Note: This parameter is for advanced users

Voltage multiplier to determine what the full tank voltage reading is. This is calculated as 1 / (Voltage_Full - Voltage_Empty) Note: For this type of battery monitor, the voltage seen by the analog pin is displayed as battery voltage on a GCS.

Range

0.01 to 10

BATT7_FL_FLTR: Fuel level filter frequency

Note: This parameter is for advanced users
Note: Reboot required after change

Filter frequency in Hertz where a low pass filter is used. This is used to filter out tank slosh from the fuel level reading. A value of -1 disables the filter and unfiltered voltage is used to determine the fuel level. The suggested values at in the range of 0.2 Hz to 0.5 Hz.

Range

Units

-1 to 1

hertz

BATT7_FL_PIN: Fuel level analog pin number

Analog input pin that fuel level sensor is connected to. Airspeed ports can be used for Analog input. When using analog pin 103, the maximum value of the input in 3.3V.

Values

Value

Meaning

-1

Not Used

11

Pixracer

13

Pixhawk ADC4

14

Pixhawk ADC3

15

Pixhawk ADC6/Pixhawk2 ADC

103

Pixhawk SBUS

BATT7_FL_FF: First order term

Note: This parameter is for advanced users

First order polynomial fit term

Range

0 to 10

BATT7_FL_FS: Second order term

Note: This parameter is for advanced users

Second order polynomial fit term

Range

0 to 10

BATT7_FL_FT: Third order term

Note: This parameter is for advanced users

Third order polynomial fit term

Range

0 to 10

BATT7_FL_OFF: Offset term

Note: This parameter is for advanced users

Offset polynomial fit term

Range

0 to 10

BATT7_MAX_VOLT: Maximum Battery Voltage

Note: This parameter is for advanced users

Maximum voltage of battery. Provides scaling of current versus voltage

Range

7 to 100

BATT7_I2C_BUS (AP_BattMonitor_INA2xx): Battery monitor I2C bus number

Note: This parameter is for advanced users
Note: Reboot required after change

Battery monitor I2C bus number

Range

0 to 3

BATT7_I2C_ADDR (AP_BattMonitor_INA2xx): Battery monitor I2C address

Note: This parameter is for advanced users
Note: Reboot required after change

Battery monitor I2C address. If this is zero then probe list of supported addresses

Range

0 to 127

BATT7_MAX_AMPS: Battery monitor max current

Note: This parameter is for advanced users

This controls the maximum current the INS2XX sensor will work with.

Range

Units

1 to 400

ampere

BATT7_SHUNT: Battery monitor shunt resistor

Note: This parameter is for advanced users

This sets the shunt resistor used in the device

Range

Units

0.0001 to 0.01

Ohm

BATT8_ Parameters

BATT8_MONITOR: Battery monitoring

Note: Reboot required after change

Controls enabling monitoring of the battery's voltage and current

Values

Value

Meaning

0

Disabled

3

Analog Voltage Only

4

Analog Voltage and Current

5

Solo

6

Bebop

7

SMBus-Generic

8

DroneCAN-BatteryInfo

9

ESC

10

Sum Of Selected Monitors

11

FuelFlow

12

FuelLevelPWM

13

SMBUS-SUI3

14

SMBUS-SUI6

15

NeoDesign

16

SMBus-Maxell

17

Generator-Elec

18

Generator-Fuel

19

Rotoye

20

MPPT

21

INA2XX

22

LTC2946

23

Torqeedo

24

FuelLevelAnalog

25

Synthetic Current and Analog Voltage

26

INA239_SPI

27

EFI

28

AD7091R5

29

Scripting

BATT8_CAPACITY: Battery capacity

Capacity of the battery in mAh when full

Increment

Units

50

milliampere hour

BATT8_SERIAL_NUM: Battery serial number

Note: This parameter is for advanced users

Battery serial number, automatically filled in for SMBus batteries, otherwise will be -1. With DroneCan it is the battery_id.

BATT8_LOW_TIMER: Low voltage timeout

Note: This parameter is for advanced users

This is the timeout in seconds before a low voltage event will be triggered. For aircraft with low C batteries it may be necessary to raise this in order to cope with low voltage on long takeoffs. A value of zero disables low voltage errors.

Increment

Range

Units

1

0 to 120

seconds

BATT8_FS_VOLTSRC: Failsafe voltage source

Note: This parameter is for advanced users

Voltage type used for detection of low voltage event

Values

Value

Meaning

0

Raw Voltage

1

Sag Compensated Voltage

BATT8_LOW_VOLT: Low battery voltage

Battery voltage that triggers a low battery failsafe. Set to 0 to disable. If the battery voltage drops below this voltage continuously for more then the period specified by the BATT8_LOW_TIMER parameter then the vehicle will perform the failsafe specified by the BATT8_FS_LOW_ACT parameter.

Increment

Units

0.1

volt

BATT8_LOW_MAH: Low battery capacity

Battery capacity at which the low battery failsafe is triggered. Set to 0 to disable battery remaining failsafe. If the battery capacity drops below this level the vehicle will perform the failsafe specified by the BATT8_FS_LOW_ACT parameter.

Increment

Units

50

milliampere hour

BATT8_CRT_VOLT: Critical battery voltage

Battery voltage that triggers a critical battery failsafe. Set to 0 to disable. If the battery voltage drops below this voltage continuously for more then the period specified by the BATT8_LOW_TIMER parameter then the vehicle will perform the failsafe specified by the BATT8_FS_CRT_ACT parameter.

Increment

Units

0.1

volt

BATT8_CRT_MAH: Battery critical capacity

Battery capacity at which the critical battery failsafe is triggered. Set to 0 to disable battery remaining failsafe. If the battery capacity drops below this level the vehicle will perform the failsafe specified by the BATT8_FS_CRT_ACT parameter.

Increment

Units

50

milliampere hour

BATT8_ARM_VOLT: Required arming voltage

Note: This parameter is for advanced users

Battery voltage level which is required to arm the aircraft. Set to 0 to allow arming at any voltage.

Increment

Units

0.1

volt

BATT8_ARM_MAH: Required arming remaining capacity

Note: This parameter is for advanced users

Battery capacity remaining which is required to arm the aircraft. Set to 0 to allow arming at any capacity. Note that execept for smart batteries rebooting the vehicle will always reset the remaining capacity estimate, which can lead to this check not providing sufficent protection, it is recommended to always use this in conjunction with the BATT8__ARM_VOLT parameter.

Increment

Units

50

milliampere hour

BATT8_OPTIONS: Battery monitor options

Note: This parameter is for advanced users

This sets options to change the behaviour of the battery monitor

Bitmask

Bit

Meaning

0

Ignore DroneCAN SoC

1

MPPT reports input voltage and current

2

MPPT Powered off when disarmed

3

MPPT Powered on when armed

4

MPPT Powered off at boot

5

MPPT Powered on at boot

6

Send resistance compensated voltage to GCS

7

Allow DroneCAN InfoAux to be from a different CAN node

BATT8_ESC_INDEX: ESC Telemetry Index to write to

Note: This parameter is for advanced users

ESC Telemetry Index to write voltage, current, consumption and temperature data to. Use 0 to disable.

Increment

Range

1

0 to 10

BATT8_VOLT_PIN: Battery Voltage sensing pin

Note: Reboot required after change

Sets the analog input pin that should be used for voltage monitoring.

Values

Value

Meaning

-1

Disabled

2

Pixhawk/Pixracer/Navio2/Pixhawk2_PM1

5

Navigator

13

Pixhawk2_PM2/CubeOrange_PM2

14

CubeOrange

16

Durandal

100

PX4-v1

BATT8_CURR_PIN: Battery Current sensing pin

Note: Reboot required after change

Sets the analog input pin that should be used for current monitoring.

Values

Value

Meaning

-1

Disabled

3

Pixhawk/Pixracer/Navio2/Pixhawk2_PM1

4

CubeOrange_PM2/Navigator

14

Pixhawk2_PM2

15

CubeOrange

17

Durandal

101

PX4-v1

BATT8_VOLT_MULT: Voltage Multiplier

Note: This parameter is for advanced users

Used to convert the voltage of the voltage sensing pin (BATT8_VOLT_PIN) to the actual battery's voltage (pin_voltage * VOLT_MULT). For the 3DR Power brick with a Pixhawk, this should be set to 10.1. For the Pixhawk with the 3DR 4in1 ESC this should be 12.02. For the PX using the PX4IO power supply this should be set to 1.

BATT8_AMP_PERVLT: Amps per volt

Number of amps that a 1V reading on the current sensor corresponds to. With a Pixhawk using the 3DR Power brick this should be set to 17. For the Pixhawk with the 3DR 4in1 ESC this should be 17. For Synthetic Current sensor monitors, this is the maximum, full throttle current draw.

Units

ampere per volt

BATT8_AMP_OFFSET: AMP offset

Voltage offset at zero current on current sensor for Analog Sensors. For Synthetic Current sensor, this offset is the zero throttle system current and is added to the calculated throttle base current.

Units

volt

BATT8_VLT_OFFSET: Voltage offset

Note: This parameter is for advanced users

Voltage offset on voltage pin. This allows for an offset due to a diode. This voltage is subtracted before the scaling is applied.

Units

volt

BATT8_I2C_BUS (AP_BattMonitor_SMBus): Battery monitor I2C bus number

Note: This parameter is for advanced users
Note: Reboot required after change

Battery monitor I2C bus number

Range

0 to 3

BATT8_I2C_ADDR (AP_BattMonitor_SMBus): Battery monitor I2C address

Note: This parameter is for advanced users
Note: Reboot required after change

Battery monitor I2C address

Range

0 to 127

BATT8_SUM_MASK: Battery Sum mask

0: sum of remaining battery monitors, If none 0 sum of specified monitors. Current will be summed and voltages averaged.

Bitmask

Bit

Meaning

0

monitor 1

1

monitor 2

2

monitor 3

3

monitor 4

4

monitor 5

5

monitor 6

6

monitor 7

7

monitor 8

8

monitor 9

BATT8_CURR_MULT: Scales reported power monitor current

Note: This parameter is for advanced users

Multiplier applied to all current related reports to allow for adjustment if no UAVCAN param access or current splitting applications

Range

.1 to 10

BATT8_FL_VLT_MIN: Empty fuel level voltage

Note: This parameter is for advanced users

The voltage seen on the analog pin when the fuel tank is empty. Note: For this type of battery monitor, the voltage seen by the analog pin is displayed as battery voltage on a GCS.

Range

Units

0.01 to 10

volt

BATT8_FL_V_MULT: Fuel level voltage multiplier

Note: This parameter is for advanced users

Voltage multiplier to determine what the full tank voltage reading is. This is calculated as 1 / (Voltage_Full - Voltage_Empty) Note: For this type of battery monitor, the voltage seen by the analog pin is displayed as battery voltage on a GCS.

Range

0.01 to 10

BATT8_FL_FLTR: Fuel level filter frequency

Note: This parameter is for advanced users
Note: Reboot required after change

Filter frequency in Hertz where a low pass filter is used. This is used to filter out tank slosh from the fuel level reading. A value of -1 disables the filter and unfiltered voltage is used to determine the fuel level. The suggested values at in the range of 0.2 Hz to 0.5 Hz.

Range

Units

-1 to 1

hertz

BATT8_FL_PIN: Fuel level analog pin number

Analog input pin that fuel level sensor is connected to. Airspeed ports can be used for Analog input. When using analog pin 103, the maximum value of the input in 3.3V.

Values

Value

Meaning

-1

Not Used

11

Pixracer

13

Pixhawk ADC4

14

Pixhawk ADC3

15

Pixhawk ADC6/Pixhawk2 ADC

103

Pixhawk SBUS

BATT8_FL_FF: First order term

Note: This parameter is for advanced users

First order polynomial fit term

Range

0 to 10

BATT8_FL_FS: Second order term

Note: This parameter is for advanced users

Second order polynomial fit term

Range

0 to 10

BATT8_FL_FT: Third order term

Note: This parameter is for advanced users

Third order polynomial fit term

Range

0 to 10

BATT8_FL_OFF: Offset term

Note: This parameter is for advanced users

Offset polynomial fit term

Range

0 to 10

BATT8_MAX_VOLT: Maximum Battery Voltage

Note: This parameter is for advanced users

Maximum voltage of battery. Provides scaling of current versus voltage

Range

7 to 100

BATT8_I2C_BUS (AP_BattMonitor_INA2xx): Battery monitor I2C bus number

Note: This parameter is for advanced users
Note: Reboot required after change

Battery monitor I2C bus number

Range

0 to 3

BATT8_I2C_ADDR (AP_BattMonitor_INA2xx): Battery monitor I2C address

Note: This parameter is for advanced users
Note: Reboot required after change

Battery monitor I2C address. If this is zero then probe list of supported addresses

Range

0 to 127

BATT8_MAX_AMPS: Battery monitor max current

Note: This parameter is for advanced users

This controls the maximum current the INS2XX sensor will work with.

Range

Units

1 to 400

ampere

BATT8_SHUNT: Battery monitor shunt resistor

Note: This parameter is for advanced users

This sets the shunt resistor used in the device

Range

Units

0.0001 to 0.01

Ohm

BATT9_ Parameters

BATT9_MONITOR: Battery monitoring

Note: Reboot required after change

Controls enabling monitoring of the battery's voltage and current

Values

Value

Meaning

0

Disabled

3

Analog Voltage Only

4

Analog Voltage and Current

5

Solo

6

Bebop

7

SMBus-Generic

8

DroneCAN-BatteryInfo

9

ESC

10

Sum Of Selected Monitors

11

FuelFlow

12

FuelLevelPWM

13

SMBUS-SUI3

14

SMBUS-SUI6

15

NeoDesign

16

SMBus-Maxell

17

Generator-Elec

18

Generator-Fuel

19

Rotoye

20

MPPT

21

INA2XX

22

LTC2946

23

Torqeedo

24

FuelLevelAnalog

25

Synthetic Current and Analog Voltage

26

INA239_SPI

27

EFI

28

AD7091R5

29

Scripting

BATT9_CAPACITY: Battery capacity

Capacity of the battery in mAh when full

Increment

Units

50

milliampere hour

BATT9_SERIAL_NUM: Battery serial number

Note: This parameter is for advanced users

Battery serial number, automatically filled in for SMBus batteries, otherwise will be -1. With DroneCan it is the battery_id.

BATT9_LOW_TIMER: Low voltage timeout

Note: This parameter is for advanced users

This is the timeout in seconds before a low voltage event will be triggered. For aircraft with low C batteries it may be necessary to raise this in order to cope with low voltage on long takeoffs. A value of zero disables low voltage errors.

Increment

Range

Units

1

0 to 120

seconds

BATT9_FS_VOLTSRC: Failsafe voltage source

Note: This parameter is for advanced users

Voltage type used for detection of low voltage event

Values

Value

Meaning

0

Raw Voltage

1

Sag Compensated Voltage

BATT9_LOW_VOLT: Low battery voltage

Battery voltage that triggers a low battery failsafe. Set to 0 to disable. If the battery voltage drops below this voltage continuously for more then the period specified by the BATT9_LOW_TIMER parameter then the vehicle will perform the failsafe specified by the BATT9_FS_LOW_ACT parameter.

Increment

Units

0.1

volt

BATT9_LOW_MAH: Low battery capacity

Battery capacity at which the low battery failsafe is triggered. Set to 0 to disable battery remaining failsafe. If the battery capacity drops below this level the vehicle will perform the failsafe specified by the BATT9_FS_LOW_ACT parameter.

Increment

Units

50

milliampere hour

BATT9_CRT_VOLT: Critical battery voltage

Battery voltage that triggers a critical battery failsafe. Set to 0 to disable. If the battery voltage drops below this voltage continuously for more then the period specified by the BATT9_LOW_TIMER parameter then the vehicle will perform the failsafe specified by the BATT9_FS_CRT_ACT parameter.

Increment

Units

0.1

volt

BATT9_CRT_MAH: Battery critical capacity

Battery capacity at which the critical battery failsafe is triggered. Set to 0 to disable battery remaining failsafe. If the battery capacity drops below this level the vehicle will perform the failsafe specified by the BATT9_FS_CRT_ACT parameter.

Increment

Units

50

milliampere hour

BATT9_ARM_VOLT: Required arming voltage

Note: This parameter is for advanced users

Battery voltage level which is required to arm the aircraft. Set to 0 to allow arming at any voltage.

Increment

Units

0.1

volt

BATT9_ARM_MAH: Required arming remaining capacity

Note: This parameter is for advanced users

Battery capacity remaining which is required to arm the aircraft. Set to 0 to allow arming at any capacity. Note that execept for smart batteries rebooting the vehicle will always reset the remaining capacity estimate, which can lead to this check not providing sufficent protection, it is recommended to always use this in conjunction with the BATT9__ARM_VOLT parameter.

Increment

Units

50

milliampere hour

BATT9_OPTIONS: Battery monitor options

Note: This parameter is for advanced users

This sets options to change the behaviour of the battery monitor

Bitmask

Bit

Meaning

0

Ignore DroneCAN SoC

1

MPPT reports input voltage and current

2

MPPT Powered off when disarmed

3

MPPT Powered on when armed

4

MPPT Powered off at boot

5

MPPT Powered on at boot

6

Send resistance compensated voltage to GCS

7

Allow DroneCAN InfoAux to be from a different CAN node

BATT9_ESC_INDEX: ESC Telemetry Index to write to

Note: This parameter is for advanced users

ESC Telemetry Index to write voltage, current, consumption and temperature data to. Use 0 to disable.

Increment

Range

1

0 to 10

BATT9_VOLT_PIN: Battery Voltage sensing pin

Note: Reboot required after change

Sets the analog input pin that should be used for voltage monitoring.

Values

Value

Meaning

-1

Disabled

2

Pixhawk/Pixracer/Navio2/Pixhawk2_PM1

5

Navigator

13

Pixhawk2_PM2/CubeOrange_PM2

14

CubeOrange

16

Durandal

100

PX4-v1

BATT9_CURR_PIN: Battery Current sensing pin

Note: Reboot required after change

Sets the analog input pin that should be used for current monitoring.

Values

Value

Meaning

-1

Disabled

3

Pixhawk/Pixracer/Navio2/Pixhawk2_PM1

4

CubeOrange_PM2/Navigator

14

Pixhawk2_PM2

15

CubeOrange

17

Durandal

101

PX4-v1

BATT9_VOLT_MULT: Voltage Multiplier

Note: This parameter is for advanced users

Used to convert the voltage of the voltage sensing pin (BATT9_VOLT_PIN) to the actual battery's voltage (pin_voltage * VOLT_MULT). For the 3DR Power brick with a Pixhawk, this should be set to 10.1. For the Pixhawk with the 3DR 4in1 ESC this should be 12.02. For the PX using the PX4IO power supply this should be set to 1.

BATT9_AMP_PERVLT: Amps per volt

Number of amps that a 1V reading on the current sensor corresponds to. With a Pixhawk using the 3DR Power brick this should be set to 17. For the Pixhawk with the 3DR 4in1 ESC this should be 17. For Synthetic Current sensor monitors, this is the maximum, full throttle current draw.

Units

ampere per volt

BATT9_AMP_OFFSET: AMP offset

Voltage offset at zero current on current sensor for Analog Sensors. For Synthetic Current sensor, this offset is the zero throttle system current and is added to the calculated throttle base current.

Units

volt

BATT9_VLT_OFFSET: Voltage offset

Note: This parameter is for advanced users

Voltage offset on voltage pin. This allows for an offset due to a diode. This voltage is subtracted before the scaling is applied.

Units

volt

BATT9_I2C_BUS (AP_BattMonitor_SMBus): Battery monitor I2C bus number

Note: This parameter is for advanced users
Note: Reboot required after change

Battery monitor I2C bus number

Range

0 to 3

BATT9_I2C_ADDR (AP_BattMonitor_SMBus): Battery monitor I2C address

Note: This parameter is for advanced users
Note: Reboot required after change

Battery monitor I2C address

Range

0 to 127

BATT9_SUM_MASK: Battery Sum mask

0: sum of remaining battery monitors, If none 0 sum of specified monitors. Current will be summed and voltages averaged.

Bitmask

Bit

Meaning

0

monitor 1

1

monitor 2

2

monitor 3

3

monitor 4

4

monitor 5

5

monitor 6

6

monitor 7

7

monitor 8

8

monitor 9

BATT9_CURR_MULT: Scales reported power monitor current

Note: This parameter is for advanced users

Multiplier applied to all current related reports to allow for adjustment if no UAVCAN param access or current splitting applications

Range

.1 to 10

BATT9_FL_VLT_MIN: Empty fuel level voltage

Note: This parameter is for advanced users

The voltage seen on the analog pin when the fuel tank is empty. Note: For this type of battery monitor, the voltage seen by the analog pin is displayed as battery voltage on a GCS.

Range

Units

0.01 to 10

volt

BATT9_FL_V_MULT: Fuel level voltage multiplier

Note: This parameter is for advanced users

Voltage multiplier to determine what the full tank voltage reading is. This is calculated as 1 / (Voltage_Full - Voltage_Empty) Note: For this type of battery monitor, the voltage seen by the analog pin is displayed as battery voltage on a GCS.

Range

0.01 to 10

BATT9_FL_FLTR: Fuel level filter frequency

Note: This parameter is for advanced users
Note: Reboot required after change

Filter frequency in Hertz where a low pass filter is used. This is used to filter out tank slosh from the fuel level reading. A value of -1 disables the filter and unfiltered voltage is used to determine the fuel level. The suggested values at in the range of 0.2 Hz to 0.5 Hz.

Range

Units

-1 to 1

hertz

BATT9_FL_PIN: Fuel level analog pin number

Analog input pin that fuel level sensor is connected to. Airspeed ports can be used for Analog input. When using analog pin 103, the maximum value of the input in 3.3V.

Values

Value

Meaning

-1

Not Used

11

Pixracer

13

Pixhawk ADC4

14

Pixhawk ADC3

15

Pixhawk ADC6/Pixhawk2 ADC

103

Pixhawk SBUS

BATT9_FL_FF: First order term

Note: This parameter is for advanced users

First order polynomial fit term

Range

0 to 10

BATT9_FL_FS: Second order term

Note: This parameter is for advanced users

Second order polynomial fit term

Range

0 to 10

BATT9_FL_FT: Third order term

Note: This parameter is for advanced users

Third order polynomial fit term

Range

0 to 10

BATT9_FL_OFF: Offset term

Note: This parameter is for advanced users

Offset polynomial fit term

Range

0 to 10

BATT9_MAX_VOLT: Maximum Battery Voltage

Note: This parameter is for advanced users

Maximum voltage of battery. Provides scaling of current versus voltage

Range

7 to 100

BATT9_I2C_BUS (AP_BattMonitor_INA2xx): Battery monitor I2C bus number

Note: This parameter is for advanced users
Note: Reboot required after change

Battery monitor I2C bus number

Range

0 to 3

BATT9_I2C_ADDR (AP_BattMonitor_INA2xx): Battery monitor I2C address

Note: This parameter is for advanced users
Note: Reboot required after change

Battery monitor I2C address. If this is zero then probe list of supported addresses

Range

0 to 127

BATT9_MAX_AMPS: Battery monitor max current

Note: This parameter is for advanced users

This controls the maximum current the INS2XX sensor will work with.

Range

Units

1 to 400

ampere

BATT9_SHUNT: Battery monitor shunt resistor

Note: This parameter is for advanced users

This sets the shunt resistor used in the device

Range

Units

0.0001 to 0.01

Ohm

BATTA_ Parameters

BATTA_MONITOR: Battery monitoring

Note: Reboot required after change

Controls enabling monitoring of the battery's voltage and current

Values

Value

Meaning

0

Disabled

3

Analog Voltage Only

4

Analog Voltage and Current

5

Solo

6

Bebop

7

SMBus-Generic

8

DroneCAN-BatteryInfo

9

ESC

10

Sum Of Selected Monitors

11

FuelFlow

12

FuelLevelPWM

13

SMBUS-SUI3

14

SMBUS-SUI6

15

NeoDesign

16

SMBus-Maxell

17

Generator-Elec

18

Generator-Fuel

19

Rotoye

20

MPPT

21

INA2XX

22

LTC2946

23

Torqeedo

24

FuelLevelAnalog

25

Synthetic Current and Analog Voltage

26

INA239_SPI

27

EFI

28

AD7091R5

29

Scripting

BATTA_CAPACITY: Battery capacity

Capacity of the battery in mAh when full

Increment

Units

50

milliampere hour

BATTA_SERIAL_NUM: Battery serial number

Note: This parameter is for advanced users

Battery serial number, automatically filled in for SMBus batteries, otherwise will be -1. With DroneCan it is the battery_id.

BATTA_LOW_TIMER: Low voltage timeout

Note: This parameter is for advanced users

This is the timeout in seconds before a low voltage event will be triggered. For aircraft with low C batteries it may be necessary to raise this in order to cope with low voltage on long takeoffs. A value of zero disables low voltage errors.

Increment

Range

Units

1

0 to 120

seconds

BATTA_FS_VOLTSRC: Failsafe voltage source

Note: This parameter is for advanced users

Voltage type used for detection of low voltage event

Values

Value

Meaning

0

Raw Voltage

1

Sag Compensated Voltage

BATTA_LOW_VOLT: Low battery voltage

Battery voltage that triggers a low battery failsafe. Set to 0 to disable. If the battery voltage drops below this voltage continuously for more then the period specified by the BATTA_LOW_TIMER parameter then the vehicle will perform the failsafe specified by the BATTA_FS_LOW_ACT parameter.

Increment

Units

0.1

volt

BATTA_LOW_MAH: Low battery capacity

Battery capacity at which the low battery failsafe is triggered. Set to 0 to disable battery remaining failsafe. If the battery capacity drops below this level the vehicle will perform the failsafe specified by the BATTA_FS_LOW_ACT parameter.

Increment

Units

50

milliampere hour

BATTA_CRT_VOLT: Critical battery voltage

Battery voltage that triggers a critical battery failsafe. Set to 0 to disable. If the battery voltage drops below this voltage continuously for more then the period specified by the BATTA_LOW_TIMER parameter then the vehicle will perform the failsafe specified by the BATTA_FS_CRT_ACT parameter.

Increment

Units

0.1

volt

BATTA_CRT_MAH: Battery critical capacity

Battery capacity at which the critical battery failsafe is triggered. Set to 0 to disable battery remaining failsafe. If the battery capacity drops below this level the vehicle will perform the failsafe specified by the BATTA_FS_CRT_ACT parameter.

Increment

Units

50

milliampere hour

BATTA_ARM_VOLT: Required arming voltage

Note: This parameter is for advanced users

Battery voltage level which is required to arm the aircraft. Set to 0 to allow arming at any voltage.

Increment

Units

0.1

volt

BATTA_ARM_MAH: Required arming remaining capacity

Note: This parameter is for advanced users

Battery capacity remaining which is required to arm the aircraft. Set to 0 to allow arming at any capacity. Note that execept for smart batteries rebooting the vehicle will always reset the remaining capacity estimate, which can lead to this check not providing sufficent protection, it is recommended to always use this in conjunction with the BATTA__ARM_VOLT parameter.

