Complete Parameter List

Full Parameter List of Plane stable V4.1.7

You can change and check the parameters for another version:

This is a complete list of the parameters which can be set (e.g. via the MAVLink protocol) to control vehicle behaviour. They are stored in persistent storage on the vehicle.

This list is automatically generated from the latest ardupilot source code, and so may contain parameters which are not yet in the stable released versions of the code.

ArduPlane Parameters

FORMAT_VERSION: Eeprom format version number

Note: This parameter is for advanced users

This value is incremented when changes are made to the eeprom format

AUTOTUNE_LEVEL: Autotune level

Level of aggressiveness of pitch and roll PID gains. Lower values result in a 'softer' tune. Level 6 recommended for most planes. A value of 0 means to keep the current values of RMAX and TCONST for the controllers, tuning only the PID values

Increment

Range

1

0 - 10

TELEM_DELAY: Telemetry startup delay

The amount of time (in seconds) to delay radio telemetry to prevent an Xbee bricking on power up

Increment

Range

Units

1

0 - 30

seconds

GCS_PID_MASK: GCS PID tuning mask

Note: This parameter is for advanced users

bitmask of PIDs to send MAVLink PID_TUNING messages for

Bitmask

Bit

Meaning

0

Roll

1

Pitch

2

Yaw

3

Steering

4

Landing

KFF_RDDRMIX: Rudder Mix

Amount of rudder to add during aileron movement. Increase if nose initially yaws away from roll. Reduces adverse yaw.

Increment

Range

0.01

0 - 1

KFF_THR2PTCH: Throttle to Pitch Mix

Note: This parameter is for advanced users

Pitch up to add in proportion to throttle. 100% throttle will add this number of degrees to the pitch target.

Increment

Range

0.01

0 - 5

STAB_PITCH_DOWN: Low throttle pitch down trim

Note: This parameter is for advanced users

Degrees of down pitch added when throttle is below TRIM_THROTTLE in FBWA and AUTOTUNE modes. Scales linearly so full value is added when THR_MIN is reached. Helps to keep airspeed higher in glides or landing approaches and prevents accidental stalls. 2 degrees recommended for most planes.

Increment

Range

Units

0.1

0 - 15

degrees

GLIDE_SLOPE_MIN: Glide slope minimum

Note: This parameter is for advanced users

This controls the minimum altitude change for a waypoint before a glide slope will be used instead of an immediate altitude change. The default value is 15 meters, which helps to smooth out waypoint missions where small altitude changes happen near waypoints. If you don't want glide slopes to be used in missions then you can set this to zero, which will disable glide slope calculations. Otherwise you can set it to a minimum number of meters of altitude error to the destination waypoint before a glide slope will be used to change altitude.

Increment

Range

Units

1

0 - 1000

meters

GLIDE_SLOPE_THR: Glide slope threshold

Note: This parameter is for advanced users

This controls the height above the glide slope the plane may be before rebuilding a glide slope. This is useful for smoothing out an autotakeoff

Increment

Range

Units

1

0 - 100

meters

STICK_MIXING: Stick Mixing

Note: This parameter is for advanced users

When enabled, this adds user stick input to the control surfaces in auto modes, allowing the user to have some degree of flight control without changing modes. There are two types of stick mixing available. If you set STICK_MIXING to 1 then it will use "fly by wire" mixing, which controls the roll and pitch in the same way that the FBWA mode does. This is the safest option if you usually fly ArduPlane in FBWA or FBWB mode. If you set STICK_MIXING to 2 then it will enable direct mixing mode, which is what the STABILIZE mode uses. That will allow for much more extreme maneuvers while in AUTO mode. If you set STICK_MIXING to 3 then it will apply to the yaw while in quadplane modes only, such as while doing an automatic VTOL takeoff or landing.

Values

Value

Meaning

0

Disabled

1

FBWMixing

2

DirectMixing

3

VTOL Yaw only

AUTO_FBW_STEER: Use FBWA steering in AUTO

Note: This parameter is for advanced users

When enabled this option gives FBWA navigation and steering in AUTO mode. This can be used to allow manual stabilised piloting with waypoint logic for triggering payloads. With this enabled the pilot has the same control over the plane as in FBWA mode, and the normal AUTO navigation is completely disabled. THIS OPTION IS NOT RECOMMENDED FOR NORMAL USE.

Values

Value

Meaning

0

Disabled

42

Enabled

TKOFF_THR_MINSPD: Takeoff throttle min speed

Minimum GPS ground speed in m/s used by the speed check that un-suppresses throttle in auto-takeoff. This can be be used for catapult launches where you want the motor to engage only after the plane leaves the catapult, but it is preferable to use the TKOFF_THR_MINACC and TKOFF_THR_DELAY parameters for catapult launches due to the errors associated with GPS measurements. For hand launches with a pusher prop it is strongly advised that this parameter be set to a value no less than 4 m/s to provide additional protection against premature motor start. Note that the GPS velocity will lag the real velocity by about 0.5 seconds. The ground speed check is delayed by the TKOFF_THR_DELAY parameter.

Increment

Range

Units

0.1

0 - 30

meters per second

TKOFF_THR_MINACC: Takeoff throttle min acceleration

Minimum forward acceleration in m/s/s before arming the ground speed check in auto-takeoff. This is meant to be used for hand launches. Setting this value to 0 disables the acceleration test which means the ground speed check will always be armed which could allow GPS velocity jumps to start the engine. For hand launches and bungee launches this should be set to around 15. Also see TKOFF_ACCEL_CNT paramter for control of full "shake to arm".

Increment

Range

Units

0.1

0 - 30

meters per square second

TKOFF_THR_DELAY: Takeoff throttle delay

This parameter sets the time delay (in 1/10ths of a second) that the ground speed check is delayed after the forward acceleration check controlled by TKOFF_THR_MINACC has passed. For hand launches with pusher propellers it is essential that this is set to a value of no less than 2 (0.2 seconds) to ensure that the aircraft is safely clear of the throwers arm before the motor can start. For bungee launches a larger value can be used (such as 30) to give time for the bungee to release from the aircraft before the motor is started.