Increment

Units

50

milliampere hour

BATTA_OPTIONS: Battery monitor options

Note: This parameter is for advanced users

This sets options to change the behaviour of the battery monitor

Bitmask

Bit

Meaning

0

Ignore DroneCAN SoC

1

MPPT reports input voltage and current

2

MPPT Powered off when disarmed

3

MPPT Powered on when armed

4

MPPT Powered off at boot

5

MPPT Powered on at boot

6

Send resistance compensated voltage to GCS

7

Allow DroneCAN InfoAux to be from a different CAN node

BATTA_ESC_INDEX: ESC Telemetry Index to write to

Note: This parameter is for advanced users

ESC Telemetry Index to write voltage, current, consumption and temperature data to. Use 0 to disable.

Increment

Range

1

0 to 10

BATTA_VOLT_PIN: Battery Voltage sensing pin

Note: Reboot required after change

Sets the analog input pin that should be used for voltage monitoring.

Values

Value

Meaning

-1

Disabled

2

Pixhawk/Pixracer/Navio2/Pixhawk2_PM1

5

Navigator

13

Pixhawk2_PM2/CubeOrange_PM2

14

CubeOrange

16

Durandal

100

PX4-v1

BATTA_CURR_PIN: Battery Current sensing pin

Note: Reboot required after change

Sets the analog input pin that should be used for current monitoring.

Values

Value

Meaning

-1

Disabled

3

Pixhawk/Pixracer/Navio2/Pixhawk2_PM1

4

CubeOrange_PM2/Navigator

14

Pixhawk2_PM2

15

CubeOrange

17

Durandal

101

PX4-v1

BATTA_VOLT_MULT: Voltage Multiplier

Note: This parameter is for advanced users

Used to convert the voltage of the voltage sensing pin (BATTA_VOLT_PIN) to the actual battery's voltage (pin_voltage * VOLT_MULT). For the 3DR Power brick with a Pixhawk, this should be set to 10.1. For the Pixhawk with the 3DR 4in1 ESC this should be 12.02. For the PX using the PX4IO power supply this should be set to 1.

BATTA_AMP_PERVLT: Amps per volt

Number of amps that a 1V reading on the current sensor corresponds to. With a Pixhawk using the 3DR Power brick this should be set to 17. For the Pixhawk with the 3DR 4in1 ESC this should be 17. For Synthetic Current sensor monitors, this is the maximum, full throttle current draw.

Units

ampere per volt

BATTA_AMP_OFFSET: AMP offset

Voltage offset at zero current on current sensor for Analog Sensors. For Synthetic Current sensor, this offset is the zero throttle system current and is added to the calculated throttle base current.

Units

volt

BATTA_VLT_OFFSET: Voltage offset

Note: This parameter is for advanced users

Voltage offset on voltage pin. This allows for an offset due to a diode. This voltage is subtracted before the scaling is applied.

Units

volt

BATTA_I2C_BUS (AP_BattMonitor_SMBus): Battery monitor I2C bus number

Note: This parameter is for advanced users
Note: Reboot required after change

Battery monitor I2C bus number

Range

0 to 3

BATTA_I2C_ADDR (AP_BattMonitor_SMBus): Battery monitor I2C address

Note: This parameter is for advanced users
Note: Reboot required after change

Battery monitor I2C address

Range

0 to 127

BATTA_SUM_MASK: Battery Sum mask

0: sum of remaining battery monitors, If none 0 sum of specified monitors. Current will be summed and voltages averaged.

Bitmask

Bit

Meaning

0

monitor 1

1

monitor 2

2

monitor 3

3

monitor 4

4

monitor 5

5

monitor 6

6

monitor 7

7

monitor 8

8

monitor 9

BATTA_CURR_MULT: Scales reported power monitor current

Note: This parameter is for advanced users

Multiplier applied to all current related reports to allow for adjustment if no UAVCAN param access or current splitting applications

Range

.1 to 10

BATTA_FL_VLT_MIN: Empty fuel level voltage

Note: This parameter is for advanced users

The voltage seen on the analog pin when the fuel tank is empty. Note: For this type of battery monitor, the voltage seen by the analog pin is displayed as battery voltage on a GCS.

Range

Units

0.01 to 10

volt

BATTA_FL_V_MULT: Fuel level voltage multiplier

Note: This parameter is for advanced users

Voltage multiplier to determine what the full tank voltage reading is. This is calculated as 1 / (Voltage_Full - Voltage_Empty) Note: For this type of battery monitor, the voltage seen by the analog pin is displayed as battery voltage on a GCS.

Range

0.01 to 10

BATTA_FL_FLTR: Fuel level filter frequency

Note: This parameter is for advanced users
Note: Reboot required after change

Filter frequency in Hertz where a low pass filter is used. This is used to filter out tank slosh from the fuel level reading. A value of -1 disables the filter and unfiltered voltage is used to determine the fuel level. The suggested values at in the range of 0.2 Hz to 0.5 Hz.

Range

Units

-1 to 1

hertz

BATTA_FL_PIN: Fuel level analog pin number

Analog input pin that fuel level sensor is connected to. Airspeed ports can be used for Analog input. When using analog pin 103, the maximum value of the input in 3.3V.

Values

Value

Meaning

-1

Not Used

11

Pixracer

13

Pixhawk ADC4

14

Pixhawk ADC3

15

Pixhawk ADC6/Pixhawk2 ADC

103

Pixhawk SBUS

BATTA_FL_FF: First order term

Note: This parameter is for advanced users

First order polynomial fit term

Range

0 to 10

BATTA_FL_FS: Second order term

Note: This parameter is for advanced users

Second order polynomial fit term

Range

0 to 10

BATTA_FL_FT: Third order term

Note: This parameter is for advanced users

Third order polynomial fit term

Range

0 to 10

BATTA_FL_OFF: Offset term

Note: This parameter is for advanced users

Offset polynomial fit term

Range

0 to 10

BATTA_MAX_VOLT: Maximum Battery Voltage

Note: This parameter is for advanced users

Maximum voltage of battery. Provides scaling of current versus voltage

Range

7 to 100

BATTA_I2C_BUS (AP_BattMonitor_INA2xx): Battery monitor I2C bus number

Note: This parameter is for advanced users
Note: Reboot required after change

Battery monitor I2C bus number

Range

0 to 3

BATTA_I2C_ADDR (AP_BattMonitor_INA2xx): Battery monitor I2C address

Note: This parameter is for advanced users
Note: Reboot required after change

Battery monitor I2C address. If this is zero then probe list of supported addresses

Range

0 to 127

BATTA_MAX_AMPS: Battery monitor max current

Note: This parameter is for advanced users

This controls the maximum current the INS2XX sensor will work with.

Range

Units

1 to 400

ampere

BATTA_SHUNT: Battery monitor shunt resistor

Note: This parameter is for advanced users

This sets the shunt resistor used in the device

Range

Units

0.0001 to 0.01

Ohm

BATTB_ Parameters

BATTB_MONITOR: Battery monitoring

Note: Reboot required after change

Controls enabling monitoring of the battery's voltage and current

Values

Value

Meaning

0

Disabled

3

Analog Voltage Only

4

Analog Voltage and Current

5

Solo

6

Bebop

7

SMBus-Generic

8

DroneCAN-BatteryInfo

9

ESC

10

Sum Of Selected Monitors

11

FuelFlow

12

FuelLevelPWM

13

SMBUS-SUI3

14

SMBUS-SUI6

15

NeoDesign

16

SMBus-Maxell

17

Generator-Elec

18

Generator-Fuel

19

Rotoye

20

MPPT

21

INA2XX

22

LTC2946

23

Torqeedo

24

FuelLevelAnalog

25

Synthetic Current and Analog Voltage

26

INA239_SPI

27

EFI

28

AD7091R5

29

Scripting

BATTB_CAPACITY: Battery capacity

Capacity of the battery in mAh when full

Increment

Units

50

milliampere hour

BATTB_SERIAL_NUM: Battery serial number

Note: This parameter is for advanced users

Battery serial number, automatically filled in for SMBus batteries, otherwise will be -1. With DroneCan it is the battery_id.

BATTB_LOW_TIMER: Low voltage timeout

Note: This parameter is for advanced users

This is the timeout in seconds before a low voltage event will be triggered. For aircraft with low C batteries it may be necessary to raise this in order to cope with low voltage on long takeoffs. A value of zero disables low voltage errors.

Increment

Range

Units

1

0 to 120

seconds

BATTB_FS_VOLTSRC: Failsafe voltage source

Note: This parameter is for advanced users

Voltage type used for detection of low voltage event

Values

Value

Meaning

0

Raw Voltage

1

Sag Compensated Voltage

BATTB_LOW_VOLT: Low battery voltage

Battery voltage that triggers a low battery failsafe. Set to 0 to disable. If the battery voltage drops below this voltage continuously for more then the period specified by the BATTB_LOW_TIMER parameter then the vehicle will perform the failsafe specified by the BATTB_FS_LOW_ACT parameter.

Increment

Units

0.1

volt

BATTB_LOW_MAH: Low battery capacity

Battery capacity at which the low battery failsafe is triggered. Set to 0 to disable battery remaining failsafe. If the battery capacity drops below this level the vehicle will perform the failsafe specified by the BATTB_FS_LOW_ACT parameter.

Increment

Units

50

milliampere hour

BATTB_CRT_VOLT: Critical battery voltage

Battery voltage that triggers a critical battery failsafe. Set to 0 to disable. If the battery voltage drops below this voltage continuously for more then the period specified by the BATTB_LOW_TIMER parameter then the vehicle will perform the failsafe specified by the BATTB_FS_CRT_ACT parameter.

Increment

Units

0.1

volt

BATTB_CRT_MAH: Battery critical capacity

Battery capacity at which the critical battery failsafe is triggered. Set to 0 to disable battery remaining failsafe. If the battery capacity drops below this level the vehicle will perform the failsafe specified by the BATTB_FS_CRT_ACT parameter.

Increment

Units

50

milliampere hour

BATTB_ARM_VOLT: Required arming voltage

Note: This parameter is for advanced users

Battery voltage level which is required to arm the aircraft. Set to 0 to allow arming at any voltage.

Increment

Units

0.1

volt

BATTB_ARM_MAH: Required arming remaining capacity

Note: This parameter is for advanced users

Battery capacity remaining which is required to arm the aircraft. Set to 0 to allow arming at any capacity. Note that execept for smart batteries rebooting the vehicle will always reset the remaining capacity estimate, which can lead to this check not providing sufficent protection, it is recommended to always use this in conjunction with the BATTB__ARM_VOLT parameter.

Increment

Units

50

milliampere hour

BATTB_OPTIONS: Battery monitor options

Note: This parameter is for advanced users

This sets options to change the behaviour of the battery monitor

Bitmask

Bit

Meaning

0

Ignore DroneCAN SoC

1

MPPT reports input voltage and current

2

MPPT Powered off when disarmed

3

MPPT Powered on when armed

4

MPPT Powered off at boot

5

MPPT Powered on at boot

6

Send resistance compensated voltage to GCS

7

Allow DroneCAN InfoAux to be from a different CAN node

BATTB_ESC_INDEX: ESC Telemetry Index to write to

Note: This parameter is for advanced users

ESC Telemetry Index to write voltage, current, consumption and temperature data to. Use 0 to disable.

Increment

Range

1

0 to 10

BATTB_VOLT_PIN: Battery Voltage sensing pin

Note: Reboot required after change

Sets the analog input pin that should be used for voltage monitoring.

Values

Value

Meaning

-1

Disabled

2

Pixhawk/Pixracer/Navio2/Pixhawk2_PM1

5

Navigator

13

Pixhawk2_PM2/CubeOrange_PM2

14

CubeOrange

16

Durandal

100

PX4-v1

BATTB_CURR_PIN: Battery Current sensing pin

Note: Reboot required after change

Sets the analog input pin that should be used for current monitoring.

Values

Value

Meaning

-1

Disabled

3

Pixhawk/Pixracer/Navio2/Pixhawk2_PM1

4

CubeOrange_PM2/Navigator

14

Pixhawk2_PM2

15

CubeOrange

17

Durandal

101

PX4-v1

BATTB_VOLT_MULT: Voltage Multiplier

Note: This parameter is for advanced users

Used to convert the voltage of the voltage sensing pin (BATTB_VOLT_PIN) to the actual battery's voltage (pin_voltage * VOLT_MULT). For the 3DR Power brick with a Pixhawk, this should be set to 10.1. For the Pixhawk with the 3DR 4in1 ESC this should be 12.02. For the PX using the PX4IO power supply this should be set to 1.

BATTB_AMP_PERVLT: Amps per volt

Number of amps that a 1V reading on the current sensor corresponds to. With a Pixhawk using the 3DR Power brick this should be set to 17. For the Pixhawk with the 3DR 4in1 ESC this should be 17. For Synthetic Current sensor monitors, this is the maximum, full throttle current draw.

Units

ampere per volt

BATTB_AMP_OFFSET: AMP offset

Voltage offset at zero current on current sensor for Analog Sensors. For Synthetic Current sensor, this offset is the zero throttle system current and is added to the calculated throttle base current.

Units

volt

BATTB_VLT_OFFSET: Voltage offset

Note: This parameter is for advanced users

Voltage offset on voltage pin. This allows for an offset due to a diode. This voltage is subtracted before the scaling is applied.

Units

volt

BATTB_I2C_BUS (AP_BattMonitor_SMBus): Battery monitor I2C bus number

Note: This parameter is for advanced users
Note: Reboot required after change

Battery monitor I2C bus number

Range

0 to 3

BATTB_I2C_ADDR (AP_BattMonitor_SMBus): Battery monitor I2C address

Note: This parameter is for advanced users
Note: Reboot required after change

Battery monitor I2C address

Range

0 to 127

BATTB_SUM_MASK: Battery Sum mask

0: sum of remaining battery monitors, If none 0 sum of specified monitors. Current will be summed and voltages averaged.

Bitmask

Bit

Meaning

0

monitor 1

1

monitor 2

2

monitor 3

3

monitor 4

4

monitor 5

5

monitor 6

6

monitor 7

7

monitor 8

8

monitor 9

BATTB_CURR_MULT: Scales reported power monitor current

Note: This parameter is for advanced users

Multiplier applied to all current related reports to allow for adjustment if no UAVCAN param access or current splitting applications

Range

.1 to 10

BATTB_FL_VLT_MIN: Empty fuel level voltage

Note: This parameter is for advanced users

The voltage seen on the analog pin when the fuel tank is empty. Note: For this type of battery monitor, the voltage seen by the analog pin is displayed as battery voltage on a GCS.

Range

Units

0.01 to 10

volt

BATTB_FL_V_MULT: Fuel level voltage multiplier

Note: This parameter is for advanced users

Voltage multiplier to determine what the full tank voltage reading is. This is calculated as 1 / (Voltage_Full - Voltage_Empty) Note: For this type of battery monitor, the voltage seen by the analog pin is displayed as battery voltage on a GCS.

Range

0.01 to 10

BATTB_FL_FLTR: Fuel level filter frequency

Note: This parameter is for advanced users
Note: Reboot required after change

Filter frequency in Hertz where a low pass filter is used. This is used to filter out tank slosh from the fuel level reading. A value of -1 disables the filter and unfiltered voltage is used to determine the fuel level. The suggested values at in the range of 0.2 Hz to 0.5 Hz.

Range

Units

-1 to 1

hertz

BATTB_FL_PIN: Fuel level analog pin number

Analog input pin that fuel level sensor is connected to. Airspeed ports can be used for Analog input. When using analog pin 103, the maximum value of the input in 3.3V.

Values

Value

Meaning

-1

Not Used

11

Pixracer

13

Pixhawk ADC4

14

Pixhawk ADC3

15

Pixhawk ADC6/Pixhawk2 ADC

103

Pixhawk SBUS

BATTB_FL_FF: First order term

Note: This parameter is for advanced users

First order polynomial fit term

Range

0 to 10

BATTB_FL_FS: Second order term

Note: This parameter is for advanced users

Second order polynomial fit term

Range

0 to 10

BATTB_FL_FT: Third order term

Note: This parameter is for advanced users

Third order polynomial fit term

Range

0 to 10

BATTB_FL_OFF: Offset term

Note: This parameter is for advanced users

Offset polynomial fit term

Range

0 to 10

BATTB_MAX_VOLT: Maximum Battery Voltage

Note: This parameter is for advanced users

Maximum voltage of battery. Provides scaling of current versus voltage

Range

7 to 100

BATTB_I2C_BUS (AP_BattMonitor_INA2xx): Battery monitor I2C bus number

Note: This parameter is for advanced users
Note: Reboot required after change

Battery monitor I2C bus number

Range

0 to 3

BATTB_I2C_ADDR (AP_BattMonitor_INA2xx): Battery monitor I2C address

Note: This parameter is for advanced users
Note: Reboot required after change

Battery monitor I2C address. If this is zero then probe list of supported addresses

Range

0 to 127

BATTB_MAX_AMPS: Battery monitor max current

Note: This parameter is for advanced users

This controls the maximum current the INS2XX sensor will work with.

Range

Units

1 to 400

ampere

BATTB_SHUNT: Battery monitor shunt resistor

Note: This parameter is for advanced users

This sets the shunt resistor used in the device

Range

Units

0.0001 to 0.01

Ohm

BATTC_ Parameters

BATTC_MONITOR: Battery monitoring

Note: Reboot required after change

Controls enabling monitoring of the battery's voltage and current

Values

Value

Meaning

0

Disabled

3

Analog Voltage Only

4

Analog Voltage and Current

5

Solo

6

Bebop

7

SMBus-Generic

8

DroneCAN-BatteryInfo

9

ESC

10

Sum Of Selected Monitors

11

FuelFlow

12

FuelLevelPWM

13

SMBUS-SUI3

14

SMBUS-SUI6

15

NeoDesign

16

SMBus-Maxell

17

Generator-Elec

18

Generator-Fuel

19

Rotoye

20

MPPT

21

INA2XX

22

LTC2946

23

Torqeedo

24

FuelLevelAnalog

25

Synthetic Current and Analog Voltage

26

INA239_SPI

27

EFI

28

AD7091R5

29

Scripting

BATTC_CAPACITY: Battery capacity

Capacity of the battery in mAh when full

Increment

Units

50

milliampere hour

BATTC_SERIAL_NUM: Battery serial number

Note: This parameter is for advanced users

Battery serial number, automatically filled in for SMBus batteries, otherwise will be -1. With DroneCan it is the battery_id.

BATTC_LOW_TIMER: Low voltage timeout

Note: This parameter is for advanced users

This is the timeout in seconds before a low voltage event will be triggered. For aircraft with low C batteries it may be necessary to raise this in order to cope with low voltage on long takeoffs. A value of zero disables low voltage errors.

Increment

Range

Units

1

0 to 120

seconds

BATTC_FS_VOLTSRC: Failsafe voltage source

Note: This parameter is for advanced users

Voltage type used for detection of low voltage event

Values

Value

Meaning

0

Raw Voltage

1

Sag Compensated Voltage

BATTC_LOW_VOLT: Low battery voltage

Battery voltage that triggers a low battery failsafe. Set to 0 to disable. If the battery voltage drops below this voltage continuously for more then the period specified by the BATTC_LOW_TIMER parameter then the vehicle will perform the failsafe specified by the BATTC_FS_LOW_ACT parameter.

Increment

Units

0.1

volt

BATTC_LOW_MAH: Low battery capacity

Battery capacity at which the low battery failsafe is triggered. Set to 0 to disable battery remaining failsafe. If the battery capacity drops below this level the vehicle will perform the failsafe specified by the BATTC_FS_LOW_ACT parameter.

Increment

Units

50

milliampere hour

BATTC_CRT_VOLT: Critical battery voltage

Battery voltage that triggers a critical battery failsafe. Set to 0 to disable. If the battery voltage drops below this voltage continuously for more then the period specified by the BATTC_LOW_TIMER parameter then the vehicle will perform the failsafe specified by the BATTC_FS_CRT_ACT parameter.

Increment

Units

0.1

volt

BATTC_CRT_MAH: Battery critical capacity

Battery capacity at which the critical battery failsafe is triggered. Set to 0 to disable battery remaining failsafe. If the battery capacity drops below this level the vehicle will perform the failsafe specified by the BATTC_FS_CRT_ACT parameter.

Increment

Units

50

milliampere hour

BATTC_ARM_VOLT: Required arming voltage

Note: This parameter is for advanced users

Battery voltage level which is required to arm the aircraft. Set to 0 to allow arming at any voltage.

Increment

Units

0.1

volt

BATTC_ARM_MAH: Required arming remaining capacity

Note: This parameter is for advanced users

Battery capacity remaining which is required to arm the aircraft. Set to 0 to allow arming at any capacity. Note that execept for smart batteries rebooting the vehicle will always reset the remaining capacity estimate, which can lead to this check not providing sufficent protection, it is recommended to always use this in conjunction with the BATTC__ARM_VOLT parameter.

Increment

Units

50

milliampere hour

BATTC_OPTIONS: Battery monitor options

Note: This parameter is for advanced users

This sets options to change the behaviour of the battery monitor

Bitmask

Bit

Meaning

0

Ignore DroneCAN SoC

1

MPPT reports input voltage and current

2

MPPT Powered off when disarmed

3

MPPT Powered on when armed

4

MPPT Powered off at boot

5

MPPT Powered on at boot

6

Send resistance compensated voltage to GCS

7

Allow DroneCAN InfoAux to be from a different CAN node

BATTC_ESC_INDEX: ESC Telemetry Index to write to

Note: This parameter is for advanced users

ESC Telemetry Index to write voltage, current, consumption and temperature data to. Use 0 to disable.

Increment

Range

1

0 to 10

BATTC_VOLT_PIN: Battery Voltage sensing pin

Note: Reboot required after change

Sets the analog input pin that should be used for voltage monitoring.

Values

Value

Meaning

-1

Disabled

2

Pixhawk/Pixracer/Navio2/Pixhawk2_PM1

5

Navigator

13

Pixhawk2_PM2/CubeOrange_PM2

14

CubeOrange

16

Durandal

100

PX4-v1

BATTC_CURR_PIN: Battery Current sensing pin

Note: Reboot required after change

Sets the analog input pin that should be used for current monitoring.

Values

Value

Meaning

-1

Disabled

3

Pixhawk/Pixracer/Navio2/Pixhawk2_PM1

4

CubeOrange_PM2/Navigator

14

Pixhawk2_PM2

15

CubeOrange

17

Durandal

101

PX4-v1

BATTC_VOLT_MULT: Voltage Multiplier

Note: This parameter is for advanced users

Used to convert the voltage of the voltage sensing pin (BATTC_VOLT_PIN) to the actual battery's voltage (pin_voltage * VOLT_MULT). For the 3DR Power brick with a Pixhawk, this should be set to 10.1. For the Pixhawk with the 3DR 4in1 ESC this should be 12.02. For the PX using the PX4IO power supply this should be set to 1.

BATTC_AMP_PERVLT: Amps per volt

Number of amps that a 1V reading on the current sensor corresponds to. With a Pixhawk using the 3DR Power brick this should be set to 17. For the Pixhawk with the 3DR 4in1 ESC this should be 17. For Synthetic Current sensor monitors, this is the maximum, full throttle current draw.

Units

ampere per volt

BATTC_AMP_OFFSET: AMP offset

Voltage offset at zero current on current sensor for Analog Sensors. For Synthetic Current sensor, this offset is the zero throttle system current and is added to the calculated throttle base current.

Units

volt

BATTC_VLT_OFFSET: Voltage offset

Note: This parameter is for advanced users

Voltage offset on voltage pin. This allows for an offset due to a diode. This voltage is subtracted before the scaling is applied.

Units

volt

BATTC_I2C_BUS (AP_BattMonitor_SMBus): Battery monitor I2C bus number

Note: This parameter is for advanced users
Note: Reboot required after change

Battery monitor I2C bus number

Range

0 to 3

BATTC_I2C_ADDR (AP_BattMonitor_SMBus): Battery monitor I2C address

Note: This parameter is for advanced users
Note: Reboot required after change

Battery monitor I2C address

Range

0 to 127

BATTC_SUM_MASK: Battery Sum mask

0: sum of remaining battery monitors, If none 0 sum of specified monitors. Current will be summed and voltages averaged.

Bitmask

Bit

Meaning

0

monitor 1

1

monitor 2

2

monitor 3

3

monitor 4

4

monitor 5

5

monitor 6

6

monitor 7

7

monitor 8

8

monitor 9

BATTC_CURR_MULT: Scales reported power monitor current

Note: This parameter is for advanced users

Multiplier applied to all current related reports to allow for adjustment if no UAVCAN param access or current splitting applications

Range

.1 to 10

BATTC_FL_VLT_MIN: Empty fuel level voltage

Note: This parameter is for advanced users

The voltage seen on the analog pin when the fuel tank is empty. Note: For this type of battery monitor, the voltage seen by the analog pin is displayed as battery voltage on a GCS.

Range

Units

0.01 to 10

volt

BATTC_FL_V_MULT: Fuel level voltage multiplier

Note: This parameter is for advanced users

Voltage multiplier to determine what the full tank voltage reading is. This is calculated as 1 / (Voltage_Full - Voltage_Empty) Note: For this type of battery monitor, the voltage seen by the analog pin is displayed as battery voltage on a GCS.

Range

0.01 to 10

BATTC_FL_FLTR: Fuel level filter frequency

Note: This parameter is for advanced users
Note: Reboot required after change

Filter frequency in Hertz where a low pass filter is used. This is used to filter out tank slosh from the fuel level reading. A value of -1 disables the filter and unfiltered voltage is used to determine the fuel level. The suggested values at in the range of 0.2 Hz to 0.5 Hz.

Range

Units

-1 to 1

hertz

BATTC_FL_PIN: Fuel level analog pin number

Analog input pin that fuel level sensor is connected to. Airspeed ports can be used for Analog input. When using analog pin 103, the maximum value of the input in 3.3V.

Values

Value

Meaning

-1

Not Used

11

Pixracer

13

Pixhawk ADC4

14

Pixhawk ADC3

15

Pixhawk ADC6/Pixhawk2 ADC

103

Pixhawk SBUS

BATTC_FL_FF: First order term

Note: This parameter is for advanced users

First order polynomial fit term

Range

0 to 10

BATTC_FL_FS: Second order term

Note: This parameter is for advanced users

Second order polynomial fit term

Range

0 to 10

BATTC_FL_FT: Third order term

Note: This parameter is for advanced users

Third order polynomial fit term

Range

0 to 10

BATTC_FL_OFF: Offset term

Note: This parameter is for advanced users

Offset polynomial fit term

Range

0 to 10

BATTC_MAX_VOLT: Maximum Battery Voltage

Note: This parameter is for advanced users

Maximum voltage of battery. Provides scaling of current versus voltage

Range

7 to 100

BATTC_I2C_BUS (AP_BattMonitor_INA2xx): Battery monitor I2C bus number

Note: This parameter is for advanced users
Note: Reboot required after change

Battery monitor I2C bus number

Range

0 to 3

BATTC_I2C_ADDR (AP_BattMonitor_INA2xx): Battery monitor I2C address

Note: This parameter is for advanced users
Note: Reboot required after change

Battery monitor I2C address. If this is zero then probe list of supported addresses

Range

0 to 127

BATTC_MAX_AMPS: Battery monitor max current

Note: This parameter is for advanced users

This controls the maximum current the INS2XX sensor will work with.

Range

Units

1 to 400

ampere

BATTC_SHUNT: Battery monitor shunt resistor

Note: This parameter is for advanced users

This sets the shunt resistor used in the device

Range

Units

0.0001 to 0.01

Ohm

BATTD_ Parameters

BATTD_MONITOR: Battery monitoring

Note: Reboot required after change

Controls enabling monitoring of the battery's voltage and current

Values

Value

Meaning

0

Disabled

3

Analog Voltage Only

4

Analog Voltage and Current

5

Solo

6

Bebop

7

SMBus-Generic

8

DroneCAN-BatteryInfo

9

ESC

10

Sum Of Selected Monitors

11

FuelFlow

12

FuelLevelPWM

13

SMBUS-SUI3

14

SMBUS-SUI6

15

NeoDesign

16

SMBus-Maxell

17

Generator-Elec

18

Generator-Fuel

19

Rotoye

20

MPPT

21

INA2XX

22

LTC2946

23

Torqeedo

24

FuelLevelAnalog

25

Synthetic Current and Analog Voltage

26

INA239_SPI

27

EFI

28

AD7091R5

29

Scripting

BATTD_CAPACITY: Battery capacity

Capacity of the battery in mAh when full

Increment

Units

50

milliampere hour

BATTD_SERIAL_NUM: Battery serial number

Note: This parameter is for advanced users

Battery serial number, automatically filled in for SMBus batteries, otherwise will be -1. With DroneCan it is the battery_id.

BATTD_LOW_TIMER: Low voltage timeout

Note: This parameter is for advanced users

This is the timeout in seconds before a low voltage event will be triggered. For aircraft with low C batteries it may be necessary to raise this in order to cope with low voltage on long takeoffs. A value of zero disables low voltage errors.

Increment

Range

Units

1

0 to 120

seconds

BATTD_FS_VOLTSRC: Failsafe voltage source

Note: This parameter is for advanced users

Voltage type used for detection of low voltage event

Values

Value

Meaning

0

Raw Voltage

1

Sag Compensated Voltage

BATTD_LOW_VOLT: Low battery voltage

Battery voltage that triggers a low battery failsafe. Set to 0 to disable. If the battery voltage drops below this voltage continuously for more then the period specified by the BATTD_LOW_TIMER parameter then the vehicle will perform the failsafe specified by the BATTD_FS_LOW_ACT parameter.

Increment

Units

0.1

volt

BATTD_LOW_MAH: Low battery capacity

Battery capacity at which the low battery failsafe is triggered. Set to 0 to disable battery remaining failsafe. If the battery capacity drops below this level the vehicle will perform the failsafe specified by the BATTD_FS_LOW_ACT parameter.

Increment

Units

50

milliampere hour

BATTD_CRT_VOLT: Critical battery voltage

Battery voltage that triggers a critical battery failsafe. Set to 0 to disable. If the battery voltage drops below this voltage continuously for more then the period specified by the BATTD_LOW_TIMER parameter then the vehicle will perform the failsafe specified by the BATTD_FS_CRT_ACT parameter.

Increment

Units

0.1

volt

BATTD_CRT_MAH: Battery critical capacity

Battery capacity at which the critical battery failsafe is triggered. Set to 0 to disable battery remaining failsafe. If the battery capacity drops below this level the vehicle will perform the failsafe specified by the BATTD_FS_CRT_ACT parameter.

Increment

Units

50

milliampere hour

BATTD_ARM_VOLT: Required arming voltage

Note: This parameter is for advanced users

Battery voltage level which is required to arm the aircraft. Set to 0 to allow arming at any voltage.

Increment

Units

0.1

volt

BATTD_ARM_MAH: Required arming remaining capacity

Note: This parameter is for advanced users

Battery capacity remaining which is required to arm the aircraft. Set to 0 to allow arming at any capacity. Note that execept for smart batteries rebooting the vehicle will always reset the remaining capacity estimate, which can lead to this check not providing sufficent protection, it is recommended to always use this in conjunction with the BATTD__ARM_VOLT parameter.

Increment

Units

50

milliampere hour

BATTD_OPTIONS: Battery monitor options

Note: This parameter is for advanced users

This sets options to change the behaviour of the battery monitor

Bitmask

Bit

Meaning

0

Ignore DroneCAN SoC

1

MPPT reports input voltage and current

2

MPPT Powered off when disarmed

3

MPPT Powered on when armed

4

MPPT Powered off at boot

5

MPPT Powered on at boot

6

Send resistance compensated voltage to GCS

7

Allow DroneCAN InfoAux to be from a different CAN node

BATTD_ESC_INDEX: ESC Telemetry Index to write to

Note: This parameter is for advanced users

ESC Telemetry Index to write voltage, current, consumption and temperature data to. Use 0 to disable.

Increment

Range

1

0 to 10

BATTD_VOLT_PIN: Battery Voltage sensing pin

Note: Reboot required after change

Sets the analog input pin that should be used for voltage monitoring.

Values

Value

Meaning

-1

Disabled

2

Pixhawk/Pixracer/Navio2/Pixhawk2_PM1

5

Navigator

13

Pixhawk2_PM2/CubeOrange_PM2

14

CubeOrange

16

Durandal

100

PX4-v1

BATTD_CURR_PIN: Battery Current sensing pin

Note: Reboot required after change

Sets the analog input pin that should be used for current monitoring.

Values

Value

Meaning

-1

Disabled

3

Pixhawk/Pixracer/Navio2/Pixhawk2_PM1

4

CubeOrange_PM2/Navigator

14

Pixhawk2_PM2

15

CubeOrange

17

Durandal

101

PX4-v1

BATTD_VOLT_MULT: Voltage Multiplier

Note: This parameter is for advanced users

Used to convert the voltage of the voltage sensing pin (BATTD_VOLT_PIN) to the actual battery's voltage (pin_voltage * VOLT_MULT). For the 3DR Power brick with a Pixhawk, this should be set to 10.1. For the Pixhawk with the 3DR 4in1 ESC this should be 12.02. For the PX using the PX4IO power supply this should be set to 1.

BATTD_AMP_PERVLT: Amps per volt

Number of amps that a 1V reading on the current sensor corresponds to. With a Pixhawk using the 3DR Power brick this should be set to 17. For the Pixhawk with the 3DR 4in1 ESC this should be 17. For Synthetic Current sensor monitors, this is the maximum, full throttle current draw.

Units

ampere per volt

BATTD_AMP_OFFSET: AMP offset

Voltage offset at zero current on current sensor for Analog Sensors. For Synthetic Current sensor, this offset is the zero throttle system current and is added to the calculated throttle base current.

Units

volt

BATTD_VLT_OFFSET: Voltage offset

Note: This parameter is for advanced users

Voltage offset on voltage pin. This allows for an offset due to a diode. This voltage is subtracted before the scaling is applied.

Units

volt

BATTD_I2C_BUS (AP_BattMonitor_SMBus): Battery monitor I2C bus number

Note: This parameter is for advanced users
Note: Reboot required after change

Battery monitor I2C bus number

Range

0 to 3

BATTD_I2C_ADDR (AP_BattMonitor_SMBus): Battery monitor I2C address

Note: This parameter is for advanced users
Note: Reboot required after change

Battery monitor I2C address

Range

0 to 127

BATTD_SUM_MASK: Battery Sum mask

0: sum of remaining battery monitors, If none 0 sum of specified monitors. Current will be summed and voltages averaged.

Bitmask

Bit

Meaning

0

monitor 1

1

monitor 2

2

monitor 3

3

monitor 4

4

monitor 5

5

monitor 6

6

monitor 7

7

monitor 8

8

monitor 9

BATTD_CURR_MULT: Scales reported power monitor current

Note: This parameter is for advanced users

Multiplier applied to all current related reports to allow for adjustment if no UAVCAN param access or current splitting applications

Range

.1 to 10

BATTD_FL_VLT_MIN: Empty fuel level voltage

Note: This parameter is for advanced users

The voltage seen on the analog pin when the fuel tank is empty. Note: For this type of battery monitor, the voltage seen by the analog pin is displayed as battery voltage on a GCS.

Range

Units

0.01 to 10

volt

BATTD_FL_V_MULT: Fuel level voltage multiplier

Note: This parameter is for advanced users

Voltage multiplier to determine what the full tank voltage reading is. This is calculated as 1 / (Voltage_Full - Voltage_Empty) Note: For this type of battery monitor, the voltage seen by the analog pin is displayed as battery voltage on a GCS.

Range

0.01 to 10

BATTD_FL_FLTR: Fuel level filter frequency

Note: This parameter is for advanced users
Note: Reboot required after change

Filter frequency in Hertz where a low pass filter is used. This is used to filter out tank slosh from the fuel level reading. A value of -1 disables the filter and unfiltered voltage is used to determine the fuel level. The suggested values at in the range of 0.2 Hz to 0.5 Hz.

Range

Units

-1 to 1

hertz

BATTD_FL_PIN: Fuel level analog pin number

Analog input pin that fuel level sensor is connected to. Airspeed ports can be used for Analog input. When using analog pin 103, the maximum value of the input in 3.3V.

Values

Value

Meaning

-1

Not Used

11

Pixracer

13

Pixhawk ADC4

14

Pixhawk ADC3

15

Pixhawk ADC6/Pixhawk2 ADC

103

Pixhawk SBUS

BATTD_FL_FF: First order term

Note: This parameter is for advanced users

First order polynomial fit term

Range

0 to 10

BATTD_FL_FS: Second order term

Note: This parameter is for advanced users

Second order polynomial fit term

Range

0 to 10

BATTD_FL_FT: Third order term

Note: This parameter is for advanced users

Third order polynomial fit term

Range

0 to 10

BATTD_FL_OFF: Offset term

Note: This parameter is for advanced users

Offset polynomial fit term

Range

0 to 10

BATTD_MAX_VOLT: Maximum Battery Voltage

Note: This parameter is for advanced users

Maximum voltage of battery. Provides scaling of current versus voltage

Range

7 to 100

BATTD_I2C_BUS (AP_BattMonitor_INA2xx): Battery monitor I2C bus number

Note: This parameter is for advanced users
Note: Reboot required after change

Battery monitor I2C bus number

Range

0 to 3

BATTD_I2C_ADDR (AP_BattMonitor_INA2xx): Battery monitor I2C address

Note: This parameter is for advanced users
Note: Reboot required after change

Battery monitor I2C address. If this is zero then probe list of supported addresses

Range

0 to 127

BATTD_MAX_AMPS: Battery monitor max current

Note: This parameter is for advanced users

This controls the maximum current the INS2XX sensor will work with.

Range

Units

1 to 400

ampere

BATTD_SHUNT: Battery monitor shunt resistor

Note: This parameter is for advanced users

This sets the shunt resistor used in the device

Range

Units

0.0001 to 0.01

Ohm

BATTE_ Parameters

BATTE_MONITOR: Battery monitoring

Note: Reboot required after change

Controls enabling monitoring of the battery's voltage and current

Values

Value

Meaning

0

Disabled

3

Analog Voltage Only

4

Analog Voltage and Current

5

Solo

6

Bebop

7

SMBus-Generic

8

DroneCAN-BatteryInfo

9

ESC

10

Sum Of Selected Monitors

11

FuelFlow

12

FuelLevelPWM

13

SMBUS-SUI3

14

SMBUS-SUI6

15

NeoDesign

16

SMBus-Maxell

17

Generator-Elec

18

Generator-Fuel

19

Rotoye

20

MPPT

21

INA2XX

22

LTC2946

23

Torqeedo

24

FuelLevelAnalog

25

Synthetic Current and Analog Voltage

26

INA239_SPI

27

EFI

28

AD7091R5

29

Scripting

BATTE_CAPACITY: Battery capacity

Capacity of the battery in mAh when full

Increment

Units

50

milliampere hour

BATTE_SERIAL_NUM: Battery serial number

Note: This parameter is for advanced users

Battery serial number, automatically filled in for SMBus batteries, otherwise will be -1. With DroneCan it is the battery_id.

BATTE_LOW_TIMER: Low voltage timeout

Note: This parameter is for advanced users

This is the timeout in seconds before a low voltage event will be triggered. For aircraft with low C batteries it may be necessary to raise this in order to cope with low voltage on long takeoffs. A value of zero disables low voltage errors.

Increment

Range

Units

1

0 to 120

seconds

BATTE_FS_VOLTSRC: Failsafe voltage source

Note: This parameter is for advanced users

Voltage type used for detection of low voltage event

Values

Value

Meaning

0

Raw Voltage

1

Sag Compensated Voltage

BATTE_LOW_VOLT: Low battery voltage

Battery voltage that triggers a low battery failsafe. Set to 0 to disable. If the battery voltage drops below this voltage continuously for more then the period specified by the BATTE_LOW_TIMER parameter then the vehicle will perform the failsafe specified by the BATTE_FS_LOW_ACT parameter.

Increment

Units

0.1

volt

BATTE_LOW_MAH: Low battery capacity

Battery capacity at which the low battery failsafe is triggered. Set to 0 to disable battery remaining failsafe. If the battery capacity drops below this level the vehicle will perform the failsafe specified by the BATTE_FS_LOW_ACT parameter.

Increment

Units

50

milliampere hour

BATTE_CRT_VOLT: Critical battery voltage

Battery voltage that triggers a critical battery failsafe. Set to 0 to disable. If the battery voltage drops below this voltage continuously for more then the period specified by the BATTE_LOW_TIMER parameter then the vehicle will perform the failsafe specified by the BATTE_FS_CRT_ACT parameter.

Increment

Units

0.1

volt

BATTE_CRT_MAH: Battery critical capacity

Battery capacity at which the critical battery failsafe is triggered. Set to 0 to disable battery remaining failsafe. If the battery capacity drops below this level the vehicle will perform the failsafe specified by the BATTE_FS_CRT_ACT parameter.

Increment

Units

50

milliampere hour

BATTE_ARM_VOLT: Required arming voltage

Note: This parameter is for advanced users

Battery voltage level which is required to arm the aircraft. Set to 0 to allow arming at any voltage.

Increment

Units

0.1

volt

BATTE_ARM_MAH: Required arming remaining capacity

Note: This parameter is for advanced users

Battery capacity remaining which is required to arm the aircraft. Set to 0 to allow arming at any capacity. Note that execept for smart batteries rebooting the vehicle will always reset the remaining capacity estimate, which can lead to this check not providing sufficent protection, it is recommended to always use this in conjunction with the BATTE__ARM_VOLT parameter.

Increment

Units

50

milliampere hour

BATTE_OPTIONS: Battery monitor options

Note: This parameter is for advanced users

This sets options to change the behaviour of the battery monitor

Bitmask

Bit

Meaning

0

Ignore DroneCAN SoC

1

MPPT reports input voltage and current

2

MPPT Powered off when disarmed

3

MPPT Powered on when armed

4

MPPT Powered off at boot

5

MPPT Powered on at boot

6

Send resistance compensated voltage to GCS

7

Allow DroneCAN InfoAux to be from a different CAN node

BATTE_ESC_INDEX: ESC Telemetry Index to write to

Note: This parameter is for advanced users

ESC Telemetry Index to write voltage, current, consumption and temperature data to. Use 0 to disable.

Increment

Range

1

0 to 10

BATTE_VOLT_PIN: Battery Voltage sensing pin

Note: Reboot required after change

Sets the analog input pin that should be used for voltage monitoring.

Values

Value

Meaning

-1

Disabled

2

Pixhawk/Pixracer/Navio2/Pixhawk2_PM1

5

Navigator

13

Pixhawk2_PM2/CubeOrange_PM2

14

CubeOrange

16

Durandal

100

PX4-v1

BATTE_CURR_PIN: Battery Current sensing pin

Note: Reboot required after change

Sets the analog input pin that should be used for current monitoring.

Values

Value

Meaning

-1

Disabled

3

Pixhawk/Pixracer/Navio2/Pixhawk2_PM1

4

CubeOrange_PM2/Navigator

14

Pixhawk2_PM2

15

CubeOrange

17

Durandal

101

PX4-v1

BATTE_VOLT_MULT: Voltage Multiplier

Note: This parameter is for advanced users

Used to convert the voltage of the voltage sensing pin (BATTE_VOLT_PIN) to the actual battery's voltage (pin_voltage * VOLT_MULT). For the 3DR Power brick with a Pixhawk, this should be set to 10.1. For the Pixhawk with the 3DR 4in1 ESC this should be 12.02. For the PX using the PX4IO power supply this should be set to 1.

BATTE_AMP_PERVLT: Amps per volt

Number of amps that a 1V reading on the current sensor corresponds to. With a Pixhawk using the 3DR Power brick this should be set to 17. For the Pixhawk with the 3DR 4in1 ESC this should be 17. For Synthetic Current sensor monitors, this is the maximum, full throttle current draw.

Units

ampere per volt

BATTE_AMP_OFFSET: AMP offset

Voltage offset at zero current on current sensor for Analog Sensors. For Synthetic Current sensor, this offset is the zero throttle system current and is added to the calculated throttle base current.

Units

volt

BATTE_VLT_OFFSET: Voltage offset

Note: This parameter is for advanced users

Voltage offset on voltage pin. This allows for an offset due to a diode. This voltage is subtracted before the scaling is applied.

Units

volt

BATTE_I2C_BUS (AP_BattMonitor_SMBus): Battery monitor I2C bus number

Note: This parameter is for advanced users
Note: Reboot required after change

Battery monitor I2C bus number

Range

0 to 3

BATTE_I2C_ADDR (AP_BattMonitor_SMBus): Battery monitor I2C address

Note: This parameter is for advanced users
Note: Reboot required after change

Battery monitor I2C address

Range

0 to 127

BATTE_SUM_MASK: Battery Sum mask

0: sum of remaining battery monitors, If none 0 sum of specified monitors. Current will be summed and voltages averaged.

Bitmask

Bit

Meaning

0

monitor 1

1

monitor 2

2

monitor 3

3

monitor 4

4

monitor 5

5

monitor 6

6

monitor 7

7

monitor 8

8

monitor 9

BATTE_CURR_MULT: Scales reported power monitor current

Note: This parameter is for advanced users

Multiplier applied to all current related reports to allow for adjustment if no UAVCAN param access or current splitting applications

Range

.1 to 10

BATTE_FL_VLT_MIN: Empty fuel level voltage

Note: This parameter is for advanced users

The voltage seen on the analog pin when the fuel tank is empty. Note: For this type of battery monitor, the voltage seen by the analog pin is displayed as battery voltage on a GCS.

Range

Units

0.01 to 10

volt

BATTE_FL_V_MULT: Fuel level voltage multiplier

Note: This parameter is for advanced users

Voltage multiplier to determine what the full tank voltage reading is. This is calculated as 1 / (Voltage_Full - Voltage_Empty) Note: For this type of battery monitor, the voltage seen by the analog pin is displayed as battery voltage on a GCS.

Range

0.01 to 10

BATTE_FL_FLTR: Fuel level filter frequency

Note: This parameter is for advanced users
Note: Reboot required after change

Filter frequency in Hertz where a low pass filter is used. This is used to filter out tank slosh from the fuel level reading. A value of -1 disables the filter and unfiltered voltage is used to determine the fuel level. The suggested values at in the range of 0.2 Hz to 0.5 Hz.

Range

Units

-1 to 1

hertz

BATTE_FL_PIN: Fuel level analog pin number

Analog input pin that fuel level sensor is connected to. Airspeed ports can be used for Analog input. When using analog pin 103, the maximum value of the input in 3.3V.

Values

Value

Meaning

-1

Not Used

11

Pixracer

13

Pixhawk ADC4

14

Pixhawk ADC3

15

Pixhawk ADC6/Pixhawk2 ADC

103

Pixhawk SBUS

BATTE_FL_FF: First order term

Note: This parameter is for advanced users

First order polynomial fit term

Range

0 to 10

BATTE_FL_FS: Second order term

Note: This parameter is for advanced users

Second order polynomial fit term

Range

0 to 10

BATTE_FL_FT: Third order term

Note: This parameter is for advanced users

Third order polynomial fit term

Range

0 to 10

BATTE_FL_OFF: Offset term

Note: This parameter is for advanced users

Offset polynomial fit term

Range

0 to 10

BATTE_MAX_VOLT: Maximum Battery Voltage

Note: This parameter is for advanced users

Maximum voltage of battery. Provides scaling of current versus voltage

Range

7 to 100

BATTE_I2C_BUS (AP_BattMonitor_INA2xx): Battery monitor I2C bus number

Note: This parameter is for advanced users
Note: Reboot required after change

Battery monitor I2C bus number

Range

0 to 3

BATTE_I2C_ADDR (AP_BattMonitor_INA2xx): Battery monitor I2C address

Note: This parameter is for advanced users
Note: Reboot required after change

Battery monitor I2C address. If this is zero then probe list of supported addresses

Range

0 to 127

BATTE_MAX_AMPS: Battery monitor max current

Note: This parameter is for advanced users

This controls the maximum current the INS2XX sensor will work with.

Range

Units

1 to 400

ampere

BATTE_SHUNT: Battery monitor shunt resistor

Note: This parameter is for advanced users

This sets the shunt resistor used in the device

Range

Units

0.0001 to 0.01

Ohm

BATTF_ Parameters

BATTF_MONITOR: Battery monitoring

Note: Reboot required after change

Controls enabling monitoring of the battery's voltage and current

Values

Value

Meaning

0

Disabled

3

Analog Voltage Only

4

Analog Voltage and Current

5

Solo

6

Bebop

7

SMBus-Generic

8

DroneCAN-BatteryInfo

9

ESC

10

Sum Of Selected Monitors

11

FuelFlow

12

FuelLevelPWM

13

SMBUS-SUI3

14

SMBUS-SUI6

15

NeoDesign

16

SMBus-Maxell

17

Generator-Elec

18

Generator-Fuel

19

Rotoye

20

MPPT

21

INA2XX

22

LTC2946

23

Torqeedo

24

FuelLevelAnalog

25

Synthetic Current and Analog Voltage

26

INA239_SPI

27

EFI

28

AD7091R5

29

Scripting

BATTF_CAPACITY: Battery capacity

Capacity of the battery in mAh when full

Increment

Units

50

milliampere hour

BATTF_SERIAL_NUM: Battery serial number

Note: This parameter is for advanced users

Battery serial number, automatically filled in for SMBus batteries, otherwise will be -1. With DroneCan it is the battery_id.

BATTF_LOW_TIMER: Low voltage timeout

Note: This parameter is for advanced users

This is the timeout in seconds before a low voltage event will be triggered. For aircraft with low C batteries it may be necessary to raise this in order to cope with low voltage on long takeoffs. A value of zero disables low voltage errors.

Increment

Range

Units

1

0 to 120

seconds

BATTF_FS_VOLTSRC: Failsafe voltage source

Note: This parameter is for advanced users

Voltage type used for detection of low voltage event

Values

Value

Meaning

0

Raw Voltage

1

Sag Compensated Voltage

BATTF_LOW_VOLT: Low battery voltage

Battery voltage that triggers a low battery failsafe. Set to 0 to disable. If the battery voltage drops below this voltage continuously for more then the period specified by the BATTF_LOW_TIMER parameter then the vehicle will perform the failsafe specified by the BATTF_FS_LOW_ACT parameter.

Increment

Units

0.1

volt

BATTF_LOW_MAH: Low battery capacity

Battery capacity at which the low battery failsafe is triggered. Set to 0 to disable battery remaining failsafe. If the battery capacity drops below this level the vehicle will perform the failsafe specified by the BATTF_FS_LOW_ACT parameter.

Increment

Units

50

milliampere hour

BATTF_CRT_VOLT: Critical battery voltage

Battery voltage that triggers a critical battery failsafe. Set to 0 to disable. If the battery voltage drops below this voltage continuously for more then the period specified by the BATTF_LOW_TIMER parameter then the vehicle will perform the failsafe specified by the BATTF_FS_CRT_ACT parameter.

Increment

Units

0.1

volt

BATTF_CRT_MAH: Battery critical capacity

Battery capacity at which the critical battery failsafe is triggered. Set to 0 to disable battery remaining failsafe. If the battery capacity drops below this level the vehicle will perform the failsafe specified by the BATTF_FS_CRT_ACT parameter.

Increment

Units

50

milliampere hour

BATTF_ARM_VOLT: Required arming voltage

Note: This parameter is for advanced users

Battery voltage level which is required to arm the aircraft. Set to 0 to allow arming at any voltage.

Increment

Units

0.1

volt

BATTF_ARM_MAH: Required arming remaining capacity

Note: This parameter is for advanced users

Battery capacity remaining which is required to arm the aircraft. Set to 0 to allow arming at any capacity. Note that execept for smart batteries rebooting the vehicle will always reset the remaining capacity estimate, which can lead to this check not providing sufficent protection, it is recommended to always use this in conjunction with the BATTF__ARM_VOLT parameter.

Increment

Units

50

milliampere hour

BATTF_OPTIONS: Battery monitor options

Note: This parameter is for advanced users

This sets options to change the behaviour of the battery monitor

Bitmask

Bit

Meaning

0

Ignore DroneCAN SoC

1

MPPT reports input voltage and current

2

MPPT Powered off when disarmed

3

MPPT Powered on when armed

4

MPPT Powered off at boot

5

MPPT Powered on at boot

6

Send resistance compensated voltage to GCS

7

Allow DroneCAN InfoAux to be from a different CAN node

BATTF_ESC_INDEX: ESC Telemetry Index to write to

Note: This parameter is for advanced users

ESC Telemetry Index to write voltage, current, consumption and temperature data to. Use 0 to disable.

Increment

Range

1

0 to 10

BATTF_VOLT_PIN: Battery Voltage sensing pin

Note: Reboot required after change

Sets the analog input pin that should be used for voltage monitoring.

Values

Value

Meaning

-1

Disabled

2

Pixhawk/Pixracer/Navio2/Pixhawk2_PM1

5

Navigator

13

Pixhawk2_PM2/CubeOrange_PM2

14

CubeOrange

16

Durandal

100

PX4-v1

BATTF_CURR_PIN: Battery Current sensing pin

Note: Reboot required after change

Sets the analog input pin that should be used for current monitoring.

Values

Value

Meaning

-1

Disabled

3

Pixhawk/Pixracer/Navio2/Pixhawk2_PM1

4

CubeOrange_PM2/Navigator

14

Pixhawk2_PM2

15

CubeOrange

17

Durandal

101

PX4-v1

BATTF_VOLT_MULT: Voltage Multiplier

Note: This parameter is for advanced users

Used to convert the voltage of the voltage sensing pin (BATTF_VOLT_PIN) to the actual battery's voltage (pin_voltage * VOLT_MULT). For the 3DR Power brick with a Pixhawk, this should be set to 10.1. For the Pixhawk with the 3DR 4in1 ESC this should be 12.02. For the PX using the PX4IO power supply this should be set to 1.

BATTF_AMP_PERVLT: Amps per volt

Number of amps that a 1V reading on the current sensor corresponds to. With a Pixhawk using the 3DR Power brick this should be set to 17. For the Pixhawk with the 3DR 4in1 ESC this should be 17. For Synthetic Current sensor monitors, this is the maximum, full throttle current draw.

Units

ampere per volt

BATTF_AMP_OFFSET: AMP offset

Voltage offset at zero current on current sensor for Analog Sensors. For Synthetic Current sensor, this offset is the zero throttle system current and is added to the calculated throttle base current.

Units

volt

BATTF_VLT_OFFSET: Voltage offset

Note: This parameter is for advanced users

Voltage offset on voltage pin. This allows for an offset due to a diode. This voltage is subtracted before the scaling is applied.