Increment

Range

Units

1

0 - 127

deciseconds

TKOFF_TDRAG_ELEV: Takeoff tail dragger elevator

This parameter sets the amount of elevator to apply during the initial stage of a takeoff. It is used to hold the tail wheel of a taildragger on the ground during the initial takeoff stage to give maximum steering. This option should be combined with the TKOFF_TDRAG_SPD1 option and the GROUND_STEER_ALT option along with tuning of the ground steering controller. A value of zero means to bypass the initial "tail hold" stage of takeoff. Set to zero for hand and catapult launch. For tail-draggers you should normally set this to 100, meaning full up elevator during the initial stage of takeoff. For most tricycle undercarriage aircraft a value of zero will work well, but for some tricycle aircraft a small negative value (say around -20 to -30) will apply down elevator which will hold the nose wheel firmly on the ground during initial acceleration. Only use a negative value if you find that the nosewheel doesn't grip well during takeoff. Too much down elevator on a tricycle undercarriage may cause instability in steering as the plane pivots around the nosewheel. Add down elevator 10 percent at a time.

Increment

Range

Units

1

-100 - 100

percent

TKOFF_TDRAG_SPD1: Takeoff tail dragger speed1

This parameter sets the airspeed at which to stop holding the tail down and transition to rudder control of steering on the ground. When TKOFF_TDRAG_SPD1 is reached the pitch of the aircraft will be held level until TKOFF_ROTATE_SPD is reached, at which point the takeoff pitch specified in the mission will be used to "rotate" the pitch for takeoff climb. Set TKOFF_TDRAG_SPD1 to zero to go straight to rotation. This should be set to zero for hand launch and catapult launch. It should also be set to zero for tricycle undercarriages unless you are using the method above to genetly hold the nose wheel down. For tail dragger aircraft it should be set just below the stall speed.

Increment

Range

Units

0.1

0 - 30

meters per second

TKOFF_ROTATE_SPD: Takeoff rotate speed

This parameter sets the airspeed at which the aircraft will "rotate", setting climb pitch specified in the mission. If TKOFF_ROTATE_SPD is zero then the climb pitch will be used as soon as takeoff is started. For hand launch and catapult launches a TKOFF_ROTATE_SPD of zero should be set. For all ground launches TKOFF_ROTATE_SPD should be set above the stall speed, usually by about 10 to 30 percent

Increment

Range

Units

0.1

0 - 30

meters per second

TKOFF_THR_SLEW: Takeoff throttle slew rate

This parameter sets the slew rate for the throttle during auto takeoff. When this is zero the THR_SLEWRATE parameter is used during takeoff. For rolling takeoffs it can be a good idea to set a lower slewrate for takeoff to give a slower acceleration which can improve ground steering control. The value is a percentage throttle change per second, so a value of 20 means to advance the throttle over 5 seconds on takeoff. Values below 20 are not recommended as they may cause the plane to try to climb out with too little throttle. A value of -1 means no limit on slew rate in takeoff.

Increment

Range

Units

1

-1 - 127

percent per second

TKOFF_PLIM_SEC: Takeoff pitch limit reduction

Note: This parameter is for advanced users

This parameter reduces the pitch minimum limit of an auto-takeoff just a few seconds before it reaches the target altitude. This reduces overshoot by allowing the flight controller to start leveling off a few seconds before reaching the target height. When set to zero, the mission pitch min is enforced all the way to and through the target altitude, otherwise the pitch min slowly reduces to zero in the final segment. This is the pitch_min, not the demand. The flight controller should still be commanding to gain altitude to finish the takeoff but with this param it is not forcing it higher than it wants to be.

Increment

Range

Units

0.5

0 - 10

seconds

TKOFF_FLAP_PCNT: Takeoff flap percentage

Note: This parameter is for advanced users

The amount of flaps (as a percentage) to apply in automatic takeoff

Increment

Range

Units

1

0 - 100

percent

LEVEL_ROLL_LIMIT: Level flight roll limit

This controls the maximum bank angle in degrees during flight modes where level flight is desired, such as in the final stages of landing, and during auto takeoff. This should be a small angle (such as 5 degrees) to prevent a wing hitting the runway during takeoff or landing. Setting this to zero will completely disable heading hold on auto takeoff and final landing approach.

Increment

Range

Units

1

0 - 45

degrees

USE_REV_THRUST: Bitmask for when to allow negative reverse thrust

Note: This parameter is for advanced users

This controls when to use reverse thrust. If set to zero then reverse thrust is never used. If set to a non-zero value then the bits correspond to flight stages where reverse thrust may be used. The most commonly used value for USE_REV_THRUST is 2, which means AUTO_LAND only. That enables reverse thrust in the landing stage of AUTO mode. Another common choice is 1, which means to use reverse thrust in all auto flight stages. Reverse thrust is always used in MANUAL mode if enabled with THR_MIN < 0. In non-autothrottle controlled modes, if reverse thrust is not used, then THR_MIN is effectively set to 0 for that mode.

Bitmask

Values

Bit

Meaning

0

AUTO_ALWAYS

1

AUTO_LAND

2

AUTO_LOITER_TO_ALT

3

AUTO_LOITER_ALL

4

AUTO_WAYPOINTS

5

LOITER

6

RTL

7

CIRCLE

8

CRUISE

9

FBWB

10

GUIDED

11

AUTO_LANDING_PATTERN

12

FBWA

13

ACRO

14

STABILIZE

15

THERMAL

Value

Meaning

0

MANUAL ONLY

1

AutoAlways

2

AutoLanding

ALT_CTRL_ALG: Altitude control algorithm

Note: This parameter is for advanced users

This sets what algorithm will be used for altitude control. The default is zero, which selects the most appropriate algorithm for your airframe. Currently the default is to use TECS (total energy control system). From time to time we will add other experimental altitude control algorithms which will be selected using this parameter.