Units

volt

BATTF_I2C_BUS (AP_BattMonitor_SMBus): Battery monitor I2C bus number

Note: This parameter is for advanced users
Note: Reboot required after change

Battery monitor I2C bus number

Range

0 to 3

BATTF_I2C_ADDR (AP_BattMonitor_SMBus): Battery monitor I2C address

Note: This parameter is for advanced users
Note: Reboot required after change

Battery monitor I2C address

Range

0 to 127

BATTF_SUM_MASK: Battery Sum mask

0: sum of remaining battery monitors, If none 0 sum of specified monitors. Current will be summed and voltages averaged.

Bitmask

Bit

Meaning

0

monitor 1

1

monitor 2

2

monitor 3

3

monitor 4

4

monitor 5

5

monitor 6

6

monitor 7

7

monitor 8

8

monitor 9

BATTF_CURR_MULT: Scales reported power monitor current

Note: This parameter is for advanced users

Multiplier applied to all current related reports to allow for adjustment if no UAVCAN param access or current splitting applications

Range

.1 to 10

BATTF_FL_VLT_MIN: Empty fuel level voltage

Note: This parameter is for advanced users

The voltage seen on the analog pin when the fuel tank is empty. Note: For this type of battery monitor, the voltage seen by the analog pin is displayed as battery voltage on a GCS.

Range

Units

0.01 to 10

volt

BATTF_FL_V_MULT: Fuel level voltage multiplier

Note: This parameter is for advanced users

Voltage multiplier to determine what the full tank voltage reading is. This is calculated as 1 / (Voltage_Full - Voltage_Empty) Note: For this type of battery monitor, the voltage seen by the analog pin is displayed as battery voltage on a GCS.

Range

0.01 to 10

BATTF_FL_FLTR: Fuel level filter frequency

Note: This parameter is for advanced users
Note: Reboot required after change

Filter frequency in Hertz where a low pass filter is used. This is used to filter out tank slosh from the fuel level reading. A value of -1 disables the filter and unfiltered voltage is used to determine the fuel level. The suggested values at in the range of 0.2 Hz to 0.5 Hz.

Range

Units

-1 to 1

hertz

BATTF_FL_PIN: Fuel level analog pin number

Analog input pin that fuel level sensor is connected to. Airspeed ports can be used for Analog input. When using analog pin 103, the maximum value of the input in 3.3V.

Values

Value

Meaning

-1

Not Used

11

Pixracer

13

Pixhawk ADC4

14

Pixhawk ADC3

15

Pixhawk ADC6/Pixhawk2 ADC

103

Pixhawk SBUS

BATTF_FL_FF: First order term

Note: This parameter is for advanced users

First order polynomial fit term

Range

0 to 10

BATTF_FL_FS: Second order term

Note: This parameter is for advanced users

Second order polynomial fit term

Range

0 to 10

BATTF_FL_FT: Third order term

Note: This parameter is for advanced users

Third order polynomial fit term

Range

0 to 10

BATTF_FL_OFF: Offset term

Note: This parameter is for advanced users

Offset polynomial fit term

Range

0 to 10

BATTF_MAX_VOLT: Maximum Battery Voltage

Note: This parameter is for advanced users

Maximum voltage of battery. Provides scaling of current versus voltage

Range

7 to 100

BATTF_I2C_BUS (AP_BattMonitor_INA2xx): Battery monitor I2C bus number

Note: This parameter is for advanced users
Note: Reboot required after change

Battery monitor I2C bus number

Range

0 to 3

BATTF_I2C_ADDR (AP_BattMonitor_INA2xx): Battery monitor I2C address

Note: This parameter is for advanced users
Note: Reboot required after change

Battery monitor I2C address. If this is zero then probe list of supported addresses

Range

0 to 127

BATTF_MAX_AMPS: Battery monitor max current

Note: This parameter is for advanced users

This controls the maximum current the INS2XX sensor will work with.

Range

Units

1 to 400

ampere

BATTF_SHUNT: Battery monitor shunt resistor

Note: This parameter is for advanced users

This sets the shunt resistor used in the device

Range

Units

0.0001 to 0.01

Ohm

BATTG_ Parameters

BATTG_MONITOR: Battery monitoring

Note: Reboot required after change

Controls enabling monitoring of the battery's voltage and current

Values

Value

Meaning

0

Disabled

3

Analog Voltage Only

4

Analog Voltage and Current

5

Solo

6

Bebop

7

SMBus-Generic

8

DroneCAN-BatteryInfo

9

ESC

10

Sum Of Selected Monitors

11

FuelFlow

12

FuelLevelPWM

13

SMBUS-SUI3

14

SMBUS-SUI6

15

NeoDesign

16

SMBus-Maxell

17

Generator-Elec

18

Generator-Fuel

19

Rotoye

20

MPPT

21

INA2XX

22

LTC2946

23

Torqeedo

24

FuelLevelAnalog

25

Synthetic Current and Analog Voltage

26

INA239_SPI

27

EFI

28

AD7091R5

29

Scripting

BATTG_CAPACITY: Battery capacity

Capacity of the battery in mAh when full

Increment

Units

50

milliampere hour

BATTG_SERIAL_NUM: Battery serial number

Note: This parameter is for advanced users

Battery serial number, automatically filled in for SMBus batteries, otherwise will be -1. With DroneCan it is the battery_id.

BATTG_LOW_TIMER: Low voltage timeout

Note: This parameter is for advanced users

This is the timeout in seconds before a low voltage event will be triggered. For aircraft with low C batteries it may be necessary to raise this in order to cope with low voltage on long takeoffs. A value of zero disables low voltage errors.

Increment

Range

Units

1

0 to 120

seconds

BATTG_FS_VOLTSRC: Failsafe voltage source

Note: This parameter is for advanced users

Voltage type used for detection of low voltage event

Values

Value

Meaning

0

Raw Voltage

1

Sag Compensated Voltage

BATTG_LOW_VOLT: Low battery voltage

Battery voltage that triggers a low battery failsafe. Set to 0 to disable. If the battery voltage drops below this voltage continuously for more then the period specified by the BATTG_LOW_TIMER parameter then the vehicle will perform the failsafe specified by the BATTG_FS_LOW_ACT parameter.

Increment

Units

0.1

volt

BATTG_LOW_MAH: Low battery capacity

Battery capacity at which the low battery failsafe is triggered. Set to 0 to disable battery remaining failsafe. If the battery capacity drops below this level the vehicle will perform the failsafe specified by the BATTG_FS_LOW_ACT parameter.

Increment

Units

50

milliampere hour

BATTG_CRT_VOLT: Critical battery voltage

Battery voltage that triggers a critical battery failsafe. Set to 0 to disable. If the battery voltage drops below this voltage continuously for more then the period specified by the BATTG_LOW_TIMER parameter then the vehicle will perform the failsafe specified by the BATTG_FS_CRT_ACT parameter.

Increment

Units

0.1

volt

BATTG_CRT_MAH: Battery critical capacity

Battery capacity at which the critical battery failsafe is triggered. Set to 0 to disable battery remaining failsafe. If the battery capacity drops below this level the vehicle will perform the failsafe specified by the BATTG_FS_CRT_ACT parameter.

Increment

Units

50

milliampere hour

BATTG_ARM_VOLT: Required arming voltage

Note: This parameter is for advanced users

Battery voltage level which is required to arm the aircraft. Set to 0 to allow arming at any voltage.

Increment

Units

0.1

volt

BATTG_ARM_MAH: Required arming remaining capacity

Note: This parameter is for advanced users

Battery capacity remaining which is required to arm the aircraft. Set to 0 to allow arming at any capacity. Note that execept for smart batteries rebooting the vehicle will always reset the remaining capacity estimate, which can lead to this check not providing sufficent protection, it is recommended to always use this in conjunction with the BATTG__ARM_VOLT parameter.

Increment

Units

50

milliampere hour

BATTG_OPTIONS: Battery monitor options

Note: This parameter is for advanced users

This sets options to change the behaviour of the battery monitor

Bitmask

Bit

Meaning

0

Ignore DroneCAN SoC

1

MPPT reports input voltage and current

2

MPPT Powered off when disarmed

3

MPPT Powered on when armed

4

MPPT Powered off at boot

5

MPPT Powered on at boot

6

Send resistance compensated voltage to GCS

7

Allow DroneCAN InfoAux to be from a different CAN node

BATTG_ESC_INDEX: ESC Telemetry Index to write to

Note: This parameter is for advanced users

ESC Telemetry Index to write voltage, current, consumption and temperature data to. Use 0 to disable.

Increment

Range

1

0 to 10

BATTG_VOLT_PIN: Battery Voltage sensing pin

Note: Reboot required after change

Sets the analog input pin that should be used for voltage monitoring.

Values

Value

Meaning

-1

Disabled

2

Pixhawk/Pixracer/Navio2/Pixhawk2_PM1

5

Navigator

13

Pixhawk2_PM2/CubeOrange_PM2

14

CubeOrange

16

Durandal

100

PX4-v1

BATTG_CURR_PIN: Battery Current sensing pin

Note: Reboot required after change

Sets the analog input pin that should be used for current monitoring.

Values

Value

Meaning

-1

Disabled

3

Pixhawk/Pixracer/Navio2/Pixhawk2_PM1

4

CubeOrange_PM2/Navigator

14

Pixhawk2_PM2

15

CubeOrange

17

Durandal

101

PX4-v1

BATTG_VOLT_MULT: Voltage Multiplier

Note: This parameter is for advanced users

Used to convert the voltage of the voltage sensing pin (BATTG_VOLT_PIN) to the actual battery's voltage (pin_voltage * VOLT_MULT). For the 3DR Power brick with a Pixhawk, this should be set to 10.1. For the Pixhawk with the 3DR 4in1 ESC this should be 12.02. For the PX using the PX4IO power supply this should be set to 1.

BATTG_AMP_PERVLT: Amps per volt

Number of amps that a 1V reading on the current sensor corresponds to. With a Pixhawk using the 3DR Power brick this should be set to 17. For the Pixhawk with the 3DR 4in1 ESC this should be 17. For Synthetic Current sensor monitors, this is the maximum, full throttle current draw.

Units

ampere per volt

BATTG_AMP_OFFSET: AMP offset

Voltage offset at zero current on current sensor for Analog Sensors. For Synthetic Current sensor, this offset is the zero throttle system current and is added to the calculated throttle base current.

Units

volt

BATTG_VLT_OFFSET: Voltage offset

Note: This parameter is for advanced users

Voltage offset on voltage pin. This allows for an offset due to a diode. This voltage is subtracted before the scaling is applied.

Units

volt

BATTG_I2C_BUS (AP_BattMonitor_SMBus): Battery monitor I2C bus number

Note: This parameter is for advanced users
Note: Reboot required after change

Battery monitor I2C bus number

Range

0 to 3

BATTG_I2C_ADDR (AP_BattMonitor_SMBus): Battery monitor I2C address

Note: This parameter is for advanced users
Note: Reboot required after change

Battery monitor I2C address

Range

0 to 127

BATTG_SUM_MASK: Battery Sum mask

0: sum of remaining battery monitors, If none 0 sum of specified monitors. Current will be summed and voltages averaged.

Bitmask

Bit

Meaning

0

monitor 1

1

monitor 2

2

monitor 3

3

monitor 4

4

monitor 5

5

monitor 6

6

monitor 7

7

monitor 8

8

monitor 9

BATTG_CURR_MULT: Scales reported power monitor current

Note: This parameter is for advanced users

Multiplier applied to all current related reports to allow for adjustment if no UAVCAN param access or current splitting applications

Range

.1 to 10

BATTG_FL_VLT_MIN: Empty fuel level voltage

Note: This parameter is for advanced users

The voltage seen on the analog pin when the fuel tank is empty. Note: For this type of battery monitor, the voltage seen by the analog pin is displayed as battery voltage on a GCS.

Range

Units

0.01 to 10

volt

BATTG_FL_V_MULT: Fuel level voltage multiplier

Note: This parameter is for advanced users

Voltage multiplier to determine what the full tank voltage reading is. This is calculated as 1 / (Voltage_Full - Voltage_Empty) Note: For this type of battery monitor, the voltage seen by the analog pin is displayed as battery voltage on a GCS.

Range

0.01 to 10

BATTG_FL_FLTR: Fuel level filter frequency

Note: This parameter is for advanced users
Note: Reboot required after change

Filter frequency in Hertz where a low pass filter is used. This is used to filter out tank slosh from the fuel level reading. A value of -1 disables the filter and unfiltered voltage is used to determine the fuel level. The suggested values at in the range of 0.2 Hz to 0.5 Hz.

Range

Units

-1 to 1

hertz

BATTG_FL_PIN: Fuel level analog pin number

Analog input pin that fuel level sensor is connected to. Airspeed ports can be used for Analog input. When using analog pin 103, the maximum value of the input in 3.3V.

Values

Value

Meaning

-1

Not Used

11

Pixracer

13

Pixhawk ADC4

14

Pixhawk ADC3

15

Pixhawk ADC6/Pixhawk2 ADC

103

Pixhawk SBUS

BATTG_FL_FF: First order term

Note: This parameter is for advanced users

First order polynomial fit term

Range

0 to 10

BATTG_FL_FS: Second order term

Note: This parameter is for advanced users

Second order polynomial fit term

Range

0 to 10

BATTG_FL_FT: Third order term

Note: This parameter is for advanced users

Third order polynomial fit term

Range

0 to 10

BATTG_FL_OFF: Offset term

Note: This parameter is for advanced users

Offset polynomial fit term

Range

0 to 10

BATTG_MAX_VOLT: Maximum Battery Voltage

Note: This parameter is for advanced users

Maximum voltage of battery. Provides scaling of current versus voltage

Range

7 to 100

BATTG_I2C_BUS (AP_BattMonitor_INA2xx): Battery monitor I2C bus number

Note: This parameter is for advanced users
Note: Reboot required after change

Battery monitor I2C bus number

Range

0 to 3

BATTG_I2C_ADDR (AP_BattMonitor_INA2xx): Battery monitor I2C address

Note: This parameter is for advanced users
Note: Reboot required after change

Battery monitor I2C address. If this is zero then probe list of supported addresses

Range

0 to 127

BATTG_MAX_AMPS: Battery monitor max current

Note: This parameter is for advanced users

This controls the maximum current the INS2XX sensor will work with.

Range

Units

1 to 400

ampere

BATTG_SHUNT: Battery monitor shunt resistor

Note: This parameter is for advanced users

This sets the shunt resistor used in the device

Range

Units

0.0001 to 0.01

Ohm

BATT_ Parameters

BATT_MONITOR: Battery monitoring

Note: Reboot required after change

Controls enabling monitoring of the battery's voltage and current

Values

Value

Meaning

0

Disabled

3

Analog Voltage Only

4

Analog Voltage and Current

5

Solo

6

Bebop

7

SMBus-Generic

8

DroneCAN-BatteryInfo

9

ESC

10

Sum Of Selected Monitors

11

FuelFlow

12

FuelLevelPWM

13

SMBUS-SUI3

14

SMBUS-SUI6

15

NeoDesign

16

SMBus-Maxell

17

Generator-Elec

18

Generator-Fuel

19

Rotoye

20

MPPT

21

INA2XX

22

LTC2946

23

Torqeedo

24

FuelLevelAnalog

25

Synthetic Current and Analog Voltage

26

INA239_SPI

27

EFI

28

AD7091R5

29

Scripting

BATT_CAPACITY: Battery capacity

Capacity of the battery in mAh when full

Increment

Units

50

milliampere hour

BATT_SERIAL_NUM: Battery serial number

Note: This parameter is for advanced users

Battery serial number, automatically filled in for SMBus batteries, otherwise will be -1. With DroneCan it is the battery_id.

BATT_LOW_TIMER: Low voltage timeout

Note: This parameter is for advanced users

This is the timeout in seconds before a low voltage event will be triggered. For aircraft with low C batteries it may be necessary to raise this in order to cope with low voltage on long takeoffs. A value of zero disables low voltage errors.

Increment

Range

Units

1

0 to 120

seconds

BATT_FS_VOLTSRC: Failsafe voltage source

Note: This parameter is for advanced users

Voltage type used for detection of low voltage event

Values

Value

Meaning

0

Raw Voltage

1

Sag Compensated Voltage

BATT_LOW_VOLT: Low battery voltage

Battery voltage that triggers a low battery failsafe. Set to 0 to disable. If the battery voltage drops below this voltage continuously for more then the period specified by the BATT_LOW_TIMER parameter then the vehicle will perform the failsafe specified by the BATT_FS_LOW_ACT parameter.

Increment

Units

0.1

volt

BATT_LOW_MAH: Low battery capacity

Battery capacity at which the low battery failsafe is triggered. Set to 0 to disable battery remaining failsafe. If the battery capacity drops below this level the vehicle will perform the failsafe specified by the BATT_FS_LOW_ACT parameter.

Increment

Units

50

milliampere hour

BATT_CRT_VOLT: Critical battery voltage

Battery voltage that triggers a critical battery failsafe. Set to 0 to disable. If the battery voltage drops below this voltage continuously for more then the period specified by the BATT_LOW_TIMER parameter then the vehicle will perform the failsafe specified by the BATT_FS_CRT_ACT parameter.

Increment

Units

0.1

volt

BATT_CRT_MAH: Battery critical capacity

Battery capacity at which the critical battery failsafe is triggered. Set to 0 to disable battery remaining failsafe. If the battery capacity drops below this level the vehicle will perform the failsafe specified by the BATT_FS_CRT_ACT parameter.

Increment

Units

50

milliampere hour

BATT_ARM_VOLT: Required arming voltage

Note: This parameter is for advanced users

Battery voltage level which is required to arm the aircraft. Set to 0 to allow arming at any voltage.

Increment

Units

0.1

volt

BATT_ARM_MAH: Required arming remaining capacity

Note: This parameter is for advanced users

Battery capacity remaining which is required to arm the aircraft. Set to 0 to allow arming at any capacity. Note that execept for smart batteries rebooting the vehicle will always reset the remaining capacity estimate, which can lead to this check not providing sufficent protection, it is recommended to always use this in conjunction with the BATT__ARM_VOLT parameter.

Increment

Units

50

milliampere hour

BATT_OPTIONS: Battery monitor options

Note: This parameter is for advanced users

This sets options to change the behaviour of the battery monitor

Bitmask

Bit

Meaning

0

Ignore DroneCAN SoC

1

MPPT reports input voltage and current

2

MPPT Powered off when disarmed

3

MPPT Powered on when armed

4

MPPT Powered off at boot

5

MPPT Powered on at boot

6

Send resistance compensated voltage to GCS

7

Allow DroneCAN InfoAux to be from a different CAN node

BATT_ESC_INDEX: ESC Telemetry Index to write to

Note: This parameter is for advanced users

ESC Telemetry Index to write voltage, current, consumption and temperature data to. Use 0 to disable.

Increment

Range

1

0 to 10

BATT_VOLT_PIN: Battery Voltage sensing pin

Note: Reboot required after change

Sets the analog input pin that should be used for voltage monitoring.

Values

Value

Meaning

-1

Disabled

2

Pixhawk/Pixracer/Navio2/Pixhawk2_PM1

5

Navigator

13

Pixhawk2_PM2/CubeOrange_PM2

14

CubeOrange

16

Durandal

100

PX4-v1

BATT_CURR_PIN: Battery Current sensing pin

Note: Reboot required after change

Sets the analog input pin that should be used for current monitoring.

Values

Value

Meaning

-1

Disabled

3

Pixhawk/Pixracer/Navio2/Pixhawk2_PM1

4

CubeOrange_PM2/Navigator

14

Pixhawk2_PM2

15

CubeOrange

17

Durandal

101

PX4-v1

BATT_VOLT_MULT: Voltage Multiplier

Note: This parameter is for advanced users

Used to convert the voltage of the voltage sensing pin (BATT_VOLT_PIN) to the actual battery's voltage (pin_voltage * VOLT_MULT). For the 3DR Power brick with a Pixhawk, this should be set to 10.1. For the Pixhawk with the 3DR 4in1 ESC this should be 12.02. For the PX using the PX4IO power supply this should be set to 1.

BATT_AMP_PERVLT: Amps per volt

Number of amps that a 1V reading on the current sensor corresponds to. With a Pixhawk using the 3DR Power brick this should be set to 17. For the Pixhawk with the 3DR 4in1 ESC this should be 17. For Synthetic Current sensor monitors, this is the maximum, full throttle current draw.

Units

ampere per volt

BATT_AMP_OFFSET: AMP offset

Voltage offset at zero current on current sensor for Analog Sensors. For Synthetic Current sensor, this offset is the zero throttle system current and is added to the calculated throttle base current.

Units

volt

BATT_VLT_OFFSET: Voltage offset

Note: This parameter is for advanced users

Voltage offset on voltage pin. This allows for an offset due to a diode. This voltage is subtracted before the scaling is applied.

Units

volt

BATT_I2C_BUS (AP_BattMonitor_SMBus): Battery monitor I2C bus number

Note: This parameter is for advanced users
Note: Reboot required after change

Battery monitor I2C bus number

Range

0 to 3

BATT_I2C_ADDR (AP_BattMonitor_SMBus): Battery monitor I2C address

Note: This parameter is for advanced users
Note: Reboot required after change

Battery monitor I2C address

Range

0 to 127

BATT_SUM_MASK: Battery Sum mask

0: sum of remaining battery monitors, If none 0 sum of specified monitors. Current will be summed and voltages averaged.

Bitmask

Bit

Meaning

0

monitor 1

1

monitor 2

2

monitor 3

3

monitor 4

4

monitor 5

5

monitor 6

6

monitor 7

7

monitor 8

8

monitor 9

BATT_CURR_MULT: Scales reported power monitor current

Note: This parameter is for advanced users

Multiplier applied to all current related reports to allow for adjustment if no UAVCAN param access or current splitting applications

Range

.1 to 10

BATT_FL_VLT_MIN: Empty fuel level voltage

Note: This parameter is for advanced users

The voltage seen on the analog pin when the fuel tank is empty. Note: For this type of battery monitor, the voltage seen by the analog pin is displayed as battery voltage on a GCS.

Range

Units

0.01 to 10

volt

BATT_FL_V_MULT: Fuel level voltage multiplier

Note: This parameter is for advanced users

Voltage multiplier to determine what the full tank voltage reading is. This is calculated as 1 / (Voltage_Full - Voltage_Empty) Note: For this type of battery monitor, the voltage seen by the analog pin is displayed as battery voltage on a GCS.

Range

0.01 to 10

BATT_FL_FLTR: Fuel level filter frequency

Note: This parameter is for advanced users
Note: Reboot required after change

Filter frequency in Hertz where a low pass filter is used. This is used to filter out tank slosh from the fuel level reading. A value of -1 disables the filter and unfiltered voltage is used to determine the fuel level. The suggested values at in the range of 0.2 Hz to 0.5 Hz.

Range

Units

-1 to 1

hertz

BATT_FL_PIN: Fuel level analog pin number

Analog input pin that fuel level sensor is connected to. Airspeed ports can be used for Analog input. When using analog pin 103, the maximum value of the input in 3.3V.

Values

Value

Meaning

-1

Not Used

11

Pixracer

13

Pixhawk ADC4

14

Pixhawk ADC3

15

Pixhawk ADC6/Pixhawk2 ADC

103

Pixhawk SBUS

BATT_FL_FF: First order term

Note: This parameter is for advanced users

First order polynomial fit term

Range

0 to 10

BATT_FL_FS: Second order term

Note: This parameter is for advanced users

Second order polynomial fit term

Range

0 to 10

BATT_FL_FT: Third order term

Note: This parameter is for advanced users

Third order polynomial fit term

Range

0 to 10

BATT_FL_OFF: Offset term

Note: This parameter is for advanced users

Offset polynomial fit term

Range

0 to 10

BATT_MAX_VOLT: Maximum Battery Voltage

Note: This parameter is for advanced users

Maximum voltage of battery. Provides scaling of current versus voltage

Range

7 to 100

BATT_I2C_BUS (AP_BattMonitor_INA2xx): Battery monitor I2C bus number

Note: This parameter is for advanced users
Note: Reboot required after change

Battery monitor I2C bus number

Range

0 to 3

BATT_I2C_ADDR (AP_BattMonitor_INA2xx): Battery monitor I2C address

Note: This parameter is for advanced users
Note: Reboot required after change

Battery monitor I2C address. If this is zero then probe list of supported addresses

Range

0 to 127

BATT_MAX_AMPS: Battery monitor max current

Note: This parameter is for advanced users

This controls the maximum current the INS2XX sensor will work with.

Range

Units

1 to 400

ampere

BATT_SHUNT: Battery monitor shunt resistor

Note: This parameter is for advanced users

This sets the shunt resistor used in the device

Range

Units

0.0001 to 0.01

Ohm

COMPASS_ Parameters

COMPASS_OFS_X: Compass offsets in milligauss on the X axis

Note: This parameter is for advanced users

Offset to be added to the compass x-axis values to compensate for metal in the frame

Calibration

Increment

Range

Units

1

1

-400 to 400

milligauss

COMPASS_OFS_Y: Compass offsets in milligauss on the Y axis

Note: This parameter is for advanced users

Offset to be added to the compass y-axis values to compensate for metal in the frame

Calibration

Increment

Range

Units

1

1

-400 to 400

milligauss

COMPASS_OFS_Z: Compass offsets in milligauss on the Z axis

Note: This parameter is for advanced users

Offset to be added to the compass z-axis values to compensate for metal in the frame

Increment

Range

Units

1

-400 to 400

milligauss

COMPASS_DEC: Compass declination

An angle to compensate between the true north and magnetic north

Increment

Range

Units

0.01

-3.142 to 3.142

radians

COMPASS_LEARN: Learn compass offsets automatically

Note: This parameter is for advanced users

Enable or disable the automatic learning of compass offsets. You can enable learning either using a compass-only method that is suitable only for fixed wing aircraft or using the offsets learnt by the active EKF state estimator. If this option is enabled then the learnt offsets are saved when you disarm the vehicle. If InFlight learning is enabled then the compass with automatically start learning once a flight starts (must be armed). While InFlight learning is running you cannot use position control modes.

Values

Value

Meaning

0

Disabled

1

Internal-Learning

2

EKF-Learning

3

InFlight-Learning

COMPASS_USE: Use compass for yaw

Note: This parameter is for advanced users

Enable or disable the use of the compass (instead of the GPS) for determining heading

Values

Value

Meaning

0

Disabled

1

Enabled

COMPASS_AUTODEC: Auto Declination

Note: This parameter is for advanced users

Enable or disable the automatic calculation of the declination based on gps location

Values

Value

Meaning

0

Disabled

1

Enabled

COMPASS_MOTCT: Motor interference compensation type

Note: This parameter is for advanced users

Set motor interference compensation type to disabled, throttle or current. Do not change manually.

Calibration

Values

1

Value

Meaning

0

Disabled

1

Use Throttle

2

Use Current

COMPASS_MOT_X: Motor interference compensation for body frame X axis

Note: This parameter is for advanced users

Multiplied by the current throttle and added to the compass's x-axis values to compensate for motor interference (Offset per Amp or at Full Throttle)

Calibration

Increment

Range

Units

1

1

-1000 to 1000

milligauss per ampere

COMPASS_MOT_Y: Motor interference compensation for body frame Y axis

Note: This parameter is for advanced users

Multiplied by the current throttle and added to the compass's y-axis values to compensate for motor interference (Offset per Amp or at Full Throttle)

Calibration

Increment

Range

Units

1

1

-1000 to 1000

milligauss per ampere

COMPASS_MOT_Z: Motor interference compensation for body frame Z axis

Note: This parameter is for advanced users

Multiplied by the current throttle and added to the compass's z-axis values to compensate for motor interference (Offset per Amp or at Full Throttle)

Increment

Range

Units

1

-1000 to 1000

milligauss per ampere

COMPASS_ORIENT: Compass orientation

Note: This parameter is for advanced users

The orientation of the first external compass relative to the vehicle frame. This value will be ignored unless this compass is set as an external compass. When set correctly in the northern hemisphere, pointing the nose and right side down should increase the MagX and MagY values respectively. Rolling the vehicle upside down should decrease the MagZ value. For southern hemisphere, switch increase and decrease. NOTE: For internal compasses, AHRS_ORIENT is used. The label for each option is specified in the order of rotations for that orientation. Firmware versions 4.2 and prior can use a CUSTOM (100) rotation to set the COMPASS_CUS_ROLL/PIT/YAW angles for Compass orientation. Later versions provide two general custom rotations which can be used, Custom 1 and Custom 2, with CUST_1_ROLL/PIT/YAW or CUST_2_ROLL/PIT/YAW angles.

Values

Value

Meaning

0

None

1

Yaw45

2

Yaw90

3

Yaw135

4

Yaw180

5

Yaw225

6

Yaw270

7

Yaw315

8

Roll180

9

Yaw45Roll180

10

Yaw90Roll180

11

Yaw135Roll180

12

Pitch180

13

Yaw225Roll180

14

Yaw270Roll180

15

Yaw315Roll180

16

Roll90

17

Yaw45Roll90

18

Yaw90Roll90

19

Yaw135Roll90

20

Roll270

21

Yaw45Roll270

22

Yaw90Roll270

23

Yaw135Roll270

24

Pitch90

25

Pitch270

26

Yaw90Pitch180

27

Yaw270Pitch180

28

Pitch90Roll90

29

Pitch90Roll180

30

Pitch90Roll270

31

Pitch180Roll90

32

Pitch180Roll270

33

Pitch270Roll90

34

Pitch270Roll180

35

Pitch270Roll270

36

Yaw90Pitch180Roll90

37

Yaw270Roll90

38

Yaw293Pitch68Roll180

39

Pitch315

40

Pitch315Roll90

42

Roll45

43

Roll315

100

Custom 4.1 and older

101

Custom 1

102

Custom 2

COMPASS_EXTERNAL: Compass is attached via an external cable

Note: This parameter is for advanced users

Configure compass so it is attached externally. This is auto-detected on most boards. Set to 1 if the compass is externally connected. When externally connected the COMPASS_ORIENT option operates independently of the AHRS_ORIENTATION board orientation option. If set to 0 or 1 then auto-detection by bus connection can override the value. If set to 2 then auto-detection will be disabled.

Values

Value

Meaning

0

Internal

1

External

2

ForcedExternal

COMPASS_OFS2_X: Compass2 offsets in milligauss on the X axis

Note: This parameter is for advanced users

Offset to be added to compass2's x-axis values to compensate for metal in the frame

Calibration

Increment

Range

Units

1

1

-400 to 400

milligauss

COMPASS_OFS2_Y: Compass2 offsets in milligauss on the Y axis

Note: This parameter is for advanced users

Offset to be added to compass2's y-axis values to compensate for metal in the frame

Calibration

Increment

Range

Units

1

1

-400 to 400

milligauss

COMPASS_OFS2_Z: Compass2 offsets in milligauss on the Z axis

Note: This parameter is for advanced users

Offset to be added to compass2's z-axis values to compensate for metal in the frame

Increment

Range

Units

1

-400 to 400

milligauss

COMPASS_MOT2_X: Motor interference compensation to compass2 for body frame X axis

Note: This parameter is for advanced users

Multiplied by the current throttle and added to compass2's x-axis values to compensate for motor interference (Offset per Amp or at Full Throttle)

Calibration

Increment

Range

Units

1

1

-1000 to 1000

milligauss per ampere

COMPASS_MOT2_Y: Motor interference compensation to compass2 for body frame Y axis

Note: This parameter is for advanced users

Multiplied by the current throttle and added to compass2's y-axis values to compensate for motor interference (Offset per Amp or at Full Throttle)

Calibration

Increment

Range

Units

1

1

-1000 to 1000

milligauss per ampere

COMPASS_MOT2_Z: Motor interference compensation to compass2 for body frame Z axis

Note: This parameter is for advanced users

Multiplied by the current throttle and added to compass2's z-axis values to compensate for motor interference (Offset per Amp or at Full Throttle)

Increment

Range

Units

1

-1000 to 1000

milligauss per ampere

COMPASS_OFS3_X: Compass3 offsets in milligauss on the X axis

Note: This parameter is for advanced users

Offset to be added to compass3's x-axis values to compensate for metal in the frame

Calibration

Increment

Range

Units

1

1

-400 to 400

milligauss

COMPASS_OFS3_Y: Compass3 offsets in milligauss on the Y axis

Note: This parameter is for advanced users

Offset to be added to compass3's y-axis values to compensate for metal in the frame

Calibration

Increment

Range

Units

1

1

-400 to 400

milligauss

COMPASS_OFS3_Z: Compass3 offsets in milligauss on the Z axis

Note: This parameter is for advanced users

Offset to be added to compass3's z-axis values to compensate for metal in the frame

Increment

Range

Units

1

-400 to 400

milligauss

COMPASS_MOT3_X: Motor interference compensation to compass3 for body frame X axis

Note: This parameter is for advanced users

Multiplied by the current throttle and added to compass3's x-axis values to compensate for motor interference (Offset per Amp or at Full Throttle)

Calibration

Increment

Range

Units

1

1

-1000 to 1000

milligauss per ampere

COMPASS_MOT3_Y: Motor interference compensation to compass3 for body frame Y axis

Note: This parameter is for advanced users

Multiplied by the current throttle and added to compass3's y-axis values to compensate for motor interference (Offset per Amp or at Full Throttle)

Calibration

Increment

Range

Units

1

1

-1000 to 1000

milligauss per ampere

COMPASS_MOT3_Z: Motor interference compensation to compass3 for body frame Z axis

Note: This parameter is for advanced users

Multiplied by the current throttle and added to compass3's z-axis values to compensate for motor interference (Offset per Amp or at Full Throttle)

Increment

Range

Units

1

-1000 to 1000

milligauss per ampere

COMPASS_DEV_ID: Compass device id

Note: This parameter is for advanced users

Compass device id. Automatically detected, do not set manually

ReadOnly

True

COMPASS_DEV_ID2: Compass2 device id

Note: This parameter is for advanced users

Second compass's device id. Automatically detected, do not set manually

ReadOnly

True

COMPASS_DEV_ID3: Compass3 device id

Note: This parameter is for advanced users

Third compass's device id. Automatically detected, do not set manually

ReadOnly

True

COMPASS_USE2: Compass2 used for yaw

Note: This parameter is for advanced users

Enable or disable the secondary compass for determining heading.

Values

Value

Meaning

0

Disabled

1

Enabled

COMPASS_ORIENT2: Compass2 orientation

Note: This parameter is for advanced users

The orientation of a second external compass relative to the vehicle frame. This value will be ignored unless this compass is set as an external compass. When set correctly in the northern hemisphere, pointing the nose and right side down should increase the MagX and MagY values respectively. Rolling the vehicle upside down should decrease the MagZ value. For southern hemisphere, switch increase and decrease. NOTE: For internal compasses, AHRS_ORIENT is used. The label for each option is specified in the order of rotations for that orientation. Firmware versions 4.2 and prior can use a CUSTOM (100) rotation to set the COMPASS_CUS_ROLL/PIT/YAW angles for Compass orientation. Later versions provide two general custom rotations which can be used, Custom 1 and Custom 2, with CUST_1_ROLL/PIT/YAW or CUST_2_ROLL/PIT/YAW angles.

Values

Value

Meaning

0

None

1

Yaw45

2

Yaw90

3

Yaw135

4

Yaw180

5

Yaw225

6

Yaw270

7

Yaw315

8

Roll180

9

Yaw45Roll180

10

Yaw90Roll180

11

Yaw135Roll180

12

Pitch180

13

Yaw225Roll180

14

Yaw270Roll180

15

Yaw315Roll180

16

Roll90

17

Yaw45Roll90

18

Yaw90Roll90

19

Yaw135Roll90

20

Roll270

21

Yaw45Roll270

22

Yaw90Roll270

23

Yaw135Roll270

24

Pitch90

25

Pitch270

26

Yaw90Pitch180

27

Yaw270Pitch180

28

Pitch90Roll90

29

Pitch90Roll180

30

Pitch90Roll270

31

Pitch180Roll90

32

Pitch180Roll270

33

Pitch270Roll90

34

Pitch270Roll180

35

Pitch270Roll270

36

Yaw90Pitch180Roll90

37

Yaw270Roll90

38

Yaw293Pitch68Roll180

39

Pitch315

40

Pitch315Roll90

42

Roll45

43

Roll315

100

Custom 4.1 and older

101

Custom 1

102

Custom 2

COMPASS_EXTERN2: Compass2 is attached via an external cable

Note: This parameter is for advanced users

Configure second compass so it is attached externally. This is auto-detected on most boards. If set to 0 or 1 then auto-detection by bus connection can override the value. If set to 2 then auto-detection will be disabled.

Values

Value

Meaning

0

Internal

1

External

2

ForcedExternal

COMPASS_USE3: Compass3 used for yaw

Note: This parameter is for advanced users

Enable or disable the tertiary compass for determining heading.

Values

Value

Meaning

0

Disabled

1

Enabled

COMPASS_ORIENT3: Compass3 orientation

Note: This parameter is for advanced users

The orientation of a third external compass relative to the vehicle frame. This value will be ignored unless this compass is set as an external compass. When set correctly in the northern hemisphere, pointing the nose and right side down should increase the MagX and MagY values respectively. Rolling the vehicle upside down should decrease the MagZ value. For southern hemisphere, switch increase and decrease. NOTE: For internal compasses, AHRS_ORIENT is used. The label for each option is specified in the order of rotations for that orientation. Firmware versions 4.2 and prior can use a CUSTOM (100) rotation to set the COMPASS_CUS_ROLL/PIT/YAW angles for Compass orientation. Later versions provide two general custom rotations which can be used, Custom 1 and Custom 2, with CUST_1_ROLL/PIT/YAW or CUST_2_ROLL/PIT/YAW angles.

Values

Value

Meaning

0

None

1

Yaw45

2

Yaw90

3

Yaw135

4

Yaw180

5

Yaw225

6

Yaw270

7

Yaw315

8

Roll180

9

Yaw45Roll180

10

Yaw90Roll180

11

Yaw135Roll180

12

Pitch180

13

Yaw225Roll180

14

Yaw270Roll180

15

Yaw315Roll180

16

Roll90

17

Yaw45Roll90

18

Yaw90Roll90

19

Yaw135Roll90

20

Roll270

21

Yaw45Roll270

22

Yaw90Roll270

23

Yaw135Roll270

24

Pitch90

25

Pitch270

26

Yaw90Pitch180

27

Yaw270Pitch180

28

Pitch90Roll90

29

Pitch90Roll180

30

Pitch90Roll270

31

Pitch180Roll90

32

Pitch180Roll270

33

Pitch270Roll90

34

Pitch270Roll180

35

Pitch270Roll270

36

Yaw90Pitch180Roll90

37

Yaw270Roll90

38

Yaw293Pitch68Roll180

39

Pitch315

40

Pitch315Roll90

42

Roll45

43

Roll315

100

Custom 4.1 and older

101

Custom 1

102

Custom 2

COMPASS_EXTERN3: Compass3 is attached via an external cable

Note: This parameter is for advanced users

Configure third compass so it is attached externally. This is auto-detected on most boards. If set to 0 or 1 then auto-detection by bus connection can override the value. If set to 2 then auto-detection will be disabled.

Values

Value

Meaning

0

Internal

1

External

2

ForcedExternal

COMPASS_DIA_X: Compass soft-iron diagonal X component

Note: This parameter is for advanced users

DIA_X in the compass soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

Calibration

1

COMPASS_DIA_Y: Compass soft-iron diagonal Y component

Note: This parameter is for advanced users

DIA_Y in the compass soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

Calibration

1

COMPASS_DIA_Z: Compass soft-iron diagonal Z component

Note: This parameter is for advanced users

DIA_Z in the compass soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

COMPASS_ODI_X: Compass soft-iron off-diagonal X component

Note: This parameter is for advanced users

ODI_X in the compass soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

Calibration

1

COMPASS_ODI_Y: Compass soft-iron off-diagonal Y component

Note: This parameter is for advanced users

ODI_Y in the compass soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

Calibration

1

COMPASS_ODI_Z: Compass soft-iron off-diagonal Z component

Note: This parameter is for advanced users

ODI_Z in the compass soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

COMPASS_DIA2_X: Compass2 soft-iron diagonal X component

Note: This parameter is for advanced users

DIA_X in the compass2 soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

Calibration

1

COMPASS_DIA2_Y: Compass2 soft-iron diagonal Y component

Note: This parameter is for advanced users

DIA_Y in the compass2 soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

Calibration

1

COMPASS_DIA2_Z: Compass2 soft-iron diagonal Z component

Note: This parameter is for advanced users

DIA_Z in the compass2 soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

COMPASS_ODI2_X: Compass2 soft-iron off-diagonal X component

Note: This parameter is for advanced users

ODI_X in the compass2 soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

Calibration

1

COMPASS_ODI2_Y: Compass2 soft-iron off-diagonal Y component

Note: This parameter is for advanced users

ODI_Y in the compass2 soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

Calibration

1

COMPASS_ODI2_Z: Compass2 soft-iron off-diagonal Z component

Note: This parameter is for advanced users

ODI_Z in the compass2 soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

COMPASS_DIA3_X: Compass3 soft-iron diagonal X component

Note: This parameter is for advanced users

DIA_X in the compass3 soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

Calibration

1

COMPASS_DIA3_Y: Compass3 soft-iron diagonal Y component

Note: This parameter is for advanced users

DIA_Y in the compass3 soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

Calibration

1

COMPASS_DIA3_Z: Compass3 soft-iron diagonal Z component

Note: This parameter is for advanced users

DIA_Z in the compass3 soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

COMPASS_ODI3_X: Compass3 soft-iron off-diagonal X component

Note: This parameter is for advanced users

ODI_X in the compass3 soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

Calibration

1

COMPASS_ODI3_Y: Compass3 soft-iron off-diagonal Y component

Note: This parameter is for advanced users

ODI_Y in the compass3 soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

Calibration

1

COMPASS_ODI3_Z: Compass3 soft-iron off-diagonal Z component

Note: This parameter is for advanced users

ODI_Z in the compass3 soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

COMPASS_CAL_FIT: Compass calibration fitness

Note: This parameter is for advanced users

This controls the fitness level required for a successful compass calibration. A lower value makes for a stricter fit (less likely to pass). This is the value used for the primary magnetometer. Other magnetometers get double the value.

Increment

Range

Values

0.1

4 to 32

Value

Meaning

4

Very Strict

8

Strict

16

Default

32

Relaxed

COMPASS_OFFS_MAX: Compass maximum offset

Note: This parameter is for advanced users

This sets the maximum allowed compass offset in calibration and arming checks

Increment

Range

1

500 to 3000

COMPASS_DISBLMSK: Compass disable driver type mask

Note: This parameter is for advanced users

This is a bitmask of driver types to disable. If a driver type is set in this mask then that driver will not try to find a sensor at startup

Bitmask

Bit

Meaning

0

HMC5883

1

LSM303D

2

AK8963

3

BMM150

4

LSM9DS1

5

LIS3MDL

6

AK09916

7

IST8310

8

ICM20948

9

MMC3416

11

DroneCAN

12

QMC5883

14

MAG3110

15

IST8308

16

RM3100

17

MSP

18

ExternalAHRS

COMPASS_FLTR_RNG: Range in which sample is accepted

This sets the range around the average value that new samples must be within to be accepted. This can help reduce the impact of noise on sensors that are on long I2C cables. The value is a percentage from the average value. A value of zero disables this filter.

Increment

Range

Units

1

0 to 100

percent

COMPASS_AUTO_ROT: Automatically check orientation

When enabled this will automatically check the orientation of compasses on successful completion of compass calibration. If set to 2 then external compasses will have their orientation automatically corrected.

Values

Value

Meaning

0

Disabled

1

CheckOnly

2

CheckAndFix

3

use same tolerance to auto rotate 45 deg rotations

COMPASS_PRIO1_ID: Compass device id with 1st order priority

Note: This parameter is for advanced users
Note: Reboot required after change

Compass device id with 1st order priority, set automatically if 0. Reboot required after change.

COMPASS_PRIO2_ID: Compass device id with 2nd order priority

Note: This parameter is for advanced users
Note: Reboot required after change

Compass device id with 2nd order priority, set automatically if 0. Reboot required after change.

COMPASS_PRIO3_ID: Compass device id with 3rd order priority

Note: This parameter is for advanced users
Note: Reboot required after change

Compass device id with 3rd order priority, set automatically if 0. Reboot required after change.

COMPASS_ENABLE: Enable Compass

Note: Reboot required after change

Setting this to Enabled(1) will enable the compass. Setting this to Disabled(0) will disable the compass. Note that this is separate from COMPASS_USE. This will enable the low level senor, and will enable logging of magnetometer data. To use the compass for navigation you must also set COMPASS_USE to 1.

Values

Value

Meaning

0

Disabled

1

Enabled

COMPASS_SCALE: Compass1 scale factor

Scaling factor for first compass to compensate for sensor scaling errors. If this is 0 then no scaling is done

Range

0 to 1.3

COMPASS_SCALE2: Compass2 scale factor

Scaling factor for 2nd compass to compensate for sensor scaling errors. If this is 0 then no scaling is done

Range

0 to 1.3

COMPASS_SCALE3: Compass3 scale factor

Scaling factor for 3rd compass to compensate for sensor scaling errors. If this is 0 then no scaling is done

Range

0 to 1.3

COMPASS_OPTIONS: Compass options

Note: This parameter is for advanced users

This sets options to change the behaviour of the compass

Bitmask

Bit

Meaning

0

CalRequireGPS

1

Allow missing DroneCAN compasses to be automaticaly replaced (calibration still required)

COMPASS_DEV_ID4: Compass4 device id

Note: This parameter is for advanced users

Extra 4th compass's device id. Automatically detected, do not set manually

ReadOnly

True

COMPASS_DEV_ID5: Compass5 device id

Note: This parameter is for advanced users

Extra 5th compass's device id. Automatically detected, do not set manually

ReadOnly

True

COMPASS_DEV_ID6: Compass6 device id

Note: This parameter is for advanced users

Extra 6th compass's device id. Automatically detected, do not set manually

ReadOnly

True

COMPASS_DEV_ID7: Compass7 device id

Note: This parameter is for advanced users

Extra 7th compass's device id. Automatically detected, do not set manually

ReadOnly

True

COMPASS_DEV_ID8: Compass8 device id

Note: This parameter is for advanced users

Extra 8th compass's device id. Automatically detected, do not set manually

ReadOnly

True

COMPASS_CUS_ROLL: Custom orientation roll offset

Note: This parameter is for advanced users
Note: Reboot required after change

Compass mounting position roll offset. Positive values = roll right, negative values = roll left. This parameter is only used when COMPASS_ORIENT/2/3 is set to CUSTOM.

Increment

Range

Units

1

-180 to 180

degrees

COMPASS_CUS_PIT: Custom orientation pitch offset

Note: This parameter is for advanced users
Note: Reboot required after change

Compass mounting position pitch offset. Positive values = pitch up, negative values = pitch down. This parameter is only used when COMPASS_ORIENT/2/3 is set to CUSTOM.

Increment

Range

Units

1

-180 to 180

degrees

COMPASS_CUS_YAW: Custom orientation yaw offset

Note: This parameter is for advanced users
Note: Reboot required after change

Compass mounting position yaw offset. Positive values = yaw right, negative values = yaw left. This parameter is only used when COMPASS_ORIENT/2/3 is set to CUSTOM.

Increment

Range

Units

1

-180 to 180

degrees

COMPASS_PMOT Parameters

COMPASS_PMOT_EN: per-motor compass correction enable

Note: This parameter is for advanced users

This enables per-motor compass corrections

Values

Value

Meaning

0

Disabled

1

Enabled

COMPASS_PMOT_EXP: per-motor exponential correction

Note: This parameter is for advanced users

This is the exponential correction for the power output of the motor for per-motor compass correction

Increment

Range

0.01

0 to 2

COMPASS_PMOT1_X: Compass per-motor1 X

Note: This parameter is for advanced users

Compensation for X axis of motor1

COMPASS_PMOT1_Y: Compass per-motor1 Y

Note: This parameter is for advanced users

Compensation for Y axis of motor1

COMPASS_PMOT1_Z: Compass per-motor1 Z

Note: This parameter is for advanced users

Compensation for Z axis of motor1

COMPASS_PMOT2_X: Compass per-motor2 X

Note: This parameter is for advanced users

Compensation for X axis of motor2

COMPASS_PMOT2_Y: Compass per-motor2 Y

Note: This parameter is for advanced users

Compensation for Y axis of motor2

COMPASS_PMOT2_Z: Compass per-motor2 Z

Note: This parameter is for advanced users

Compensation for Z axis of motor2

COMPASS_PMOT3_X: Compass per-motor3 X

Note: This parameter is for advanced users

Compensation for X axis of motor3

COMPASS_PMOT3_Y: Compass per-motor3 Y

Note: This parameter is for advanced users

Compensation for Y axis of motor3

COMPASS_PMOT3_Z: Compass per-motor3 Z

Note: This parameter is for advanced users

Compensation for Z axis of motor3

COMPASS_PMOT4_X: Compass per-motor4 X

Note: This parameter is for advanced users

Compensation for X axis of motor4

COMPASS_PMOT4_Y: Compass per-motor4 Y

Note: This parameter is for advanced users

Compensation for Y axis of motor4

COMPASS_PMOT4_Z: Compass per-motor4 Z

Note: This parameter is for advanced users

Compensation for Z axis of motor4

EFI Parameters

EFI_TYPE: EFI communication type

Note: This parameter is for advanced users
Note: Reboot required after change

What method of communication is used for EFI #1

Values

Value

Meaning

0

None

1

Serial-MS

2

NWPMU

3

Serial-Lutan

5

DroneCAN

6

Currawong-ECU

7

Scripting

8

Hirth

9

MAV

EFI_COEF1: EFI Calibration Coefficient 1

Note: This parameter is for advanced users

Used to calibrate fuel flow for MS protocol (Slope). This should be calculated from a log at constant fuel usage rate. Plot (ECYL[0].InjT*EFI.Rpm)/600.0 to get the duty_cycle. Measure actual fuel usage in cm^3/min, and set EFI_COEF1 = fuel_usage_cm3permin / duty_cycle

Range

0 to 1

EFI_COEF2: EFI Calibration Coefficient 2

Note: This parameter is for advanced users

Used to calibrate fuel flow for MS protocol (Offset). This can be used to correct for a non-zero offset in the fuel consumption calculation of EFI_COEF1

Range

0 to 10

EFI_FUEL_DENS: ECU Fuel Density

Note: This parameter is for advanced users

Used to calculate fuel consumption

Range

Units

0 to 10000

kilograms per cubic meter

EFI_THRLIN Parameters

EFI_THRLIN_EN: Enable throttle linearisation

Note: This parameter is for advanced users

Enable EFI throttle linearisation

Values

Value

Meaning

0

Disabled

1

Enabled

EFI_THRLIN_COEF1: Throttle linearisation - First Order

Note: This parameter is for advanced users
Note: Reboot required after change

First Order Polynomial Coefficient. (=1, if throttle is first order polynomial trendline)

Range

-1 to 1

EFI_THRLIN_COEF2: Throttle linearisation - Second Order

Note: This parameter is for advanced users
Note: Reboot required after change

Second Order Polynomial Coefficient (=0, if throttle is second order polynomial trendline)

Range

-1 to 1

EFI_THRLIN_COEF3: Throttle linearisation - Third Order

Note: This parameter is for advanced users
Note: Reboot required after change

Third Order Polynomial Coefficient. (=0, if throttle is third order polynomial trendline)

Range

-1 to 1

EFI_THRLIN_OFS: throttle linearization offset

Note: This parameter is for advanced users
Note: Reboot required after change

Offset for throttle linearization

Range

0 to 100

GPS Parameters

GPS_TYPE: 1st GPS type

Note: This parameter is for advanced users
Note: Reboot required after change

GPS type of 1st GPS

Values

Value

Meaning

0

None

1

AUTO

2

uBlox

5

NMEA

6

SiRF

7

HIL

8

SwiftNav

9

DroneCAN

10

SBF

11

GSOF

13

ERB

14

MAV

15

NOVA

16

HemisphereNMEA

17

uBlox-MovingBaseline-Base

18

uBlox-MovingBaseline-Rover

19

MSP

20

AllyStar

21

ExternalAHRS

22

DroneCAN-MovingBaseline-Base

23

DroneCAN-MovingBaseline-Rover

24

UnicoreNMEA

25

UnicoreMovingBaselineNMEA

26

SBF-DualAntenna

GPS_TYPE2: 2nd GPS type

Note: This parameter is for advanced users
Note: Reboot required after change

GPS type of 2nd GPS

Values

Value

Meaning

0

None

1

AUTO

2

uBlox

5

NMEA

6

SiRF

7

HIL

8

SwiftNav

9

DroneCAN

10

SBF

11

GSOF

13

ERB

14

MAV

15

NOVA

16

HemisphereNMEA

17

uBlox-MovingBaseline-Base

18

uBlox-MovingBaseline-Rover

19

MSP

20

AllyStar

21

ExternalAHRS

22

DroneCAN-MovingBaseline-Base

23

DroneCAN-MovingBaseline-Rover

24

UnicoreNMEA

25

UnicoreMovingBaselineNMEA

26

SBF-DualAntenna

GPS_NAVFILTER: Navigation filter setting

Note: This parameter is for advanced users

Navigation filter engine setting

Values

Value

Meaning

0

Portable

2

Stationary

3

Pedestrian

4

Automotive

5

Sea

6

Airborne1G

7

Airborne2G

8

Airborne4G

GPS_AUTO_SWITCH: Automatic Switchover Setting

Note: This parameter is for advanced users

Automatic switchover to GPS reporting best lock, 1:UseBest selects the GPS with highest status, if both are equal the GPS with highest satellite count is used 4:Use primary if 3D fix or better, will revert to 'UseBest' behaviour if 3D fix is lost on primary

Values

Value

Meaning

0

Use primary

1

UseBest

2

Blend

4

Use primary if 3D fix or better

GPS_MIN_DGPS: Minimum Lock Type Accepted for DGPS

Note: This parameter is for advanced users
Note: Reboot required after change

Sets the minimum type of differential GPS corrections required before allowing to switch into DGPS mode.

Values

Value

Meaning

0

Any

50

FloatRTK

100

IntegerRTK

GPS_SBAS_MODE: SBAS Mode

Note: This parameter is for advanced users

This sets the SBAS (satellite based augmentation system) mode if available on this GPS. If set to 2 then the SBAS mode is not changed in the GPS. Otherwise the GPS will be reconfigured to enable/disable SBAS. Disabling SBAS may be worthwhile in some parts of the world where an SBAS signal is available but the baseline is too long to be useful.