Values

Value

Meaning

0

Automatic

ALT_OFFSET: Altitude offset

Note: This parameter is for advanced users

This is added to the target altitude in automatic flight. It can be used to add a global altitude offset to a mission

Increment

Range

Units

1

-32767 - 32767

meters

WP_RADIUS: Waypoint Radius

Defines the maximum distance from a waypoint that when crossed indicates the waypoint may be complete. To avoid the aircraft looping around the waypoint in case it misses by more than the WP_RADIUS an additional check is made to see if the aircraft has crossed a "finish line" passing through the waypoint and perpendicular to the flight path from the previous waypoint. If that finish line is crossed then the waypoint is considered complete. Note that the navigation controller may decide to turn later than WP_RADIUS before a waypoint, based on how sharp the turn is and the speed of the aircraft. It is safe to set WP_RADIUS much larger than the usual turn radius of your aircraft and the navigation controller will work out when to turn. If you set WP_RADIUS too small then you will tend to overshoot the turns.

Increment

Range

Units

1

1 - 32767

meters

WP_MAX_RADIUS: Waypoint Maximum Radius

Sets the maximum distance to a waypoint for the waypoint to be considered complete. This overrides the "cross the finish line" logic that is normally used to consider a waypoint complete. For normal AUTO behaviour this parameter should be set to zero. Using a non-zero value is only recommended when it is critical that the aircraft does approach within the given radius, and should loop around until it has done so. This can cause the aircraft to loop forever if its turn radius is greater than the maximum radius set.

Increment

Range

Units

1

0 - 32767

meters

WP_LOITER_RAD: Waypoint Loiter Radius

Defines the distance from the waypoint center, the plane will maintain during a loiter. If you set this value to a negative number then the default loiter direction will be counter-clockwise instead of clockwise.

Increment

Range

Units

1

-32767 - 32767

meters

RTL_RADIUS: RTL loiter radius

Defines the radius of the loiter circle when in RTL mode. If this is zero then WP_LOITER_RAD is used. If the radius is negative then a counter-clockwise is used. If positive then a clockwise loiter is used.

Increment

Range

Units

1

-32767 - 32767

meters

STALL_PREVENTION: Enable stall prevention

Enables roll limits at low airspeed in roll limiting flight modes. Roll limits based on aerodynamic load factor in turns and scale on ARSPD_FBW_MIN that must be set correctly. Without airspeed sensor, uses synthetic airspeed from wind speed estimate that may both be inaccurate.

Values

Value

Meaning

0

Disabled

1

Enabled

ARSPD_FBW_MIN: Minimum Airspeed

Minimum airspeed demanded in automatic throttle modes. Should be set to 20% higher than level flight stall speed.

Increment

Range

Units

1

5 - 100

meters per second

ARSPD_FBW_MAX: Maximum Airspeed

Maximum airspeed demanded in automatic throttle modes. Should be set slightly less than level flight speed at THR_MAX and also at least 50% above ARSPD_FBW_MIN to allow for accurate TECS altitude control.

Increment

Range

Units

1

5 - 100

meters per second

FBWB_ELEV_REV: Fly By Wire elevator reverse

Reverse sense of elevator in FBWB and CRUISE modes. When set to 0 up elevator (pulling back on the stick) means to lower altitude. When set to 1, up elevator means to raise altitude.

Values

Value

Meaning

0

Disabled

1

Enabled

TERRAIN_FOLLOW: Use terrain following

This enables terrain following for CRUISE mode, FBWB mode, RTL and for rally points. To use this option you also need to set TERRAIN_ENABLE to 1, which enables terrain data fetching from the GCS, and you need to have a GCS that supports sending terrain data to the aircraft. When terrain following is enabled then CRUISE and FBWB mode will hold height above terrain rather than height above home. In RTL the return to launch altitude will be considered to be a height above the terrain. Rally point altitudes will be taken as height above the terrain. This option does not affect mission items, which have a per-waypoint flag for whether they are height above home or height above the terrain. To use terrain following missions you need a ground station which can set the waypoint type to be a terrain height waypoint when creating the mission.

Bitmask

Values

0: Enable all modes, 1:FBWB, 2:Cruise, 3:Auto, 4:RTL, 5:Avoid_ADSB, 6:Guided, 7:Loiter, 8:Circle, 9:QRTL, 10:QLand, 11:Qloiter

Value

Meaning

0

Disabled

1

Enabled

TERRAIN_LOOKAHD: Terrain lookahead

This controls how far ahead the terrain following code looks to ensure it stays above upcoming terrain. A value of zero means no lookahead, so the controller will track only the terrain directly below the aircraft. The lookahead will never extend beyond the next waypoint when in AUTO mode.

Range

Units

0 - 10000

meters

FBWB_CLIMB_RATE: Fly By Wire B altitude change rate

This sets the rate in m/s at which FBWB and CRUISE modes will change its target altitude for full elevator deflection. Note that the actual climb rate of the aircraft can be lower than this, depending on your airspeed and throttle control settings. If you have this parameter set to the default value of 2.0, then holding the elevator at maximum deflection for 10 seconds would change the target altitude by 20 meters.

Increment

Range

Units

0.1

1 - 10

meters per second

THR_MIN: Minimum Throttle

Minimum throttle percentage used in all modes except manual, provided THR_PASS_STAB is not set. Negative values allow reverse thrust if hardware supports it.

Increment

Range

Units

1

-100 - 100

percent

THR_MAX: Maximum Throttle

Maximum throttle percentage used in all modes except manual, provided THR_PASS_STAB is not set.

Increment

Range

Units

1

0 - 100

percent

TKOFF_THR_MAX: Maximum Throttle for takeoff

Note: This parameter is for advanced users

The maximum throttle setting during automatic takeoff. If this is zero then THR_MAX is used for takeoff as well.

Increment

Range

Units

1

0 - 100

percent

THR_SLEWRATE: Throttle slew rate

Maximum change in throttle percentage per second. Lower limit based on 1 microsend of servo increase per loop. Divide SCHED_LOOP_RATE by approximately 10 to determine minimum achievable value.