Values

Value

Meaning

0

Disabled

1

Enabled

2

NoChange

GPS_MIN_ELEV: Minimum elevation

Note: This parameter is for advanced users

This sets the minimum elevation of satellites above the horizon for them to be used for navigation. Setting this to -100 leaves the minimum elevation set to the GPS modules default.

Range

Units

-100 to 90

degrees

GPS_SBP_LOGMASK: Swift Binary Protocol Logging Mask

Note: This parameter is for advanced users

Masked with the SBP msg_type field to determine whether SBR1/SBR2 data is logged

Values

Value

Meaning

0

None (0x0000)

-1

All (0xFFFF)

-256

External only (0xFF00)

GPS_RAW_DATA: Raw data logging

Note: This parameter is for advanced users
Note: Reboot required after change

Handles logging raw data; on uBlox chips that support raw data this will log RXM messages into logger; on Septentrio this will log on the equipment's SD card and when set to 2, the autopilot will try to stop logging after disarming and restart after arming

Values

Value

Meaning

0

Ignore

1

Always log

2

Stop logging when disarmed (SBF only)

5

Only log every five samples (uBlox only)

GPS_GNSS_MODE: GNSS system configuration

Note: This parameter is for advanced users

Bitmask for what GNSS system to use on the first GPS (all unchecked or zero to leave GPS as configured)

Bitmask

Bit

Meaning

0

GPS

1

SBAS

2

Galileo

3

Beidou

4

IMES

5

QZSS

6

GLONASS

GPS_SAVE_CFG: Save GPS configuration

Note: This parameter is for advanced users

Determines whether the configuration for this GPS should be written to non-volatile memory on the GPS. Currently working for UBlox 6 series and above.

Values

Value

Meaning

0

Do not save config

1

Save config

2

Save only when needed

GPS_GNSS_MODE2: GNSS system configuration

Note: This parameter is for advanced users

Bitmask for what GNSS system to use on the second GPS (all unchecked or zero to leave GPS as configured)

Bitmask

Bit

Meaning

0

GPS

1

SBAS

2

Galileo

3

Beidou

4

IMES

5

QZSS

6

GLONASS

GPS_AUTO_CONFIG: Automatic GPS configuration

Note: This parameter is for advanced users

Controls if the autopilot should automatically configure the GPS based on the parameters and default settings

Values

Value

Meaning

0

Disables automatic configuration

1

Enable automatic configuration for Serial GPSes only

2

Enable automatic configuration for DroneCAN as well

GPS_RATE_MS: GPS update rate in milliseconds

Note: This parameter is for advanced users

Controls how often the GPS should provide a position update. Lowering below 5Hz(default) is not allowed. Raising the rate above 5Hz usually provides little benefit and for some GPS (eg Ublox M9N) can severely impact performance.

Range

Units

Values

50 to 200

milliseconds

Value

Meaning

100

10Hz

125

8Hz

200

5Hz

GPS_RATE_MS2: GPS 2 update rate in milliseconds

Note: This parameter is for advanced users

Controls how often the GPS should provide a position update. Lowering below 5Hz(default) is not allowed. Raising the rate above 5Hz usually provides little benefit and for some GPS (eg Ublox M9N) can severely impact performance.

Range

Units

Values

50 to 200

milliseconds

Value

Meaning

100

10Hz

125

8Hz

200

5Hz

GPS_POS1_X: Antenna X position offset

Note: This parameter is for advanced users

X position of the first GPS antenna in body frame. Positive X is forward of the origin. Use antenna phase centroid location if provided by the manufacturer.

Increment

Range

Units

0.01

-5 to 5

meters

GPS_POS1_Y: Antenna Y position offset

Note: This parameter is for advanced users

Y position of the first GPS antenna in body frame. Positive Y is to the right of the origin. Use antenna phase centroid location if provided by the manufacturer.

Increment

Range

Units

0.01

-5 to 5

meters

GPS_POS1_Z: Antenna Z position offset

Note: This parameter is for advanced users

Z position of the first GPS antenna in body frame. Positive Z is down from the origin. Use antenna phase centroid location if provided by the manufacturer.

Increment

Range

Units

0.01

-5 to 5

meters

GPS_POS2_X: Antenna X position offset

Note: This parameter is for advanced users

X position of the second GPS antenna in body frame. Positive X is forward of the origin. Use antenna phase centroid location if provided by the manufacturer.

Increment

Range

Units

0.01

-5 to 5

meters

GPS_POS2_Y: Antenna Y position offset

Note: This parameter is for advanced users

Y position of the second GPS antenna in body frame. Positive Y is to the right of the origin. Use antenna phase centroid location if provided by the manufacturer.

Increment

Range

Units

0.01

-5 to 5

meters

GPS_POS2_Z: Antenna Z position offset

Note: This parameter is for advanced users

Z position of the second GPS antenna in body frame. Positive Z is down from the origin. Use antenna phase centroid location if provided by the manufacturer.

Increment

Range

Units

0.01

-5 to 5

meters

GPS_DELAY_MS: GPS delay in milliseconds

Note: This parameter is for advanced users
Note: Reboot required after change

Controls the amount of GPS measurement delay that the autopilot compensates for. Set to zero to use the default delay for the detected GPS type.

Range

Units

0 to 250

milliseconds

GPS_DELAY_MS2: GPS 2 delay in milliseconds

Note: This parameter is for advanced users
Note: Reboot required after change

Controls the amount of GPS measurement delay that the autopilot compensates for. Set to zero to use the default delay for the detected GPS type.

Range

Units

0 to 250

milliseconds

GPS_BLEND_MASK: Multi GPS Blending Mask

Note: This parameter is for advanced users

Determines which of the accuracy measures Horizontal position, Vertical Position and Speed are used to calculate the weighting on each GPS receiver when soft switching has been selected by setting GPS_AUTO_SWITCH to 2(Blend)

Bitmask

Bit

Meaning

0

Horiz Pos

1

Vert Pos

2

Speed

GPS_DRV_OPTIONS: driver options

Note: This parameter is for advanced users

Additional backend specific options

Bitmask

Bit

Meaning

0

Use UART2 for moving baseline on ublox

1

Use base station for GPS yaw on SBF

2

Use baudrate 115200

3

Use dedicated CAN port b/w GPSes for moving baseline

4

Use ellipsoid height instead of AMSL

5

Override GPS satellite health of L5 band from L1 health

GPS_COM_PORT: GPS physical COM port

Note: This parameter is for advanced users
Note: Reboot required after change

The physical COM port on the connected device, currently only applies to SBF and GSOF GPS

Increment

Range

Values

1

0 to 10

Value

Meaning

0

COM1(RS232) on GSOF

1

COM2(TTL) on GSOF

GPS_COM_PORT2: GPS physical COM port

Note: This parameter is for advanced users
Note: Reboot required after change

The physical COM port on the connected device, currently only applies to SBF and GSOF GPS

Increment

Range

1

0 to 10

GPS_PRIMARY: Primary GPS

Note: This parameter is for advanced users

This GPS will be used when GPS_AUTO_SWITCH is 0 and used preferentially with GPS_AUTO_SWITCH = 4.

Increment

Values

1

Value

Meaning

0

FirstGPS

1

SecondGPS

GPS_CAN_NODEID1: GPS Node ID 1

Note: This parameter is for advanced users

GPS Node id for first-discovered GPS.

ReadOnly

True

GPS_CAN_NODEID2: GPS Node ID 2

Note: This parameter is for advanced users

GPS Node id for second-discovered GPS.

ReadOnly

True

GPS1_CAN_OVRIDE: First DroneCAN GPS NODE ID

Note: This parameter is for advanced users

GPS Node id for first GPS. If 0 the gps will be automatically selected on a first-come-first-GPS basis.

GPS2_CAN_OVRIDE: Second DroneCAN GPS NODE ID

Note: This parameter is for advanced users

GPS Node id for second GPS. If 0 the gps will be automatically selected on a second-come-second-GPS basis.

GPS_MB1_ Parameters

GPS_MB1_TYPE: Moving base type

Note: This parameter is for advanced users
Note: Reboot required after change

Controls the type of moving base used if using moving base.

Values

Value

Meaning

0

Relative to alternate GPS instance

1

RelativeToCustomBase

GPS_MB1_OFS_X: Base antenna X position offset

Note: This parameter is for advanced users

X position of the base (primary) GPS antenna in body frame from the position of the 2nd antenna. Positive X is forward of the 2nd antenna. Use antenna phase centroid location if provided by the manufacturer.

Increment

Range

Units

0.01

-5 to 5

meters

GPS_MB1_OFS_Y: Base antenna Y position offset

Note: This parameter is for advanced users

Y position of the base (primary) GPS antenna in body frame from the position of the 2nd antenna. Positive Y is to the right of the 2nd antenna. Use antenna phase centroid location if provided by the manufacturer.

Increment

Range

Units

0.01

-5 to 5

meters

GPS_MB1_OFS_Z: Base antenna Z position offset

Note: This parameter is for advanced users

Z position of the base (primary) GPS antenna in body frame from the position of the 2nd antenna. Positive Z is down from the 2nd antenna. Use antenna phase centroid location if provided by the manufacturer.

Increment

Range

Units

0.01

-5 to 5

meters

GPS_MB2_ Parameters

GPS_MB2_TYPE: Moving base type

Note: This parameter is for advanced users
Note: Reboot required after change

Controls the type of moving base used if using moving base.

Values

Value

Meaning

0

Relative to alternate GPS instance

1

RelativeToCustomBase

GPS_MB2_OFS_X: Base antenna X position offset

Note: This parameter is for advanced users

X position of the base (primary) GPS antenna in body frame from the position of the 2nd antenna. Positive X is forward of the 2nd antenna. Use antenna phase centroid location if provided by the manufacturer.

Increment

Range

Units

0.01

-5 to 5

meters

GPS_MB2_OFS_Y: Base antenna Y position offset

Note: This parameter is for advanced users

Y position of the base (primary) GPS antenna in body frame from the position of the 2nd antenna. Positive Y is to the right of the 2nd antenna. Use antenna phase centroid location if provided by the manufacturer.

Increment

Range

Units

0.01

-5 to 5

meters

GPS_MB2_OFS_Z: Base antenna Z position offset

Note: This parameter is for advanced users

Z position of the base (primary) GPS antenna in body frame from the position of the 2nd antenna. Positive Z is down from the 2nd antenna. Use antenna phase centroid location if provided by the manufacturer.

Increment

Range

Units

0.01

-5 to 5

meters

KDE_ Parameters

KDE_NPOLE: Number of motor poles

Sets the number of motor poles to calculate the correct RPM value

LOG Parameters

LOG_BACKEND_TYPE: AP_Logger Backend Storage type

Bitmap of what Logger backend types to enable. Block-based logging is available on SITL and boards with dataflash chips. Multiple backends can be selected.

Bitmask

Bit

Meaning

0

File

1

MAVLink

2

Block

LOG_FILE_BUFSIZE: Maximum AP_Logger File and Block Backend buffer size (in kilobytes)

The File and Block backends use a buffer to store data before writing to the block device. Raising this value may reduce "gaps" in your SD card logging. This buffer size may be reduced depending on available memory. PixHawk requires at least 4 kilobytes. Maximum value available here is 64 kilobytes.

LOG_DISARMED: Enable logging while disarmed

If LOG_DISARMED is set to 1 then logging will be enabled at all times including when disarmed. Logging before arming can make for very large logfiles but can help a lot when tracking down startup issues and is necessary if logging of EKF replay data is selected via the LOG_REPLAY parameter. If LOG_DISARMED is set to 2, then logging will be enabled when disarmed, but not if a USB connection is detected. This can be used to prevent unwanted data logs being generated when the vehicle is connected via USB for log downloading or parameter changes. If LOG_DISARMED is set to 3 then logging will happen while disarmed, but if the vehicle never arms then the logs using the filesystem backend will be discarded on the next boot.

Values

Value

Meaning

0

Disabled

1

Enabled

2

Disabled on USB connection

3

Discard log on reboot if never armed

LOG_REPLAY: Enable logging of information needed for Replay

If LOG_REPLAY is set to 1 then the EKF2 and EKF3 state estimators will log detailed information needed for diagnosing problems with the Kalman filter. LOG_DISARMED must be set to 1 or 2 or else the log will not contain the pre-flight data required for replay testing of the EKF's. It is suggested that you also raise LOG_FILE_BUFSIZE to give more buffer space for logging and use a high quality microSD card to ensure no sensor data is lost.

Values

Value

Meaning

0

Disabled

1

Enabled

LOG_FILE_DSRMROT: Stop logging to current file on disarm

When set, the current log file is closed when the vehicle is disarmed. If LOG_DISARMED is set then a fresh log will be opened. Applies to the File and Block logging backends.

Values

Value

Meaning

0

Disabled

1

Enabled

LOG_FILE_TIMEOUT: Timeout before giving up on file writes

This controls the amount of time before failing writes to a log file cause the file to be closed and logging stopped.

Units

seconds

LOG_FILE_MB_FREE: Old logs on the SD card will be deleted to maintain this amount of free space

Set this such that the free space is larger than your largest typical flight log

Range

Units

10 to 1000

megabyte

LOG_FILE_RATEMAX: Maximum logging rate for file backend

This sets the maximum rate that streaming log messages will be logged to the file backend. A value of zero means that rate limiting is disabled.

Increment

Range

Units

0.1

0 to 1000

hertz

LOG_BLK_RATEMAX: Maximum logging rate for block backend

This sets the maximum rate that streaming log messages will be logged to the block backend. A value of zero means that rate limiting is disabled.

Increment

Range

Units

0.1

0 to 1000

hertz

LOG_DARM_RATEMAX: Maximum logging rate when disarmed

This sets the maximum rate that streaming log messages will be logged to any backend when disarmed. A value of zero means that the normal backend rate limit is applied.

Increment

Range

Units

0.1

0 to 1000

hertz

LOG_MAX_FILES: Maximum number of log files

Note: This parameter is for advanced users
Note: Reboot required after change

This sets the maximum number of log file that will be written on dataflash or sd card before starting to rotate log number. Limit is capped at 500 logs.

Increment

Range

1

2 to 500

NET_ Parameters

NET_PPP_PORT: PPP serial port

PPP serial port

Range

-1 to 10

NET_PPP_BAUD: PPP serial baudrate

PPP serial baudrate

Values

Value

Meaning

1

1200

2

2400

4

4800

9

9600

19

19200

38

38400

57

57600

111

111100

115

115200

230

230400

256

256000

460

460800

500

500000

921

921600

1500

1500000

2000

2000000

NET_P1_ Parameters

NET_P1_TYPE: Port type

Note: This parameter is for advanced users
Note: Reboot required after change

Port type for network serial port. For the two client types a valid destination IP address must be set. For the two server types either 0.0.0.0 or a local address can be used. The UDP client type will use broadcast if the IP is set to 255.255.255.255 and will use UDP multicast if the IP is in the multicast address range.

Values

Value

Meaning

0

Disabled

1

UDP client

2

UDP server

3

TCP client

4

TCP server

NET_P1_PROTOCOL: Protocol

Note: This parameter is for advanced users
Note: Reboot required after change

Networked serial port protocol

Values

Value

Meaning

-1

None

1

MAVLink1

2

MAVLink2

3

Frsky D

4

Frsky SPort

5

GPS

7

Alexmos Gimbal Serial

8

Gimbal

9

Rangefinder

10

FrSky SPort Passthrough (OpenTX)

11

Lidar360

13

Beacon

14

Volz servo out

15

SBus servo out

16

ESC Telemetry

17

Devo Telemetry

18

OpticalFlow

19

RobotisServo

20

NMEA Output

21

WindVane

22

SLCAN

23

RCIN

24

EFI Serial

25

LTM

26

RunCam

27

HottTelem

28

Scripting

29

Crossfire VTX

30

Generator

31

Winch

32

MSP

33

DJI FPV

34

AirSpeed

35

ADSB

36

AHRS

37

SmartAudio

38

FETtecOneWire

39

Torqeedo

40

AIS

41

CoDevESC

42

DisplayPort

43

MAVLink High Latency

44

IRC Tramp

45

DDS XRCE

46

IMUDATA

NET_P1_PORT: Port number

Note: This parameter is for advanced users
Note: Reboot required after change

Port number

Range

0 to 65535

NET_P1_IP Parameters

NET_P1_IP0: IPv4 Address 1st byte

Note: Reboot required after change

IPv4 address. Example: 192.xxx.xxx.xxx

Range

0 to 255

NET_P1_IP1: IPv4 Address 2nd byte

Note: Reboot required after change

IPv4 address. Example: xxx.168.xxx.xxx

Range

0 to 255

NET_P1_IP2: IPv4 Address 3rd byte

Note: Reboot required after change

IPv4 address. Example: xxx.xxx.13.xxx

Range

0 to 255

NET_P1_IP3: IPv4 Address 4th byte

Note: Reboot required after change

IPv4 address. Example: xxx.xxx.xxx.14

Range

0 to 255

NET_P2_ Parameters

NET_P2_TYPE: Port type

Note: This parameter is for advanced users
Note: Reboot required after change

Port type for network serial port. For the two client types a valid destination IP address must be set. For the two server types either 0.0.0.0 or a local address can be used. The UDP client type will use broadcast if the IP is set to 255.255.255.255 and will use UDP multicast if the IP is in the multicast address range.

Values

Value

Meaning

0

Disabled

1

UDP client

2

UDP server

3

TCP client

4

TCP server

NET_P2_PROTOCOL: Protocol

Note: This parameter is for advanced users
Note: Reboot required after change

Networked serial port protocol

Values

Value

Meaning

-1

None

1

MAVLink1

2

MAVLink2

3

Frsky D

4

Frsky SPort

5

GPS

7

Alexmos Gimbal Serial

8

Gimbal

9

Rangefinder

10

FrSky SPort Passthrough (OpenTX)

11

Lidar360

13

Beacon

14

Volz servo out

15

SBus servo out

16

ESC Telemetry

17

Devo Telemetry

18

OpticalFlow

19

RobotisServo

20

NMEA Output

21

WindVane

22

SLCAN

23

RCIN

24

EFI Serial

25

LTM

26

RunCam

27

HottTelem

28

Scripting

29

Crossfire VTX

30

Generator

31

Winch

32

MSP

33

DJI FPV

34

AirSpeed

35

ADSB

36

AHRS

37

SmartAudio

38

FETtecOneWire

39

Torqeedo

40

AIS

41

CoDevESC

42

DisplayPort

43

MAVLink High Latency

44

IRC Tramp

45

DDS XRCE

46

IMUDATA

NET_P2_PORT: Port number

Note: This parameter is for advanced users
Note: Reboot required after change

Port number

Range

0 to 65535

NET_P2_IP Parameters

NET_P2_IP0: IPv4 Address 1st byte

Note: Reboot required after change

IPv4 address. Example: 192.xxx.xxx.xxx

Range

0 to 255

NET_P2_IP1: IPv4 Address 2nd byte

Note: Reboot required after change

IPv4 address. Example: xxx.168.xxx.xxx

Range

0 to 255

NET_P2_IP2: IPv4 Address 3rd byte

Note: Reboot required after change

IPv4 address. Example: xxx.xxx.13.xxx

Range

0 to 255

NET_P2_IP3: IPv4 Address 4th byte

Note: Reboot required after change

IPv4 address. Example: xxx.xxx.xxx.14

Range

0 to 255

NET_P3_ Parameters

NET_P3_TYPE: Port type

Note: This parameter is for advanced users
Note: Reboot required after change

Port type for network serial port. For the two client types a valid destination IP address must be set. For the two server types either 0.0.0.0 or a local address can be used. The UDP client type will use broadcast if the IP is set to 255.255.255.255 and will use UDP multicast if the IP is in the multicast address range.

Values

Value

Meaning

0

Disabled

1

UDP client

2

UDP server

3

TCP client

4

TCP server

NET_P3_PROTOCOL: Protocol

Note: This parameter is for advanced users
Note: Reboot required after change

Networked serial port protocol

Values

Value

Meaning

-1

None

1

MAVLink1

2

MAVLink2

3

Frsky D

4

Frsky SPort

5

GPS

7

Alexmos Gimbal Serial

8

Gimbal

9

Rangefinder

10

FrSky SPort Passthrough (OpenTX)

11

Lidar360

13

Beacon

14

Volz servo out

15

SBus servo out

16

ESC Telemetry

17

Devo Telemetry

18

OpticalFlow

19

RobotisServo

20

NMEA Output

21

WindVane

22

SLCAN

23

RCIN

24

EFI Serial

25

LTM

26

RunCam

27

HottTelem

28

Scripting

29

Crossfire VTX

30

Generator

31

Winch

32

MSP

33

DJI FPV

34

AirSpeed

35

ADSB

36

AHRS

37

SmartAudio

38

FETtecOneWire

39

Torqeedo

40

AIS

41

CoDevESC

42

DisplayPort

43

MAVLink High Latency

44

IRC Tramp

45

DDS XRCE

46

IMUDATA

NET_P3_PORT: Port number

Note: This parameter is for advanced users
Note: Reboot required after change

Port number

Range

0 to 65535

NET_P3_IP Parameters

NET_P3_IP0: IPv4 Address 1st byte

Note: Reboot required after change

IPv4 address. Example: 192.xxx.xxx.xxx

Range

0 to 255

NET_P3_IP1: IPv4 Address 2nd byte

Note: Reboot required after change

IPv4 address. Example: xxx.168.xxx.xxx

Range

0 to 255

NET_P3_IP2: IPv4 Address 3rd byte

Note: Reboot required after change

IPv4 address. Example: xxx.xxx.13.xxx

Range

0 to 255

NET_P3_IP3: IPv4 Address 4th byte

Note: Reboot required after change

IPv4 address. Example: xxx.xxx.xxx.14

Range

0 to 255

NET_P4_ Parameters

NET_P4_TYPE: Port type

Note: This parameter is for advanced users
Note: Reboot required after change

Port type for network serial port. For the two client types a valid destination IP address must be set. For the two server types either 0.0.0.0 or a local address can be used. The UDP client type will use broadcast if the IP is set to 255.255.255.255 and will use UDP multicast if the IP is in the multicast address range.

Values

Value

Meaning

0

Disabled

1

UDP client

2

UDP server

3

TCP client

4

TCP server

NET_P4_PROTOCOL: Protocol

Note: This parameter is for advanced users
Note: Reboot required after change

Networked serial port protocol

Values

Value

Meaning

-1

None

1

MAVLink1

2

MAVLink2

3

Frsky D

4

Frsky SPort

5

GPS

7

Alexmos Gimbal Serial

8

Gimbal

9

Rangefinder

10

FrSky SPort Passthrough (OpenTX)

11

Lidar360

13

Beacon

14

Volz servo out

15

SBus servo out

16

ESC Telemetry

17

Devo Telemetry

18

OpticalFlow

19

RobotisServo

20

NMEA Output

21

WindVane

22

SLCAN

23

RCIN

24

EFI Serial

25

LTM

26

RunCam

27

HottTelem

28

Scripting

29

Crossfire VTX

30

Generator

31

Winch

32

MSP

33

DJI FPV

34

AirSpeed

35

ADSB

36

AHRS

37

SmartAudio

38

FETtecOneWire

39

Torqeedo

40

AIS

41

CoDevESC

42

DisplayPort

43

MAVLink High Latency

44

IRC Tramp

45

DDS XRCE

46

IMUDATA

NET_P4_PORT: Port number

Note: This parameter is for advanced users
Note: Reboot required after change

Port number

Range

0 to 65535

NET_P4_IP Parameters

NET_P4_IP0: IPv4 Address 1st byte

Note: Reboot required after change

IPv4 address. Example: 192.xxx.xxx.xxx

Range

0 to 255

NET_P4_IP1: IPv4 Address 2nd byte

Note: Reboot required after change

IPv4 address. Example: xxx.168.xxx.xxx

Range

0 to 255

NET_P4_IP2: IPv4 Address 3rd byte

Note: Reboot required after change

IPv4 address. Example: xxx.xxx.13.xxx

Range

0 to 255

NET_P4_IP3: IPv4 Address 4th byte

Note: Reboot required after change

IPv4 address. Example: xxx.xxx.xxx.14

Range

0 to 255

NET_P5_ Parameters

NET_P5_TYPE: Port type

Note: This parameter is for advanced users
Note: Reboot required after change

Port type for network serial port. For the two client types a valid destination IP address must be set. For the two server types either 0.0.0.0 or a local address can be used. The UDP client type will use broadcast if the IP is set to 255.255.255.255 and will use UDP multicast if the IP is in the multicast address range.

Values

Value

Meaning

0

Disabled

1

UDP client

2

UDP server

3

TCP client

4

TCP server

NET_P5_PROTOCOL: Protocol

Note: This parameter is for advanced users
Note: Reboot required after change

Networked serial port protocol

Values

Value

Meaning

-1

None

1

MAVLink1

2

MAVLink2

3

Frsky D

4

Frsky SPort

5

GPS

7

Alexmos Gimbal Serial

8

Gimbal

9

Rangefinder

10

FrSky SPort Passthrough (OpenTX)

11

Lidar360

13

Beacon

14

Volz servo out

15

SBus servo out

16

ESC Telemetry

17

Devo Telemetry

18

OpticalFlow

19

RobotisServo

20

NMEA Output

21

WindVane

22

SLCAN

23

RCIN

24

EFI Serial

25

LTM

26

RunCam

27

HottTelem

28

Scripting

29

Crossfire VTX

30

Generator

31

Winch

32

MSP

33

DJI FPV

34

AirSpeed

35

ADSB

36

AHRS

37

SmartAudio

38

FETtecOneWire

39

Torqeedo

40

AIS

41

CoDevESC

42

DisplayPort

43

MAVLink High Latency

44

IRC Tramp

45

DDS XRCE

46

IMUDATA

NET_P5_PORT: Port number

Note: This parameter is for advanced users
Note: Reboot required after change

Port number

Range

0 to 65535

NET_P5_IP Parameters

NET_P5_IP0: IPv4 Address 1st byte

Note: Reboot required after change

IPv4 address. Example: 192.xxx.xxx.xxx

Range

0 to 255

NET_P5_IP1: IPv4 Address 2nd byte

Note: Reboot required after change

IPv4 address. Example: xxx.168.xxx.xxx

Range

0 to 255

NET_P5_IP2: IPv4 Address 3rd byte

Note: Reboot required after change

IPv4 address. Example: xxx.xxx.13.xxx

Range

0 to 255

NET_P5_IP3: IPv4 Address 4th byte

Note: Reboot required after change

IPv4 address. Example: xxx.xxx.xxx.14

Range

0 to 255

NET_P6_ Parameters

NET_P6_TYPE: Port type

Note: This parameter is for advanced users
Note: Reboot required after change

Port type for network serial port. For the two client types a valid destination IP address must be set. For the two server types either 0.0.0.0 or a local address can be used. The UDP client type will use broadcast if the IP is set to 255.255.255.255 and will use UDP multicast if the IP is in the multicast address range.