Increment

Range

Units

1

0 - 127

percent per second

FLAP_SLEWRATE: Flap slew rate

Note: This parameter is for advanced users

maximum percentage change in flap output per second. A setting of 25 means to not change the flap by more than 25% of the full flap range in one second. A value of 0 means no rate limiting.

Increment

Range

Units

1

0 - 100

percent per second

THR_SUPP_MAN: Throttle suppress manual passthru

Note: This parameter is for advanced users

When throttle is suppressed in auto mode it is normally forced to zero. If you enable this option, then while suppressed it will be manual throttle. This is useful on petrol engines to hold the idle throttle manually while waiting for takeoff

Values

Value

Meaning

0

Disabled

1

Enabled

THR_PASS_STAB: Throttle passthru in stabilize

Note: This parameter is for advanced users

If this is set then when in STABILIZE, FBWA or ACRO modes the throttle is a direct passthru from the transmitter. This means the THR_MIN and THR_MAX settings are not used in these modes. This is useful for petrol engines where you setup a throttle cut switch that suppresses the throttle below the normal minimum.

Values

Value

Meaning

0

Disabled

1

Enabled

THR_FAILSAFE: Throttle and RC Failsafe Enable

0 disables the failsafe. 1 enables failsafe on loss of RC input. This is detected either by throttle values below THR_FS_VALUE, loss of receiver valid pulses/data, or by the FS bit in receivers that provide it, like SBUS. A programmable failsafe action will occur and RC inputs, if present, will be ignored. A value of 2 means that the RC inputs won't be used when RC failsafe is detected by any of the above methods, but it won't trigger an RC failsafe action.

Values

Value

Meaning

0

Disabled

1

Enabled

2

EnabledNoFailsafe

THR_FS_VALUE: Throttle Failsafe Value

The PWM level on the throttle input channel below which throttle failsafe triggers. Note that this should be well below the normal minimum for your throttle channel.

Increment

Range

1

925 - 2200

TRIM_THROTTLE: Throttle cruise percentage

Target percentage of throttle to apply for flight in automatic throttle modes and throttle percentage that maintains TRIM_ARSPD_CM. Caution: low battery voltages at the end of flights may require higher throttle to maintain airspeed.

Increment

Range

Units

1

0 - 100

percent

THROTTLE_NUDGE: Throttle nudge enable

When enabled, this uses the throttle input in auto-throttle modes to 'nudge' the throttle or airspeed to higher or lower values. When you have an airspeed sensor the nudge affects the target airspeed, so that throttle inputs above 50% will increase the target airspeed from TRIM_ARSPD_CM up to a maximum of ARSPD_FBW_MAX. When no airspeed sensor is enabled the throttle nudge will push up the target throttle for throttle inputs above 50%.

Values

Value

Meaning

0

Disabled

1

Enabled

FS_SHORT_ACTN: Short failsafe action

The action to take on a short (FS_SHORT_TIMEOUT) failsafe event. A short failsafe event can be triggered either by loss of RC control (see THR_FS_VALUE) or by loss of GCS control (see FS_GCS_ENABL). If in CIRCLE or RTL mode this parameter is ignored. A short failsafe event in stabilization and manual modes will cause a change to CIRCLE mode if FS_SHORT_ACTN is 0 or 1, and a change to FBWA mode if FS_SHORT_ACTN is 2. In all other modes (AUTO, GUIDED and LOITER) a short failsafe event will cause no mode change if FS_SHORT_ACTN is set to 0, will cause a change to CIRCLE mode if set to 1 and will change to FBWA mode if set to 2. Please see the documentation for FS_LONG_ACTN for the behaviour after FS_LONG_TIMEOUT seconds of failsafe.

Values

Value

Meaning

0

CIRCLE/no change(if already in AUTO|GUIDED|LOITER)

1

CIRCLE

2

FBWA

3

Disable

FS_SHORT_TIMEOUT: Short failsafe timeout

The time in seconds that a failsafe condition has to persist before a short failsafe event will occur. This defaults to 1.5 seconds

Increment

Range

Units

0.5

1 - 100

seconds

FS_LONG_ACTN: Long failsafe action

The action to take on a long (FS_LONG_TIMEOUT seconds) failsafe event. If the aircraft was in a stabilization or manual mode when failsafe started and a long failsafe occurs then it will change to RTL mode if FS_LONG_ACTN is 0 or 1, and will change to FBWA if FS_LONG_ACTN is set to 2. If the aircraft was in an auto mode (such as AUTO or GUIDED) when the failsafe started then it will continue in the auto mode if FS_LONG_ACTN is set to 0, will change to RTL mode if FS_LONG_ACTN is set to 1 and will change to FBWA mode if FS_LONG_ACTN is set to 2. If FS_LONG_ACTION is set to 3, the parachute will be deployed (make sure the chute is configured and enabled).

Values

Value

Meaning

0

Continue

1

ReturnToLaunch

2

Glide

3

Deploy Parachute

FS_LONG_TIMEOUT: Long failsafe timeout

The time in seconds that a failsafe condition has to persist before a long failsafe event will occur. This defaults to 5 seconds.

Increment

Range

Units

0.5

1 - 300

seconds

FS_GCS_ENABL: GCS failsafe enable

Enable ground control station telemetry failsafe. Failsafe will trigger after FS_LONG_TIMEOUT seconds of no MAVLink heartbeat messages. There are three possible enabled settings. Setting FS_GCS_ENABL to 1 means that GCS failsafe will be triggered when the aircraft has not received a MAVLink HEARTBEAT message. Setting FS_GCS_ENABL to 2 means that GCS failsafe will be triggered on either a loss of HEARTBEAT messages, or a RADIO_STATUS message from a MAVLink enabled 3DR radio indicating that the ground station is not receiving status updates from the aircraft, which is indicated by the RADIO_STATUS.remrssi field being zero (this may happen if you have a one way link due to asymmetric noise on the ground station and aircraft radios).Setting FS_GCS_ENABL to 3 means that GCS failsafe will be triggered by Heartbeat(like option one), but only in AUTO mode. WARNING: Enabling this option opens up the possibility of your plane going into failsafe mode and running the motor on the ground it it loses contact with your ground station. If this option is enabled on an electric plane then you should enable ARMING_REQUIRED.

Values

Value

Meaning

0

Disabled

1

Heartbeat

2

HeartbeatAndREMRSSI

3

HeartbeatAndAUTO

FLTMODE_CH: Flightmode channel

Note: This parameter is for advanced users

RC Channel to use for flight mode control

Increment

Range

1

1 - 16

FLTMODE1: FlightMode1

Flight mode for switch position 1 (910 to 1230 and above 2049)

Values

Value

Meaning

0

Manual

1

CIRCLE

2

STABILIZE

3

TRAINING

4

ACRO

5

FBWA

6

FBWB

7

CRUISE

8

AUTOTUNE

10

Auto

11

RTL

12

Loiter

13

TAKEOFF

14

AVOID_ADSB

15

Guided

17

QSTABILIZE

18

QHOVER

19

QLOITER

20

QLAND

21

QRTL

22

QAUTOTUNE

23

QACRO

24

THERMAL

FLTMODE2: FlightMode2

Flight mode for switch position 2 (1231 to 1360)

Values

Value

Meaning

0

Manual

1

CIRCLE

2

STABILIZE

3

TRAINING

4

ACRO

5

FBWA

6

FBWB

7

CRUISE

8

AUTOTUNE

10

Auto

11

RTL

12

Loiter

13

TAKEOFF

14

AVOID_ADSB

15

Guided

17

QSTABILIZE

18

QHOVER

19

QLOITER

20

QLAND

21

QRTL

22

QAUTOTUNE

23

QACRO

24

THERMAL

FLTMODE3: FlightMode3

Flight mode for switch position 3 (1361 to 1490)

Values

Value

Meaning

0

Manual

1

CIRCLE

2

STABILIZE

3

TRAINING

4

ACRO

5

FBWA

6

FBWB

7

CRUISE

8

AUTOTUNE

10

Auto

11

RTL

12

Loiter

13

TAKEOFF

14

AVOID_ADSB

15

Guided

17

QSTABILIZE

18

QHOVER

19

QLOITER

20

QLAND

21

QRTL

22

QAUTOTUNE

23

QACRO

24

THERMAL

FLTMODE4: FlightMode4

Flight mode for switch position 4 (1491 to 1620)

Values

Value

Meaning

0

Manual

1

CIRCLE

2

STABILIZE

3

TRAINING

4

ACRO

5

FBWA

6

FBWB

7

CRUISE

8

AUTOTUNE

10

Auto

11

RTL

12

Loiter

13

TAKEOFF

14

AVOID_ADSB

15

Guided

17

QSTABILIZE

18

QHOVER

19

QLOITER

20

QLAND

21

QRTL

22

QAUTOTUNE

23

QACRO

24

THERMAL

FLTMODE5: FlightMode5

Flight mode for switch position 5 (1621 to 1749)

Values

Value

Meaning

0

Manual

1

CIRCLE

2

STABILIZE

3

TRAINING

4

ACRO

5

FBWA

6

FBWB

7

CRUISE

8

AUTOTUNE

10

Auto

11

RTL

12

Loiter

13

TAKEOFF

14

AVOID_ADSB

15

Guided

17

QSTABILIZE

18

QHOVER

19

QLOITER

20

QLAND

21

QRTL

22

QAUTOTUNE

23

QACRO

24

THERMAL

FLTMODE6: FlightMode6

Flight mode for switch position 6 (1750 to 2049)

Values

Value

Meaning

0

Manual

1

CIRCLE

2

STABILIZE

3

TRAINING

4

ACRO

5

FBWA

6

FBWB

7

CRUISE

8

AUTOTUNE

10

Auto

11

RTL

12

Loiter

13

TAKEOFF

14

AVOID_ADSB

15

Guided

17

QSTABILIZE

18

QHOVER

19

QLOITER

20

QLAND

21

QRTL

22

QAUTOTUNE

23

QACRO

24

THERMAL

INITIAL_MODE: Initial flight mode

Note: This parameter is for advanced users

This selects the mode to start in on boot. This is useful for when you want to start in AUTO mode on boot without a receiver.

Values

Value

Meaning

0

Manual

1

CIRCLE

2

STABILIZE

3

TRAINING

4

ACRO

5

FBWA

6

FBWB

7

CRUISE

8

AUTOTUNE

10

Auto

11

RTL

12

Loiter

13

TAKEOFF

14

AVOID_ADSB

15

Guided

17

QSTABILIZE

18

QHOVER

19

QLOITER

20

QLAND

21

QRTL

22

QAUTOTUNE

23

QACRO

24

THERMAL

LIM_ROLL_CD: Maximum Bank Angle

Maximum bank angle commanded in modes with stabilized limits. Increase this value for sharper turns, but decrease to prevent accelerated stalls.

Increment

Range

Units

10

0 - 9000

centidegrees

LIM_PITCH_MAX: Maximum Pitch Angle

Maximum pitch up angle commanded in modes with stabilized limits.

Increment

Range

Units

10

0 - 9000

centidegrees

LIM_PITCH_MIN: Minimum Pitch Angle

Maximum pitch down angle commanded in modes with stabilized limits

Increment

Range

Units

10

-9000 - 0

centidegrees

ACRO_ROLL_RATE: ACRO mode roll rate

The maximum roll rate at full stick deflection in ACRO mode

Increment

Range

Units

1

10 - 500

degrees per second

ACRO_PITCH_RATE: ACRO mode pitch rate

The maximum pitch rate at full stick deflection in ACRO mode

Increment

Range

Units

1

10 - 500

degrees per second

ACRO_LOCKING: ACRO mode attitude locking

Enable attitude locking when sticks are released

Values

Value

Meaning

0

Disabled

1

Enabled

GROUND_STEER_ALT: Ground steer altitude

Altitude at which to use the ground steering controller on the rudder. If non-zero then the STEER2SRV controller will be used to control the rudder for altitudes within this limit of the home altitude.