Values

Value

Meaning

0

Disabled

1

UDP client

2

UDP server

3

TCP client

4

TCP server

NET_P6_PROTOCOL: Protocol

Note: This parameter is for advanced users
Note: Reboot required after change

Networked serial port protocol

Values

Value

Meaning

-1

None

1

MAVLink1

2

MAVLink2

3

Frsky D

4

Frsky SPort

5

GPS

7

Alexmos Gimbal Serial

8

Gimbal

9

Rangefinder

10

FrSky SPort Passthrough (OpenTX)

11

Lidar360

13

Beacon

14

Volz servo out

15

SBus servo out

16

ESC Telemetry

17

Devo Telemetry

18

OpticalFlow

19

RobotisServo

20

NMEA Output

21

WindVane

22

SLCAN

23

RCIN

24

EFI Serial

25

LTM

26

RunCam

27

HottTelem

28

Scripting

29

Crossfire VTX

30

Generator

31

Winch

32

MSP

33

DJI FPV

34

AirSpeed

35

ADSB

36

AHRS

37

SmartAudio

38

FETtecOneWire

39

Torqeedo

40

AIS

41

CoDevESC

42

DisplayPort

43

MAVLink High Latency

44

IRC Tramp

45

DDS XRCE

46

IMUDATA

NET_P6_PORT: Port number

Note: This parameter is for advanced users
Note: Reboot required after change

Port number

Range

0 to 65535

NET_P6_IP Parameters

NET_P6_IP0: IPv4 Address 1st byte

Note: Reboot required after change

IPv4 address. Example: 192.xxx.xxx.xxx

Range

0 to 255

NET_P6_IP1: IPv4 Address 2nd byte

Note: Reboot required after change

IPv4 address. Example: xxx.168.xxx.xxx

Range

0 to 255

NET_P6_IP2: IPv4 Address 3rd byte

Note: Reboot required after change

IPv4 address. Example: xxx.xxx.13.xxx

Range

0 to 255

NET_P6_IP3: IPv4 Address 4th byte

Note: Reboot required after change

IPv4 address. Example: xxx.xxx.xxx.14

Range

0 to 255

NET_P7_ Parameters

NET_P7_TYPE: Port type

Note: This parameter is for advanced users
Note: Reboot required after change

Port type for network serial port. For the two client types a valid destination IP address must be set. For the two server types either 0.0.0.0 or a local address can be used. The UDP client type will use broadcast if the IP is set to 255.255.255.255 and will use UDP multicast if the IP is in the multicast address range.

Values

Value

Meaning

0

Disabled

1

UDP client

2

UDP server

3

TCP client

4

TCP server

NET_P7_PROTOCOL: Protocol

Note: This parameter is for advanced users
Note: Reboot required after change

Networked serial port protocol

Values

Value

Meaning

-1

None

1

MAVLink1

2

MAVLink2

3

Frsky D

4

Frsky SPort

5

GPS

7

Alexmos Gimbal Serial

8

Gimbal

9

Rangefinder

10

FrSky SPort Passthrough (OpenTX)

11

Lidar360

13

Beacon

14

Volz servo out

15

SBus servo out

16

ESC Telemetry

17

Devo Telemetry

18

OpticalFlow

19

RobotisServo

20

NMEA Output

21

WindVane

22

SLCAN

23

RCIN

24

EFI Serial

25

LTM

26

RunCam

27

HottTelem

28

Scripting

29

Crossfire VTX

30

Generator

31

Winch

32

MSP

33

DJI FPV

34

AirSpeed

35

ADSB

36

AHRS

37

SmartAudio

38

FETtecOneWire

39

Torqeedo

40

AIS

41

CoDevESC

42

DisplayPort

43

MAVLink High Latency

44

IRC Tramp

45

DDS XRCE

46

IMUDATA

NET_P7_PORT: Port number

Note: This parameter is for advanced users
Note: Reboot required after change

Port number

Range

0 to 65535

NET_P7_IP Parameters

NET_P7_IP0: IPv4 Address 1st byte

Note: Reboot required after change

IPv4 address. Example: 192.xxx.xxx.xxx

Range

0 to 255

NET_P7_IP1: IPv4 Address 2nd byte

Note: Reboot required after change

IPv4 address. Example: xxx.168.xxx.xxx

Range

0 to 255

NET_P7_IP2: IPv4 Address 3rd byte

Note: Reboot required after change

IPv4 address. Example: xxx.xxx.13.xxx

Range

0 to 255

NET_P7_IP3: IPv4 Address 4th byte

Note: Reboot required after change

IPv4 address. Example: xxx.xxx.xxx.14

Range

0 to 255

NET_P8_ Parameters

NET_P8_TYPE: Port type

Note: This parameter is for advanced users
Note: Reboot required after change

Port type for network serial port. For the two client types a valid destination IP address must be set. For the two server types either 0.0.0.0 or a local address can be used. The UDP client type will use broadcast if the IP is set to 255.255.255.255 and will use UDP multicast if the IP is in the multicast address range.

Values

Value

Meaning

0

Disabled

1

UDP client

2

UDP server

3

TCP client

4

TCP server

NET_P8_PROTOCOL: Protocol

Note: This parameter is for advanced users
Note: Reboot required after change

Networked serial port protocol

Values

Value

Meaning

-1

None

1

MAVLink1

2

MAVLink2

3

Frsky D

4

Frsky SPort

5

GPS

7

Alexmos Gimbal Serial

8

Gimbal

9

Rangefinder

10

FrSky SPort Passthrough (OpenTX)

11

Lidar360

13

Beacon

14

Volz servo out

15

SBus servo out

16

ESC Telemetry

17

Devo Telemetry

18

OpticalFlow

19

RobotisServo

20

NMEA Output

21

WindVane

22

SLCAN

23

RCIN

24

EFI Serial

25

LTM

26

RunCam

27

HottTelem

28

Scripting

29

Crossfire VTX

30

Generator

31

Winch

32

MSP

33

DJI FPV

34

AirSpeed

35

ADSB

36

AHRS

37

SmartAudio

38

FETtecOneWire

39

Torqeedo

40

AIS

41

CoDevESC

42

DisplayPort

43

MAVLink High Latency

44

IRC Tramp

45

DDS XRCE

46

IMUDATA

NET_P8_PORT: Port number

Note: This parameter is for advanced users
Note: Reboot required after change

Port number

Range

0 to 65535

NET_P8_IP Parameters

NET_P8_IP0: IPv4 Address 1st byte

Note: Reboot required after change

IPv4 address. Example: 192.xxx.xxx.xxx

Range

0 to 255

NET_P8_IP1: IPv4 Address 2nd byte

Note: Reboot required after change

IPv4 address. Example: xxx.168.xxx.xxx

Range

0 to 255

NET_P8_IP2: IPv4 Address 3rd byte

Note: Reboot required after change

IPv4 address. Example: xxx.xxx.13.xxx

Range

0 to 255

NET_P8_IP3: IPv4 Address 4th byte

Note: Reboot required after change

IPv4 address. Example: xxx.xxx.xxx.14

Range

0 to 255

NET_P9_ Parameters

NET_P9_TYPE: Port type

Note: This parameter is for advanced users
Note: Reboot required after change

Port type for network serial port. For the two client types a valid destination IP address must be set. For the two server types either 0.0.0.0 or a local address can be used. The UDP client type will use broadcast if the IP is set to 255.255.255.255 and will use UDP multicast if the IP is in the multicast address range.

Values

Value

Meaning

0

Disabled

1

UDP client

2

UDP server

3

TCP client

4

TCP server

NET_P9_PROTOCOL: Protocol

Note: This parameter is for advanced users
Note: Reboot required after change

Networked serial port protocol

Values

Value

Meaning

-1

None

1

MAVLink1

2

MAVLink2

3

Frsky D

4

Frsky SPort

5

GPS

7

Alexmos Gimbal Serial

8

Gimbal

9

Rangefinder

10

FrSky SPort Passthrough (OpenTX)

11

Lidar360

13

Beacon

14

Volz servo out

15

SBus servo out

16

ESC Telemetry

17

Devo Telemetry

18

OpticalFlow

19

RobotisServo

20

NMEA Output

21

WindVane

22

SLCAN

23

RCIN

24

EFI Serial

25

LTM

26

RunCam

27

HottTelem

28

Scripting

29

Crossfire VTX

30

Generator

31

Winch

32

MSP

33

DJI FPV

34

AirSpeed

35

ADSB

36

AHRS

37

SmartAudio

38

FETtecOneWire

39

Torqeedo

40

AIS

41

CoDevESC

42

DisplayPort

43

MAVLink High Latency

44

IRC Tramp

45

DDS XRCE

46

IMUDATA

NET_P9_PORT: Port number

Note: This parameter is for advanced users
Note: Reboot required after change

Port number

Range

0 to 65535

NET_P9_IP Parameters

NET_P9_IP0: IPv4 Address 1st byte

Note: Reboot required after change

IPv4 address. Example: 192.xxx.xxx.xxx

Range

0 to 255

NET_P9_IP1: IPv4 Address 2nd byte

Note: Reboot required after change

IPv4 address. Example: xxx.168.xxx.xxx

Range

0 to 255

NET_P9_IP2: IPv4 Address 3rd byte

Note: Reboot required after change

IPv4 address. Example: xxx.xxx.13.xxx

Range

0 to 255

NET_P9_IP3: IPv4 Address 4th byte

Note: Reboot required after change

IPv4 address. Example: xxx.xxx.xxx.14

Range

0 to 255

NET_PASS1_ Parameters

NET_PASS1_ENABLE: Enable Passthrough

Note: This parameter is for advanced users
Note: Reboot required after change

Enable Passthrough of any UART, Network, or CAN ports to any UART, Network, or CAN ports.

Values

Value

Meaning

0

Disabled

1

Enabled

NET_PASS1_EP1: Endpoint 1

Note: This parameter is for advanced users
Note: Reboot required after change

Passthrough Endpoint 1. This can be a serial port UART, a Network port, or a CAN port. The selected port will route to Endport 2.

Values

Value

Meaning

-1

Disabled

0

Serial0(usually USB)

1

Serial1

2

Serial2

3

Serial3

4

Serial4

5

Serial5

6

Serial6

7

Serial7

8

Serial8

9

Serial9

21

Network Port1

22

Network Port2

23

Network Port3

24

Network Port4

25

Network Port5

26

Network Port6

27

Network Port7

28

Network Port8

29

Network Port9

41

CAN1 Port1

42

CAN1 Port2

43

CAN1 Port3

44

CAN1 Port4

45

CAN1 Port5

46

CAN1 Port6

47

CAN1 Port7

48

CAN1 Port8

49

CAN1 Port9

51

CAN2 Port1

52

CAN2 Port2

53

CAN2 Port3

54

CAN2 Port4

55

CAN2 Port5

56

CAN2 Port6

57

CAN2 Port7

58

CAN2 Port8

59

CAN2 Port9

NET_PASS1_EP2: Endpoint 2

Note: This parameter is for advanced users
Note: Reboot required after change

Passthrough Endpoint 2. This can be a serial port UART, a Network port, or a CAN port. The selected port will route to Endport 1.

Values

Value

Meaning

-1

Disabled

0

Serial0(usually USB)

1

Serial1

2

Serial2

3

Serial3

4

Serial4

5

Serial5

6

Serial6

7

Serial7

8

Serial8

9

Serial9

21

Network Port1

22

Network Port2

23

Network Port3

24

Network Port4

25

Network Port5

26

Network Port6

27

Network Port7

28

Network Port8

29

Network Port9

41

CAN1 Port1

42

CAN1 Port2

43

CAN1 Port3

44

CAN1 Port4

45

CAN1 Port5

46

CAN1 Port6

47

CAN1 Port7

48

CAN1 Port8

49

CAN1 Port9

51

CAN2 Port1

52

CAN2 Port2

53

CAN2 Port3

54

CAN2 Port4

55

CAN2 Port5

56

CAN2 Port6

57

CAN2 Port7

58

CAN2 Port8

59

CAN2 Port9

NET_PASS1_BAUD1: Endpoint 1 Baud Rate

The baud rate used for Endpoint 1. Only applies to serial ports.

Values

Value

Meaning

1

1200

2

2400

4

4800

9

9600

19

19200

38

38400

57

57600

111

111100

115

115200

230

230400

256

256000

460

460800

500

500000

921

921600

1500

1500000

2000

2000000

NET_PASS1_BAUD2: Endpoint 2 Baud Rate

The baud rate used for Endpoint 2. Only applies to serial ports.

Values

Value

Meaning

1

1200

2

2400

4

4800

9

9600

19

19200

38

38400

57

57600

111

111100

115

115200

230

230400

256

256000

460

460800

500

500000

921

921600

1500

1500000

2000

2000000

NET_PASS1_OPT1: Serial Port Options EP1

Note: This parameter is for advanced users
Note: Reboot required after change

Control over UART options for Endpoint 1. Only applies to serial ports.

Bitmask

Bit

Meaning

0

InvertRX

1

InvertTX

2

HalfDuplex

3

SwapTXRX

4

RX_PullDown

5

RX_PullUp

6

TX_PullDown

7

TX_PullUp

8

RX_NoDMA

9

TX_NoDMA

10

Don’t forward mavlink to/from

11

DisableFIFO

12

Ignore Streamrate

NET_PASS1_OPT2: Serial Port Options EP2

Note: This parameter is for advanced users
Note: Reboot required after change

Control over UART options for Endpoint 2. Only applies to serial ports.

Bitmask

Bit

Meaning

0

InvertRX

1

InvertTX

2

HalfDuplex

3

SwapTXRX

4

RX_PullDown

5

RX_PullUp

6

TX_PullDown

7

TX_PullUp

8

RX_NoDMA

9

TX_NoDMA

10

Don’t forward mavlink to/from

11

DisableFIFO

12

Ignore Streamrate

NET_PASS2_ Parameters

NET_PASS2_ENABLE: Enable Passthrough

Note: This parameter is for advanced users
Note: Reboot required after change

Enable Passthrough of any UART, Network, or CAN ports to any UART, Network, or CAN ports.

Values

Value

Meaning

0

Disabled

1

Enabled

NET_PASS2_EP1: Endpoint 1

Note: This parameter is for advanced users
Note: Reboot required after change

Passthrough Endpoint 1. This can be a serial port UART, a Network port, or a CAN port. The selected port will route to Endport 2.

Values

Value

Meaning

-1

Disabled

0

Serial0(usually USB)

1

Serial1

2

Serial2

3

Serial3

4

Serial4

5

Serial5

6

Serial6

7

Serial7

8

Serial8

9

Serial9

21

Network Port1

22

Network Port2

23

Network Port3

24

Network Port4

25

Network Port5

26

Network Port6

27

Network Port7

28

Network Port8

29

Network Port9

41

CAN1 Port1

42

CAN1 Port2

43

CAN1 Port3

44

CAN1 Port4

45

CAN1 Port5

46

CAN1 Port6

47

CAN1 Port7

48

CAN1 Port8

49

CAN1 Port9

51

CAN2 Port1

52

CAN2 Port2

53

CAN2 Port3

54

CAN2 Port4

55

CAN2 Port5

56

CAN2 Port6

57

CAN2 Port7

58

CAN2 Port8

59

CAN2 Port9

NET_PASS2_EP2: Endpoint 2

Note: This parameter is for advanced users
Note: Reboot required after change

Passthrough Endpoint 2. This can be a serial port UART, a Network port, or a CAN port. The selected port will route to Endport 1.

Values

Value

Meaning

-1

Disabled

0

Serial0(usually USB)

1

Serial1

2

Serial2

3

Serial3

4

Serial4

5

Serial5

6

Serial6

7

Serial7

8

Serial8

9

Serial9

21

Network Port1

22

Network Port2

23

Network Port3

24

Network Port4

25

Network Port5

26

Network Port6

27

Network Port7

28

Network Port8

29

Network Port9

41

CAN1 Port1

42

CAN1 Port2

43

CAN1 Port3

44

CAN1 Port4

45

CAN1 Port5

46

CAN1 Port6

47

CAN1 Port7

48

CAN1 Port8

49

CAN1 Port9

51

CAN2 Port1

52

CAN2 Port2

53

CAN2 Port3

54

CAN2 Port4

55

CAN2 Port5

56

CAN2 Port6

57

CAN2 Port7

58

CAN2 Port8

59

CAN2 Port9

NET_PASS2_BAUD1: Endpoint 1 Baud Rate

The baud rate used for Endpoint 1. Only applies to serial ports.

Values

Value

Meaning

1

1200

2

2400

4

4800

9

9600

19

19200

38

38400

57

57600

111

111100

115

115200

230

230400

256

256000

460

460800

500

500000

921

921600

1500

1500000

2000

2000000

NET_PASS2_BAUD2: Endpoint 2 Baud Rate

The baud rate used for Endpoint 2. Only applies to serial ports.

Values

Value

Meaning

1

1200

2

2400

4

4800

9

9600

19

19200

38

38400

57

57600

111

111100

115

115200

230

230400

256

256000

460

460800

500

500000

921

921600

1500

1500000

2000

2000000

NET_PASS2_OPT1: Serial Port Options EP1

Note: This parameter is for advanced users
Note: Reboot required after change

Control over UART options for Endpoint 1. Only applies to serial ports.

Bitmask

Bit

Meaning

0

InvertRX

1

InvertTX

2

HalfDuplex

3

SwapTXRX

4

RX_PullDown

5

RX_PullUp

6

TX_PullDown

7

TX_PullUp

8

RX_NoDMA

9

TX_NoDMA

10

Don’t forward mavlink to/from

11

DisableFIFO

12

Ignore Streamrate

NET_PASS2_OPT2: Serial Port Options EP2

Note: This parameter is for advanced users
Note: Reboot required after change

Control over UART options for Endpoint 2. Only applies to serial ports.

Bitmask

Bit

Meaning

0

InvertRX

1

InvertTX

2

HalfDuplex

3

SwapTXRX

4

RX_PullDown

5

RX_PullUp

6

TX_PullDown

7

TX_PullUp

8

RX_NoDMA

9

TX_NoDMA

10

Don’t forward mavlink to/from

11

DisableFIFO

12

Ignore Streamrate

NET_PASS3_ Parameters

NET_PASS3_ENABLE: Enable Passthrough

Note: This parameter is for advanced users
Note: Reboot required after change

Enable Passthrough of any UART, Network, or CAN ports to any UART, Network, or CAN ports.

Values

Value

Meaning

0

Disabled

1

Enabled

NET_PASS3_EP1: Endpoint 1

Note: This parameter is for advanced users
Note: Reboot required after change

Passthrough Endpoint 1. This can be a serial port UART, a Network port, or a CAN port. The selected port will route to Endport 2.

Values

Value

Meaning

-1

Disabled

0

Serial0(usually USB)

1

Serial1

2

Serial2

3

Serial3

4

Serial4

5

Serial5

6

Serial6

7

Serial7

8

Serial8

9

Serial9

21

Network Port1

22

Network Port2

23

Network Port3

24

Network Port4

25

Network Port5

26

Network Port6

27

Network Port7

28

Network Port8

29

Network Port9

41

CAN1 Port1

42

CAN1 Port2

43

CAN1 Port3

44

CAN1 Port4

45

CAN1 Port5

46

CAN1 Port6

47

CAN1 Port7

48

CAN1 Port8

49

CAN1 Port9

51

CAN2 Port1

52

CAN2 Port2

53

CAN2 Port3

54

CAN2 Port4

55

CAN2 Port5

56

CAN2 Port6

57

CAN2 Port7

58

CAN2 Port8

59

CAN2 Port9

NET_PASS3_EP2: Endpoint 2

Note: This parameter is for advanced users
Note: Reboot required after change

Passthrough Endpoint 2. This can be a serial port UART, a Network port, or a CAN port. The selected port will route to Endport 1.

Values

Value

Meaning

-1

Disabled

0

Serial0(usually USB)

1

Serial1

2

Serial2

3

Serial3

4

Serial4

5

Serial5

6

Serial6

7

Serial7

8

Serial8

9

Serial9

21

Network Port1

22

Network Port2

23

Network Port3

24

Network Port4

25

Network Port5

26

Network Port6

27

Network Port7

28

Network Port8

29

Network Port9

41

CAN1 Port1

42

CAN1 Port2

43

CAN1 Port3

44

CAN1 Port4

45

CAN1 Port5

46

CAN1 Port6

47

CAN1 Port7

48

CAN1 Port8

49

CAN1 Port9

51

CAN2 Port1

52

CAN2 Port2

53

CAN2 Port3

54

CAN2 Port4

55

CAN2 Port5

56

CAN2 Port6

57

CAN2 Port7

58

CAN2 Port8

59

CAN2 Port9

NET_PASS3_BAUD1: Endpoint 1 Baud Rate

The baud rate used for Endpoint 1. Only applies to serial ports.

Values

Value

Meaning

1

1200

2

2400

4

4800

9

9600

19

19200

38

38400

57

57600

111

111100

115

115200

230

230400

256

256000

460

460800

500

500000

921

921600

1500

1500000

2000

2000000

NET_PASS3_BAUD2: Endpoint 2 Baud Rate

The baud rate used for Endpoint 2. Only applies to serial ports.

Values

Value

Meaning

1

1200

2

2400

4

4800

9

9600

19

19200

38

38400

57

57600

111

111100

115

115200

230

230400

256

256000

460

460800

500

500000

921

921600

1500

1500000

2000

2000000

NET_PASS3_OPT1: Serial Port Options EP1

Note: This parameter is for advanced users
Note: Reboot required after change

Control over UART options for Endpoint 1. Only applies to serial ports.

Bitmask

Bit

Meaning

0

InvertRX

1

InvertTX

2

HalfDuplex

3

SwapTXRX

4

RX_PullDown

5

RX_PullUp

6

TX_PullDown

7

TX_PullUp

8

RX_NoDMA

9

TX_NoDMA

10

Don’t forward mavlink to/from

11

DisableFIFO

12

Ignore Streamrate

NET_PASS3_OPT2: Serial Port Options EP2

Note: This parameter is for advanced users
Note: Reboot required after change

Control over UART options for Endpoint 2. Only applies to serial ports.

Bitmask

Bit

Meaning

0

InvertRX

1

InvertTX

2

HalfDuplex

3

SwapTXRX

4

RX_PullDown

5

RX_PullUp

6

TX_PullDown

7

TX_PullUp

8

RX_NoDMA

9

TX_NoDMA

10

Don’t forward mavlink to/from

11

DisableFIFO

12

Ignore Streamrate

NET_PASS4_ Parameters

NET_PASS4_ENABLE: Enable Passthrough

Note: This parameter is for advanced users
Note: Reboot required after change

Enable Passthrough of any UART, Network, or CAN ports to any UART, Network, or CAN ports.

Values

Value

Meaning

0

Disabled

1

Enabled

NET_PASS4_EP1: Endpoint 1

Note: This parameter is for advanced users
Note: Reboot required after change

Passthrough Endpoint 1. This can be a serial port UART, a Network port, or a CAN port. The selected port will route to Endport 2.

Values

Value

Meaning

-1

Disabled

0

Serial0(usually USB)

1

Serial1

2

Serial2

3

Serial3

4

Serial4

5

Serial5

6

Serial6

7

Serial7

8

Serial8

9

Serial9

21

Network Port1

22

Network Port2

23

Network Port3

24

Network Port4

25

Network Port5

26

Network Port6

27

Network Port7

28

Network Port8

29

Network Port9

41

CAN1 Port1

42

CAN1 Port2

43

CAN1 Port3

44

CAN1 Port4

45

CAN1 Port5

46

CAN1 Port6

47

CAN1 Port7

48

CAN1 Port8

49

CAN1 Port9

51

CAN2 Port1

52

CAN2 Port2

53

CAN2 Port3

54

CAN2 Port4

55

CAN2 Port5

56

CAN2 Port6

57

CAN2 Port7

58

CAN2 Port8

59

CAN2 Port9

NET_PASS4_EP2: Endpoint 2

Note: This parameter is for advanced users
Note: Reboot required after change

Passthrough Endpoint 2. This can be a serial port UART, a Network port, or a CAN port. The selected port will route to Endport 1.

Values

Value

Meaning

-1

Disabled

0

Serial0(usually USB)

1

Serial1

2

Serial2

3

Serial3

4

Serial4

5

Serial5

6

Serial6

7

Serial7

8

Serial8

9

Serial9

21

Network Port1

22

Network Port2

23

Network Port3

24

Network Port4

25

Network Port5

26

Network Port6

27

Network Port7

28

Network Port8

29

Network Port9

41

CAN1 Port1

42

CAN1 Port2

43

CAN1 Port3

44

CAN1 Port4

45

CAN1 Port5

46

CAN1 Port6

47

CAN1 Port7

48

CAN1 Port8

49

CAN1 Port9

51

CAN2 Port1

52

CAN2 Port2

53

CAN2 Port3

54

CAN2 Port4

55

CAN2 Port5

56

CAN2 Port6

57

CAN2 Port7

58

CAN2 Port8

59

CAN2 Port9

NET_PASS4_BAUD1: Endpoint 1 Baud Rate

The baud rate used for Endpoint 1. Only applies to serial ports.

Values

Value

Meaning

1

1200

2

2400

4

4800

9

9600

19

19200

38

38400

57

57600

111

111100

115

115200

230

230400

256

256000

460

460800

500

500000

921

921600

1500

1500000

2000

2000000

NET_PASS4_BAUD2: Endpoint 2 Baud Rate

The baud rate used for Endpoint 2. Only applies to serial ports.

Values

Value

Meaning

1

1200

2

2400

4

4800

9

9600

19

19200

38

38400

57

57600

111

111100

115

115200

230

230400

256

256000

460

460800

500

500000

921

921600

1500

1500000

2000

2000000

NET_PASS4_OPT1: Serial Port Options EP1

Note: This parameter is for advanced users
Note: Reboot required after change

Control over UART options for Endpoint 1. Only applies to serial ports.

Bitmask

Bit

Meaning

0

InvertRX

1

InvertTX

2

HalfDuplex

3

SwapTXRX

4

RX_PullDown

5

RX_PullUp

6

TX_PullDown

7

TX_PullUp

8

RX_NoDMA

9

TX_NoDMA

10

Don’t forward mavlink to/from

11

DisableFIFO

12

Ignore Streamrate

NET_PASS4_OPT2: Serial Port Options EP2

Note: This parameter is for advanced users
Note: Reboot required after change

Control over UART options for Endpoint 2. Only applies to serial ports.

Bitmask

Bit

Meaning

0

InvertRX

1

InvertTX

2

HalfDuplex

3

SwapTXRX

4

RX_PullDown

5

RX_PullUp

6

TX_PullDown

7

TX_PullUp

8

RX_NoDMA

9

TX_NoDMA

10

Don’t forward mavlink to/from

11

DisableFIFO

12

Ignore Streamrate

NET_PASS5_ Parameters

NET_PASS5_ENABLE: Enable Passthrough

Note: This parameter is for advanced users
Note: Reboot required after change

Enable Passthrough of any UART, Network, or CAN ports to any UART, Network, or CAN ports.

Values

Value

Meaning

0

Disabled

1

Enabled

NET_PASS5_EP1: Endpoint 1

Note: This parameter is for advanced users
Note: Reboot required after change

Passthrough Endpoint 1. This can be a serial port UART, a Network port, or a CAN port. The selected port will route to Endport 2.