Increment

Range

Units

0.1

-100 - 100

meters

GROUND_STEER_DPS: Ground steer rate

Note: This parameter is for advanced users

Ground steering rate in degrees per second for full rudder stick deflection

Increment

Range

Units

1

10 - 360

degrees per second

TRIM_AUTO: Automatic trim adjustment

Enables the setting SERVOn_TRIM values to current levels when switching out of MANUAL mode. Should not be left on as mode switches while the plane is rolling or pitching can cause invalid trim values and subsequent unstable behavior. See newer and safer SERVO_AUTO_TRIM parameter for automated results.

Values

Value

Meaning

0

Disabled

1

Enabled

MIXING_GAIN: Mixing Gain

The gain for the Vtail and elevon output mixers. The default is 0.5, which ensures that the mixer doesn't saturate, allowing both input channels to go to extremes while retaining control over the output. Hardware mixers often have a 1.0 gain, which gives more servo throw, but can saturate. If you don't have enough throw on your servos with VTAIL_OUTPUT or ELEVON_OUTPUT enabled then you can raise the gain using MIXING_GAIN. The mixer allows outputs in the range 900 to 2100 microseconds.

Range

0.5 - 1.2

RUDDER_ONLY: Rudder only aircraft

Enable rudder only mode. The rudder will control attitude in attitude controlled modes (such as FBWA). You should setup your transmitter to send roll stick inputs to the RCMAP_YAW channel (normally channel 4). The rudder servo should be attached to the RCMAP_YAW channel as well. Note that automatic ground steering will be disabled for rudder only aircraft. You should also set KFF_RDDRMIX to 1.0. You will also need to setup the YAW2SRV_DAMP yaw damping appropriately for your aircraft. A value of 0.5 for YAW2SRV_DAMP is a good starting point.

Values

Value

Meaning

0

Disabled

1

Enabled

MIXING_OFFSET: Mixing Offset

The offset for the Vtail and elevon output mixers, as a percentage. This can be used in combination with MIXING_GAIN to configure how the control surfaces respond to input. The response to aileron or elevator input can be increased by setting this parameter to a positive or negative value. A common usage is to enter a positive value to increase the aileron response of the elevons of a flying wing. The default value of zero will leave the aileron-input response equal to the elevator-input response.

Range

Units

-1000 - 1000

decipercent

DSPOILR_RUD_RATE: Differential spoilers rudder rate

Sets the amount of deflection that the rudder output will apply to the differential spoilers, as a percentage. The default value of 100 results in full rudder applying full deflection. A value of 0 will result in the differential spoilers exactly following the elevons (no rudder effect).

Range

Units

-100 - 100

percent

SYS_NUM_RESETS: Num Resets

Note: This parameter is for advanced users

Number of APM board resets

ReadOnly

True

LOG_BITMASK: Log bitmask

Note: This parameter is for advanced users

Bitmap of what on-board log types to enable. This value is made up of the sum of each of the log types you want to be saved. It is usually best just to enable all log types by setting this to 65535. The individual bits are ATTITUDE_FAST=1, ATTITUDE_MEDIUM=2, GPS=4, PerformanceMonitoring=8, ControlTuning=16, NavigationTuning=32, Mode=64, IMU=128, Commands=256, Battery=512, Compass=1024, TECS=2048, Camera=4096, RCandServo=8192, Sonar=16384, Arming=32768, FullLogs=65535

Bitmask

Bit

Meaning

0

ATTITUDE_FAST

1

ATTITUDE_MED

2

GPS

3

PM

4

CTUN

5

NTUN

6

MODE

7

IMU

8

CMD

9

CURRENT

10

COMPASS

11

TECS

12

CAMERA

13

RC

14

SONAR

15

ARM/DISARM

19

IMU_RAW

20

ATTITUDE_FULLRATE

TRIM_ARSPD_CM: Target airspeed

Target airspeed in cm/s in automatic throttle modes. Value is as an indicated (calibrated/apparent) airspeed.

Units

centimeters per second

SCALING_SPEED: speed used for speed scaling calculations

Note: This parameter is for advanced users

Airspeed in m/s to use when calculating surface speed scaling. Note that changing this value will affect all PID values

Increment

Range

Units

0.1

0 - 50

meters per second

MIN_GNDSPD_CM: Minimum ground speed

Note: This parameter is for advanced users

Minimum ground speed in cm/s when under airspeed control

Units

centimeters per second

TRIM_PITCH_CD: Pitch angle offset

Note: This parameter is for advanced users

Offset applied to AHRS pitch used for in-flight pitch trimming. Correct ground leveling is better than changing this parameter.

Increment

Range

Units

10

-4500 - 4500

centidegrees

ALT_HOLD_RTL: RTL altitude

Target altitude above home for RTL mode. Maintains current altitude if set to -1. Rally point altitudes are used if plane does not return to home.

Units

centimeters

ALT_HOLD_FBWCM: Minimum altitude for FBWB mode

This is the minimum altitude in centimeters that FBWB and CRUISE modes will allow. If you attempt to descend below this altitude then the plane will level off. A value of zero means no limit.

Units

centimeters

FLAP_1_PERCNT: Flap 1 percentage

Note: This parameter is for advanced users

The percentage change in flap position when FLAP_1_SPEED is reached. Use zero to disable flaps

Increment

Range

Units

1

0 - 100

percent

FLAP_1_SPEED: Flap 1 speed

Note: This parameter is for advanced users

The speed in meters per second at which to engage FLAP_1_PERCENT of flaps. Note that FLAP_1_SPEED should be greater than or equal to FLAP_2_SPEED

Increment

Range

Units

1

0 - 100

meters per second

FLAP_2_PERCNT: Flap 2 percentage

Note: This parameter is for advanced users

The percentage change in flap position when FLAP_2_SPEED is reached. Use zero to disable flaps

Increment

Range

Units

1

0 - 100

percent

FLAP_2_SPEED: Flap 2 speed

Note: This parameter is for advanced users

The speed in meters per second at which to engage FLAP_2_PERCENT of flaps. Note that FLAP_1_SPEED should be greater than or equal to FLAP_2_SPEED

Increment

Range

Units

1

0 - 100

meters per second

OVERRIDE_CHAN: IO override channel

Note: This parameter is for advanced users

If set to a non-zero value then this is an RC input channel number to use for giving IO manual control in case the main FMU microcontroller on a board with a IO co-processor fails. When this RC input channel goes above 1750 the FMU microcontroller will no longer be involved in controlling the servos and instead the IO microcontroller will directly control the servos. Note that IO manual control will be automatically activated if the FMU crashes for any reason. This parameter allows you to test for correct manual behaviour without actually crashing the FMU. This parameter is can be set to a non-zero value either for ground testing purposes or for giving the effect of an external override control board. Please also see the docs on OVERRIDE_SAFETY. Note that you may set OVERRIDE_CHAN to the same channel as FLTMODE_CH to get IO based override when in flight mode 6. Note that when override is triggered due to a FMU crash the 6 auxiliary output channels on Pixhawk will no longer be updated, so all the flight controls you need must be assigned to the first 8 channels.

Increment

Range

1

0 - 16

OVERRIDE_SAFETY: IO override safety switch

Note: This parameter is for advanced users

This controls whether the safety switch is turned off when you activate override with OVERRIDE_CHAN. When set to 1 the safety switch is de-activated (activating the servos) then a IO override is triggered. In that case the safety remains de-activated after override is disabled. If OVERRIDE_SAFETTY is set to 0 then the safety switch state does not change. Note that regardless of the value of this parameter the servos will be active while override is active.

RTL_AUTOLAND: RTL auto land

Automatically begin landing sequence after arriving at RTL location. This requires the addition of a DO_LAND_START mission item, which acts as a marker for the start of a landing sequence. The closest landing sequence will be chosen to the current location.

Values

Value

Meaning

0

Disable

1

Enable - go HOME then land

2

Enable - go directly to landing sequence

CRASH_ACC_THRESH: Crash Deceleration Threshold

Note: This parameter is for advanced users

X-Axis deceleration threshold to notify the crash detector that there was a possible impact which helps disarm the motor quickly after a crash. This value should be much higher than normal negative x-axis forces during normal flight, check flight log files to determine the average IMU.x values for your aircraft and motor type. Higher value means less sensative (triggers on higher impact). For electric planes that don't vibrate much during fight a value of 25 is good (that's about 2.5G). For petrol/nitro planes you'll want a higher value. Set to 0 to disable the collision detector.

Increment

Range

Units

1

10 - 127

meters per square second

CRASH_DETECT: Crash Detection

Note: This parameter is for advanced users

Automatically detect a crash during AUTO flight and perform the bitmask selected action(s). Disarm will turn off motor for safety and to help against burning out ESC and motor. Set to 0 to disable crash detection.

Bitmask

Values

Bit

Meaning

0

Disarm

Value

Meaning

0

Disabled

RNGFND_LANDING: Enable rangefinder for landing

This enables the use of a rangefinder for automatic landing. The rangefinder will be used both on the landing approach and for final flare

Values

Value

Meaning

0

Disabled

1

Enabled

SYSID_ENFORCE: GCS sysid enforcement

Note: This parameter is for advanced users

This controls whether packets from other than the expected GCS system ID will be accepted

Values

Value

Meaning

0

NotEnforced

1

Enforced

RUDD_DT_GAIN: rudder differential thrust gain

gain control from rudder to differential thrust

Increment

Range

Units

1

0 - 100

percent

MANUAL_RCMASK: Manual R/C pass-through mask

Note: This parameter is for advanced users

Mask of R/C channels to pass directly to corresponding output channel when in MANUAL mode. When in any mode except MANUAL the channels selected with this option behave normally. This parameter is designed to allow for complex mixing strategies to be used for MANUAL flight using transmitter based mixing. Note that when this option is used you need to be very careful with pre-flight checks to ensure that the output is correct both in MANUAL and non-MANUAL modes.

Bitmask

Bit

Meaning

0

Chan1

1

Chan2

2

Chan3

3

Chan4

4

Chan5

5

Chan6

6

Chan7

7

Chan8

8

Chan9

9

Chan10

10

Chan11

11

Chan12

12

Chan13

13

Chan14

14

Chan15

15

Chan16

HOME_RESET_ALT: Home reset altitude threshold

Note: This parameter is for advanced users

When the aircraft is within this altitude of the home waypoint, while disarmed it will automatically update the home position. Set to 0 to continously reset it.

Range

Units

Values

-1 - 127

meters

Value

Meaning

-1

Never reset

0

Always reset

FLIGHT_OPTIONS: Flight mode options

Note: This parameter is for advanced users

Flight mode specific options

Bitmask

Bit

Meaning

0

Rudder mixing in direct flight modes only (Manual / Stabilize / Acro)

1

Use centered throttle in Cruise or FBWB to indicate trim airspeed

2

Disable attitude check for takeoff arming

3

Force target airspeed to trim airspeed in Cruise or FBWB

4

Climb to ALT_HOLD_RTL before turning for RTL

5

Enable yaw damper in acro mode

6

Surpress speed scaling during auto takeoffs to be 1 or less to prevent oscillations without airpseed sensor

7

EnableDefaultAirspeed for takeoff

11

Disable suppression of fixed wing rate gains in ground mode

TKOFF_ACCEL_CNT: Takeoff throttle acceleration count

This is the number of acceleration events to require for arming with TKOFF_THR_MINACC. The default is 1, which means a single forward acceleration above TKOFF_THR_MINACC will arm. By setting this higher than 1 you can require more forward/backward movements to arm.

Range

1 - 10

DSPOILER_CROW_W1: Differential spoiler crow flaps outer weight

Note: This parameter is for advanced users

This is amount of deflection applied to the two outer surfaces for differential spoilers for flaps to give crow flaps. It is a number from 0 to 100. At zero no crow flaps are applied. A recommended starting value is 25.