Values

Value

Meaning

-1

Disabled

0

Serial0(usually USB)

1

Serial1

2

Serial2

3

Serial3

4

Serial4

5

Serial5

6

Serial6

7

Serial7

8

Serial8

9

Serial9

21

Network Port1

22

Network Port2

23

Network Port3

24

Network Port4

25

Network Port5

26

Network Port6

27

Network Port7

28

Network Port8

29

Network Port9

41

CAN1 Port1

42

CAN1 Port2

43

CAN1 Port3

44

CAN1 Port4

45

CAN1 Port5

46

CAN1 Port6

47

CAN1 Port7

48

CAN1 Port8

49

CAN1 Port9

51

CAN2 Port1

52

CAN2 Port2

53

CAN2 Port3

54

CAN2 Port4

55

CAN2 Port5

56

CAN2 Port6

57

CAN2 Port7

58

CAN2 Port8

59

CAN2 Port9

NET_PASS5_EP2: Endpoint 2

Note: This parameter is for advanced users
Note: Reboot required after change

Passthrough Endpoint 2. This can be a serial port UART, a Network port, or a CAN port. The selected port will route to Endport 1.

Values

Value

Meaning

-1

Disabled

0

Serial0(usually USB)

1

Serial1

2

Serial2

3

Serial3

4

Serial4

5

Serial5

6

Serial6

7

Serial7

8

Serial8

9

Serial9

21

Network Port1

22

Network Port2

23

Network Port3

24

Network Port4

25

Network Port5

26

Network Port6

27

Network Port7

28

Network Port8

29

Network Port9

41

CAN1 Port1

42

CAN1 Port2

43

CAN1 Port3

44

CAN1 Port4

45

CAN1 Port5

46

CAN1 Port6

47

CAN1 Port7

48

CAN1 Port8

49

CAN1 Port9

51

CAN2 Port1

52

CAN2 Port2

53

CAN2 Port3

54

CAN2 Port4

55

CAN2 Port5

56

CAN2 Port6

57

CAN2 Port7

58

CAN2 Port8

59

CAN2 Port9

NET_PASS5_BAUD1: Endpoint 1 Baud Rate

The baud rate used for Endpoint 1. Only applies to serial ports.

Values

Value

Meaning

1

1200

2

2400

4

4800

9

9600

19

19200

38

38400

57

57600

111

111100

115

115200

230

230400

256

256000

460

460800

500

500000

921

921600

1500

1500000

2000

2000000

NET_PASS5_BAUD2: Endpoint 2 Baud Rate

The baud rate used for Endpoint 2. Only applies to serial ports.

Values

Value

Meaning

1

1200

2

2400

4

4800

9

9600

19

19200

38

38400

57

57600

111

111100

115

115200

230

230400

256

256000

460

460800

500

500000

921

921600

1500

1500000

2000

2000000

NET_PASS5_OPT1: Serial Port Options EP1

Note: This parameter is for advanced users
Note: Reboot required after change

Control over UART options for Endpoint 1. Only applies to serial ports.

Bitmask

Bit

Meaning

0

InvertRX

1

InvertTX

2

HalfDuplex

3

SwapTXRX

4

RX_PullDown

5

RX_PullUp

6

TX_PullDown

7

TX_PullUp

8

RX_NoDMA

9

TX_NoDMA

10

Don’t forward mavlink to/from

11

DisableFIFO

12

Ignore Streamrate

NET_PASS5_OPT2: Serial Port Options EP2

Note: This parameter is for advanced users
Note: Reboot required after change

Control over UART options for Endpoint 2. Only applies to serial ports.

Bitmask

Bit

Meaning

0

InvertRX

1

InvertTX

2

HalfDuplex

3

SwapTXRX

4

RX_PullDown

5

RX_PullUp

6

TX_PullDown

7

TX_PullUp

8

RX_NoDMA

9

TX_NoDMA

10

Don’t forward mavlink to/from

11

DisableFIFO

12

Ignore Streamrate

NET_PASS6_ Parameters

NET_PASS6_ENABLE: Enable Passthrough

Note: This parameter is for advanced users
Note: Reboot required after change

Enable Passthrough of any UART, Network, or CAN ports to any UART, Network, or CAN ports.

Values

Value

Meaning

0

Disabled

1

Enabled

NET_PASS6_EP1: Endpoint 1

Note: This parameter is for advanced users
Note: Reboot required after change

Passthrough Endpoint 1. This can be a serial port UART, a Network port, or a CAN port. The selected port will route to Endport 2.

Values

Value

Meaning

-1

Disabled

0

Serial0(usually USB)

1

Serial1

2

Serial2

3

Serial3

4

Serial4

5

Serial5

6

Serial6

7

Serial7

8

Serial8

9

Serial9

21

Network Port1

22

Network Port2

23

Network Port3

24

Network Port4

25

Network Port5

26

Network Port6

27

Network Port7

28

Network Port8

29

Network Port9

41

CAN1 Port1

42

CAN1 Port2

43

CAN1 Port3

44

CAN1 Port4

45

CAN1 Port5

46

CAN1 Port6

47

CAN1 Port7

48

CAN1 Port8

49

CAN1 Port9

51

CAN2 Port1

52

CAN2 Port2

53

CAN2 Port3

54

CAN2 Port4

55

CAN2 Port5

56

CAN2 Port6

57

CAN2 Port7

58

CAN2 Port8

59

CAN2 Port9

NET_PASS6_EP2: Endpoint 2

Note: This parameter is for advanced users
Note: Reboot required after change

Passthrough Endpoint 2. This can be a serial port UART, a Network port, or a CAN port. The selected port will route to Endport 1.

Values

Value

Meaning

-1

Disabled

0

Serial0(usually USB)

1

Serial1

2

Serial2

3

Serial3

4

Serial4

5

Serial5

6

Serial6

7

Serial7

8

Serial8

9

Serial9

21

Network Port1

22

Network Port2

23

Network Port3

24

Network Port4

25

Network Port5

26

Network Port6

27

Network Port7

28

Network Port8

29

Network Port9

41

CAN1 Port1

42

CAN1 Port2

43

CAN1 Port3

44

CAN1 Port4

45

CAN1 Port5

46

CAN1 Port6

47

CAN1 Port7

48

CAN1 Port8

49

CAN1 Port9

51

CAN2 Port1

52

CAN2 Port2

53

CAN2 Port3

54

CAN2 Port4

55

CAN2 Port5

56

CAN2 Port6

57

CAN2 Port7

58

CAN2 Port8

59

CAN2 Port9

NET_PASS6_BAUD1: Endpoint 1 Baud Rate

The baud rate used for Endpoint 1. Only applies to serial ports.

Values

Value

Meaning

1

1200

2

2400

4

4800

9

9600

19

19200

38

38400

57

57600

111

111100

115

115200

230

230400

256

256000

460

460800

500

500000

921

921600

1500

1500000

2000

2000000

NET_PASS6_BAUD2: Endpoint 2 Baud Rate

The baud rate used for Endpoint 2. Only applies to serial ports.

Values

Value

Meaning

1

1200

2

2400

4

4800

9

9600

19

19200

38

38400

57

57600

111

111100

115

115200

230

230400

256

256000

460

460800

500

500000

921

921600

1500

1500000

2000

2000000

NET_PASS6_OPT1: Serial Port Options EP1

Note: This parameter is for advanced users
Note: Reboot required after change

Control over UART options for Endpoint 1. Only applies to serial ports.

Bitmask

Bit

Meaning

0

InvertRX

1

InvertTX

2

HalfDuplex

3

SwapTXRX

4

RX_PullDown

5

RX_PullUp

6

TX_PullDown

7

TX_PullUp

8

RX_NoDMA

9

TX_NoDMA

10

Don’t forward mavlink to/from

11

DisableFIFO

12

Ignore Streamrate

NET_PASS6_OPT2: Serial Port Options EP2

Note: This parameter is for advanced users
Note: Reboot required after change

Control over UART options for Endpoint 2. Only applies to serial ports.

Bitmask

Bit

Meaning

0

InvertRX

1

InvertTX

2

HalfDuplex

3

SwapTXRX

4

RX_PullDown

5

RX_PullUp

6

TX_PullDown

7

TX_PullUp

8

RX_NoDMA

9

TX_NoDMA

10

Don’t forward mavlink to/from

11

DisableFIFO

12

Ignore Streamrate

NET_PASS7_ Parameters

NET_PASS7_ENABLE: Enable Passthrough

Note: This parameter is for advanced users
Note: Reboot required after change

Enable Passthrough of any UART, Network, or CAN ports to any UART, Network, or CAN ports.

Values

Value

Meaning

0

Disabled

1

Enabled

NET_PASS7_EP1: Endpoint 1

Note: This parameter is for advanced users
Note: Reboot required after change

Passthrough Endpoint 1. This can be a serial port UART, a Network port, or a CAN port. The selected port will route to Endport 2.

Values

Value

Meaning

-1

Disabled

0

Serial0(usually USB)

1

Serial1

2

Serial2

3

Serial3

4

Serial4

5

Serial5

6

Serial6

7

Serial7

8

Serial8

9

Serial9

21

Network Port1

22

Network Port2

23

Network Port3

24

Network Port4

25

Network Port5

26

Network Port6

27

Network Port7

28

Network Port8

29

Network Port9

41

CAN1 Port1

42

CAN1 Port2

43

CAN1 Port3

44

CAN1 Port4

45

CAN1 Port5

46

CAN1 Port6

47

CAN1 Port7

48

CAN1 Port8

49

CAN1 Port9

51

CAN2 Port1

52

CAN2 Port2

53

CAN2 Port3

54

CAN2 Port4

55

CAN2 Port5

56

CAN2 Port6

57

CAN2 Port7

58

CAN2 Port8

59

CAN2 Port9

NET_PASS7_EP2: Endpoint 2

Note: This parameter is for advanced users
Note: Reboot required after change

Passthrough Endpoint 2. This can be a serial port UART, a Network port, or a CAN port. The selected port will route to Endport 1.

Values

Value

Meaning

-1

Disabled

0

Serial0(usually USB)

1

Serial1

2

Serial2

3

Serial3

4

Serial4

5

Serial5

6

Serial6

7

Serial7

8

Serial8

9

Serial9

21

Network Port1

22

Network Port2

23

Network Port3

24

Network Port4

25

Network Port5

26

Network Port6

27

Network Port7

28

Network Port8

29

Network Port9

41

CAN1 Port1

42

CAN1 Port2

43

CAN1 Port3

44

CAN1 Port4

45

CAN1 Port5

46

CAN1 Port6

47

CAN1 Port7

48

CAN1 Port8

49

CAN1 Port9

51

CAN2 Port1

52

CAN2 Port2

53

CAN2 Port3

54

CAN2 Port4

55

CAN2 Port5

56

CAN2 Port6

57

CAN2 Port7

58

CAN2 Port8

59

CAN2 Port9

NET_PASS7_BAUD1: Endpoint 1 Baud Rate

The baud rate used for Endpoint 1. Only applies to serial ports.

Values

Value

Meaning

1

1200

2

2400

4

4800

9

9600

19

19200

38

38400

57

57600

111

111100

115

115200

230

230400

256

256000

460

460800

500

500000

921

921600

1500

1500000

2000

2000000

NET_PASS7_BAUD2: Endpoint 2 Baud Rate

The baud rate used for Endpoint 2. Only applies to serial ports.

Values

Value

Meaning

1

1200

2

2400

4

4800

9

9600

19

19200

38

38400

57

57600

111

111100

115

115200

230

230400

256

256000

460

460800

500

500000

921

921600

1500

1500000

2000

2000000

NET_PASS7_OPT1: Serial Port Options EP1

Note: This parameter is for advanced users
Note: Reboot required after change

Control over UART options for Endpoint 1. Only applies to serial ports.

Bitmask

Bit

Meaning

0

InvertRX

1

InvertTX

2

HalfDuplex

3

SwapTXRX

4

RX_PullDown

5

RX_PullUp

6

TX_PullDown

7

TX_PullUp

8

RX_NoDMA

9

TX_NoDMA

10

Don’t forward mavlink to/from

11

DisableFIFO

12

Ignore Streamrate

NET_PASS7_OPT2: Serial Port Options EP2

Note: This parameter is for advanced users
Note: Reboot required after change

Control over UART options for Endpoint 2. Only applies to serial ports.

Bitmask

Bit

Meaning

0

InvertRX

1

InvertTX

2

HalfDuplex

3

SwapTXRX

4

RX_PullDown

5

RX_PullUp

6

TX_PullDown

7

TX_PullUp

8

RX_NoDMA

9

TX_NoDMA

10

Don’t forward mavlink to/from

11

DisableFIFO

12

Ignore Streamrate

NET_PASS8_ Parameters

NET_PASS8_ENABLE: Enable Passthrough

Note: This parameter is for advanced users
Note: Reboot required after change

Enable Passthrough of any UART, Network, or CAN ports to any UART, Network, or CAN ports.

Values

Value

Meaning

0

Disabled

1

Enabled

NET_PASS8_EP1: Endpoint 1

Note: This parameter is for advanced users
Note: Reboot required after change

Passthrough Endpoint 1. This can be a serial port UART, a Network port, or a CAN port. The selected port will route to Endport 2.

Values

Value

Meaning

-1

Disabled

0

Serial0(usually USB)

1

Serial1

2

Serial2

3

Serial3

4

Serial4

5

Serial5

6

Serial6

7

Serial7

8

Serial8

9

Serial9

21

Network Port1

22

Network Port2

23

Network Port3

24

Network Port4

25

Network Port5

26

Network Port6

27

Network Port7

28

Network Port8

29

Network Port9

41

CAN1 Port1

42

CAN1 Port2

43

CAN1 Port3

44

CAN1 Port4

45

CAN1 Port5

46

CAN1 Port6

47

CAN1 Port7

48

CAN1 Port8

49

CAN1 Port9

51

CAN2 Port1

52

CAN2 Port2

53

CAN2 Port3

54

CAN2 Port4

55

CAN2 Port5

56

CAN2 Port6

57

CAN2 Port7

58

CAN2 Port8

59

CAN2 Port9

NET_PASS8_EP2: Endpoint 2

Note: This parameter is for advanced users
Note: Reboot required after change

Passthrough Endpoint 2. This can be a serial port UART, a Network port, or a CAN port. The selected port will route to Endport 1.

Values

Value

Meaning

-1

Disabled

0

Serial0(usually USB)

1

Serial1

2

Serial2

3

Serial3

4

Serial4

5

Serial5

6

Serial6

7

Serial7

8

Serial8

9

Serial9

21

Network Port1

22

Network Port2

23

Network Port3

24

Network Port4

25

Network Port5

26

Network Port6

27

Network Port7

28

Network Port8

29

Network Port9

41

CAN1 Port1

42

CAN1 Port2

43

CAN1 Port3

44

CAN1 Port4

45

CAN1 Port5

46

CAN1 Port6

47

CAN1 Port7

48

CAN1 Port8

49

CAN1 Port9

51

CAN2 Port1

52

CAN2 Port2

53

CAN2 Port3

54

CAN2 Port4

55

CAN2 Port5

56

CAN2 Port6

57

CAN2 Port7

58

CAN2 Port8

59

CAN2 Port9

NET_PASS8_BAUD1: Endpoint 1 Baud Rate

The baud rate used for Endpoint 1. Only applies to serial ports.

Values

Value

Meaning

1

1200

2

2400

4

4800

9

9600

19

19200

38

38400

57

57600

111

111100

115

115200

230

230400

256

256000

460

460800

500

500000

921

921600

1500

1500000

2000

2000000

NET_PASS8_BAUD2: Endpoint 2 Baud Rate

The baud rate used for Endpoint 2. Only applies to serial ports.

Values

Value

Meaning

1

1200

2

2400

4

4800

9

9600

19

19200

38

38400

57

57600

111

111100

115

115200

230

230400

256

256000

460

460800

500

500000

921

921600

1500

1500000

2000

2000000

NET_PASS8_OPT1: Serial Port Options EP1

Note: This parameter is for advanced users
Note: Reboot required after change

Control over UART options for Endpoint 1. Only applies to serial ports.

Bitmask

Bit

Meaning

0

InvertRX

1

InvertTX

2

HalfDuplex

3

SwapTXRX

4

RX_PullDown

5

RX_PullUp

6

TX_PullDown

7

TX_PullUp

8

RX_NoDMA

9

TX_NoDMA

10

Don’t forward mavlink to/from

11

DisableFIFO

12

Ignore Streamrate

NET_PASS8_OPT2: Serial Port Options EP2

Note: This parameter is for advanced users
Note: Reboot required after change

Control over UART options for Endpoint 2. Only applies to serial ports.

Bitmask

Bit

Meaning

0

InvertRX

1

InvertTX

2

HalfDuplex

3

SwapTXRX

4

RX_PullDown

5

RX_PullUp

6

TX_PullDown

7

TX_PullUp

8

RX_NoDMA

9

TX_NoDMA

10

Don’t forward mavlink to/from

11

DisableFIFO

12

Ignore Streamrate

NET_PASS9_ Parameters

NET_PASS9_ENABLE: Enable Passthrough

Note: This parameter is for advanced users
Note: Reboot required after change

Enable Passthrough of any UART, Network, or CAN ports to any UART, Network, or CAN ports.

Values

Value

Meaning

0

Disabled

1

Enabled

NET_PASS9_EP1: Endpoint 1

Note: This parameter is for advanced users
Note: Reboot required after change

Passthrough Endpoint 1. This can be a serial port UART, a Network port, or a CAN port. The selected port will route to Endport 2.

Values

Value

Meaning

-1

Disabled

0

Serial0(usually USB)

1

Serial1

2

Serial2

3

Serial3

4

Serial4

5

Serial5

6

Serial6

7

Serial7

8

Serial8

9

Serial9

21

Network Port1

22

Network Port2

23

Network Port3

24

Network Port4

25

Network Port5

26

Network Port6

27

Network Port7

28

Network Port8

29

Network Port9

41

CAN1 Port1

42

CAN1 Port2

43

CAN1 Port3

44

CAN1 Port4

45

CAN1 Port5

46

CAN1 Port6

47

CAN1 Port7

48

CAN1 Port8

49

CAN1 Port9

51

CAN2 Port1

52

CAN2 Port2

53

CAN2 Port3

54

CAN2 Port4

55

CAN2 Port5

56

CAN2 Port6

57

CAN2 Port7

58

CAN2 Port8

59

CAN2 Port9

NET_PASS9_EP2: Endpoint 2

Note: This parameter is for advanced users
Note: Reboot required after change

Passthrough Endpoint 2. This can be a serial port UART, a Network port, or a CAN port. The selected port will route to Endport 1.

Values

Value

Meaning

-1

Disabled

0

Serial0(usually USB)

1

Serial1

2

Serial2

3

Serial3

4

Serial4

5

Serial5

6

Serial6

7

Serial7

8

Serial8

9

Serial9

21

Network Port1

22

Network Port2

23

Network Port3

24

Network Port4

25

Network Port5

26

Network Port6

27

Network Port7

28

Network Port8

29

Network Port9

41

CAN1 Port1

42

CAN1 Port2

43

CAN1 Port3

44

CAN1 Port4

45

CAN1 Port5

46

CAN1 Port6

47

CAN1 Port7

48

CAN1 Port8

49

CAN1 Port9

51

CAN2 Port1

52

CAN2 Port2

53

CAN2 Port3

54

CAN2 Port4

55

CAN2 Port5

56

CAN2 Port6

57

CAN2 Port7

58

CAN2 Port8

59

CAN2 Port9

NET_PASS9_BAUD1: Endpoint 1 Baud Rate

The baud rate used for Endpoint 1. Only applies to serial ports.

Values

Value

Meaning

1

1200

2

2400

4

4800

9

9600

19

19200

38

38400

57

57600

111

111100

115

115200

230

230400

256

256000

460

460800

500

500000

921

921600

1500

1500000

2000

2000000

NET_PASS9_BAUD2: Endpoint 2 Baud Rate

The baud rate used for Endpoint 2. Only applies to serial ports.

Values

Value

Meaning

1

1200

2

2400

4

4800

9

9600

19

19200

38

38400

57

57600

111

111100

115

115200

230

230400

256

256000

460

460800

500

500000

921

921600

1500

1500000

2000

2000000

NET_PASS9_OPT1: Serial Port Options EP1

Note: This parameter is for advanced users
Note: Reboot required after change

Control over UART options for Endpoint 1. Only applies to serial ports.

Bitmask

Bit

Meaning

0

InvertRX

1

InvertTX

2

HalfDuplex

3

SwapTXRX

4

RX_PullDown

5

RX_PullUp

6

TX_PullDown

7

TX_PullUp

8

RX_NoDMA

9

TX_NoDMA

10

Don’t forward mavlink to/from

11

DisableFIFO

12

Ignore Streamrate

NET_PASS9_OPT2: Serial Port Options EP2

Note: This parameter is for advanced users
Note: Reboot required after change

Control over UART options for Endpoint 2. Only applies to serial ports.

Bitmask

Bit

Meaning

0

InvertRX

1

InvertTX

2

HalfDuplex

3

SwapTXRX

4

RX_PullDown

5

RX_PullUp

6

TX_PullDown

7

TX_PullUp

8

RX_NoDMA

9

TX_NoDMA

10

Don’t forward mavlink to/from

11

DisableFIFO

12

Ignore Streamrate

NMEA_ Parameters

NMEA_RATE_MS: NMEA Output rate

NMEA Output rate. This controls the interval at which all the enabled NMEA messages are sent. Most NMEA systems expect 100ms (10Hz) or slower.

Increment

Range

Units

1

20 to 2000

milliseconds

NMEA_MSG_EN: Messages Enable bitmask

This is a bitmask of enabled NMEA messages. All messages will be sent consecutively at the same rate interval

Bitmask

Bit

Meaning

0

GPGGA

1

GPRMC

2

PASHR

NTF_ Parameters

NTF_LED_BRIGHT: LED Brightness

Note: This parameter is for advanced users

Select the RGB LED brightness level. When USB is connected brightness will never be higher than low regardless of the setting.

Values

Value

Meaning

0

Off

1

Low

2

Medium

3

High

NTF_BUZZ_TYPES: Buzzer Driver Types

Note: This parameter is for advanced users

Controls what types of Buzzer will be enabled

Bitmask

Bit

Meaning

0

Built-in buzzer

1

DShot

2

DroneCAN

NTF_LED_OVERRIDE: Specifies colour source for the RGBLed

Note: This parameter is for advanced users

Specifies the source for the colours and brightness for the LED. OutbackChallenge conforms to the MedicalExpress (https://uavchallenge.org/medical-express/) rules, essentially "Green" is disarmed (safe-to-approach), "Red" is armed (not safe-to-approach). Traffic light is a simplified color set, red when armed, yellow when the safety switch is not surpressing outputs (but disarmed), and green when outputs are surpressed and disarmed, the LED will blink faster if disarmed and failing arming checks.

Values

Value

Meaning

0

Standard

1

MAVLink/Scripting/AP_Periph

2

OutbackChallenge

3

TrafficLight

NTF_DISPLAY_TYPE: Type of on-board I2C display

Note: This parameter is for advanced users

This sets up the type of on-board I2C display. Disabled by default.

Values

Value

Meaning

0

Disable

1

ssd1306

2

sh1106

10

SITL

NTF_OREO_THEME: OreoLED Theme

Note: This parameter is for advanced users

Enable/Disable Solo Oreo LED driver, 0 to disable, 1 for Aircraft theme, 2 for Rover theme

Values

Value

Meaning

0

Disabled

1

Aircraft

2

Rover

NTF_BUZZ_PIN: Buzzer pin

Note: This parameter is for advanced users

Enables to connect active buzzer to arbitrary pin. Requires 3-pin buzzer or additional MOSFET! Some the Wiki's "GPIOs" page for how to determine the pin number for a given autopilot.

Values

Value

Meaning

-1

Disabled

NTF_LED_TYPES: LED Driver Types

Note: This parameter is for advanced users

Controls what types of LEDs will be enabled

Bitmask

Bit

Meaning

0

Built-in LED

1

Internal ToshibaLED

2

External ToshibaLED

3

External PCA9685

4

Oreo LED

5

DroneCAN

6

NCP5623 External

7

NCP5623 Internal

8

NeoPixel

9

ProfiLED

10

Scripting

11

DShot

12

ProfiLED_SPI

13

LP5562 External

14

LP5562 Internal

15

IS31FL3195 External

16

IS31FL3195 Internal

17

DiscreteRGB

18

NeoPixelRGB

NTF_BUZZ_ON_LVL: Buzzer-on pin logic level

Note: This parameter is for advanced users

Specifies pin level that indicates buzzer should play

Values

Value

Meaning

0

LowIsOn

1

HighIsOn

NTF_BUZZ_VOLUME: Buzzer volume

Control the volume of the buzzer

Range

Units

0 to 100

percent

NTF_LED_LEN: Serial LED String Length

Note: This parameter is for advanced users
Note: Reboot required after change

The number of Serial LED's to use for notifications (NeoPixel's and ProfiLED)

Range

1 to 32

Node Parameters

Node_BOOTCNT: Boot Count

Number of times board has been booted

ReadOnly

True

Node_FLTTIME: Total FlightTime

Total FlightTime (seconds)

ReadOnly

Units

True

seconds

Node_RUNTIME: Total RunTime

Total time autopilot has run

ReadOnly

Units

True

seconds

Node_RESET: Statistics Reset Time

Seconds since January 1st 2016 (Unix epoch+1451606400) since statistics reset (set to 0 to reset statistics)

ReadOnly

Units

True

seconds

OUT Parameters

OUT_RATE: Servo default output rate

Note: This parameter is for advanced users

Default output rate in Hz for all PWM outputs.

Range

Units

25 to 400

hertz

OUT_DSHOT_RATE: Servo DShot output rate

Note: This parameter is for advanced users

DShot output rate for all outputs as a multiple of the loop rate. 0 sets the output rate to be fixed at 1Khz for low loop rates. This value should never be set below 500Hz.

Values

Value

Meaning

0

1Khz

1

loop-rate

2

double loop-rate

3

triple loop-rate

4

quadruple loop rate

OUT_DSHOT_ESC: Servo DShot ESC type

Note: This parameter is for advanced users

DShot ESC type for all outputs. The ESC type affects the range of DShot commands available and the bit widths used. None means that no dshot commands will be executed. Some ESC types support Extended DShot Telemetry (EDT) which allows telemetry other than RPM data to be returned when using bi-directional dshot. If you enable EDT you must install EDT capable firmware for correct operation.

Values

Value

Meaning

0

None

1

BLHeli32/Kiss

2

BLHeli_S

3

BLHeli32/Kiss+EDT

4

BLHeli_S+EDT

OUT_GPIO_MASK: Servo GPIO mask

Note: This parameter is for advanced users
Note: Reboot required after change

Bitmask of outputs which will be available as GPIOs. Any output with either the function set to -1 or with the corresponding bit set in this mask will be available for use as a GPIO pin

Bitmask

Bit

Meaning

0

Servo 1

1

Servo 2

2

Servo 3

3

Servo 4

4

Servo 5

5

Servo 6

6

Servo 7

7

Servo 8

8

Servo 9

9

Servo 10

10

Servo 11

11

Servo 12

12

Servo 13

13

Servo 14

14

Servo 15

15

Servo 16

16

Servo 17

17

Servo 18

18

Servo 19

19

Servo 20

20

Servo 21

21

Servo 22

22

Servo 23

23

Servo 24

24

Servo 25

25

Servo 26

26

Servo 27

27

Servo 28

28

Servo 29

29

Servo 30

30

Servo 31

31

Servo 32

OUT_RC_FS_MSK: Servo RC Failsafe Mask

Note: This parameter is for advanced users

Bitmask of scaled passthru output channels which will be set to their trim value during rc failsafe instead of holding their last position before failsafe.

Bitmask

Bit

Meaning