Increment

Range

Units

1

0 - 100

percent

DSPOILER_CROW_W2: Differential spoiler crow flaps inner weight

Note: This parameter is for advanced users

This is amount of deflection applied to the two inner surfaces for differential spoilers for flaps to give crow flaps. It is a number from 0 to 100. At zero no crow flaps are applied. A recommended starting value is 45.

Increment

Range

Units

1

0 - 100

percent

TKOFF_TIMEOUT: Takeoff timeout

This is the timeout for an automatic takeoff. If this is non-zero and the aircraft does not reach a ground speed of at least 4 m/s within this number of seconds then the takeoff is aborted and the vehicle disarmed. If the value is zero then no timeout applies.

Increment

Range

Units

1

0 - 120

seconds

DSPOILER_OPTS: Differential spoiler and crow flaps options

Note: This parameter is for advanced users

Differential spoiler and crow flaps options

Bitmask

Values

Bit

Meaning

0

pitch control

1

full span

2

Progressive crow

Value

Meaning

0

none

1

D spoilers have pitch input

2

use both control surfaces on each wing for roll

4

Progressive crow flaps only first (0-50% flap in) then crow flaps (50 - 100% flap in)

DSPOILER_AILMTCH: Differential spoiler aileron matching

Note: This parameter is for advanced users

This scales down the inner flaps so less than full downwards range can be used for differential spoiler and full span ailerons, 100 is use full range, upwards travel is unaffected

Increment

Range

Units

1

0 - 100

percent

FWD_BAT_VOLT_MAX: Forward throttle battery voltage compensation maximum voltage

Note: This parameter is for advanced users

Forward throttle battery voltage compensation maximum voltage (voltage above this will have no additional scaling effect on thrust). Recommend 4.2 * cell count, 0 = Disabled. Recommend THR_MAX is set to no more than 100 x FWD_BAT_VOLT_MIN / FWD_BAT_VOLT_MAX, THR_MIN is set to no less than -100 x FWD_BAT_VOLT_MIN / FWD_BAT_VOLT_MAX and climb descent rate limits are set accordingly.

Increment

Range

Units

0.1

6 - 35

volt

FWD_BAT_VOLT_MIN: Forward throttle battery voltage compensation minimum voltage

Note: This parameter is for advanced users

Forward throttle battery voltage compensation minimum voltage (voltage below this will have no additional scaling effect on thrust). Recommend 3.5 * cell count, 0 = Disabled. Recommend THR_MAX is set to no more than 100 x FWD_BAT_VOLT_MIN / FWD_BAT_VOLT_MAX, THR_MIN is set to no less than -100 x FWD_BAT_VOLT_MIN / FWD_BAT_VOLT_MAX and climb descent rate limits are set accordingly.

Increment

Range

Units

0.1

6 - 35

volt

FWD_BAT_IDX: Forward throttle battery compensation index

Note: This parameter is for advanced users

Which battery monitor should be used for doing compensation for the forward throttle

Values

Value

Meaning

0

First battery

1

Second battery

FS_EKF_THRESH: EKF failsafe variance threshold

Note: This parameter is for advanced users

Allows setting the maximum acceptable compass and velocity variance used to check navigation health in VTOL modes

Values

0.6:Strict,0.8:Default,1.0:Relaxed

RTL_CLIMB_MIN: RTL minimum climb

The vehicle will climb this many m during the initial climb portion of the RTL. During this time the roll will be limited to LEVEL_ROLL_LIMIT degrees.

Increment

Range

Units

1

0 - 30

meters

MAN_EXPO_ROLL: Manual control expo for roll

Percentage exponential for roll input in MANUAL, ACRO and TRAINING modes

Increment

Range

1

0 - 100

MAN_EXPO_PITCH: Manual input expo for pitch

Percentage exponential for pitch input in MANUAL, ACRO and TRAINING modes

Increment

Range

1

0 - 100

MAN_EXPO_RUDDER: Manual input expo for rudder

Percentage exponential for rudder input in MANUAL, ACRO and TRAINING modes

Increment

Range

1

0 - 100

ONESHOT_MASK: Oneshot output mask

Note: This parameter is for advanced users

Mask of output channels to use oneshot on

Bitmask

0: Servo 1, 1: Servo 2, 2: Servo 3, 3: Servo 4, 4: Servo 5, 5: Servo 6, 6: Servo 7, 7: Servo 8, 8: Servo 9, 9: Servo 10, 10: Servo 11, 11: Servo 12, 12: Servo 13, 13: Servo 14, 14: Servo 15

ADSB_ Parameters

ADSB_TYPE: ADSB Type

Type of ADS-B hardware for ADSB-in and ADSB-out configuration and operation. If any type is selected then MAVLink based ADSB-in messages will always be enabled

RebootRequired

Values

True

Value

Meaning

0

Disabled

1

uAvionix-MAVLink

2

Sagetech

ADSB_LIST_MAX: ADSB vehicle list size

Note: This parameter is for advanced users

ADSB list size of nearest vehicles. Longer lists take longer to refresh with lower SRx_ADSB values.

Range

RebootRequired

1 - 100

True

ADSB_LIST_RADIUS: ADSB vehicle list radius filter

Note: This parameter is for advanced users

ADSB vehicle list radius filter. Vehicles detected outside this radius will be completely ignored. They will not show up in the SRx_ADSB stream to the GCS and will not be considered in any avoidance calculations. A value of 0 will disable this filter.

Range

Units

0 - 100000

meters

ADSB_ICAO_ID: ICAO_ID vehicle identification number

Note: This parameter is for advanced users

ICAO_ID unique vehicle identification number of this aircraft. This is a integer limited to 24bits. If set to 0 then one will be randomly generated. If set to -1 then static information is not sent, transceiver is assumed pre-programmed.

Range

-1 - 16777215

ADSB_EMIT_TYPE: Emitter type

Note: This parameter is for advanced users

ADSB classification for the type of vehicle emitting the transponder signal. Default value is 14 (UAV).

Values

Value

Meaning

0

NoInfo

1

Light

2

Small

3

Large

4

HighVortexlarge

5

Heavy

6

HighlyManuv

7

Rotocraft

8

RESERVED

9

Glider

10

LightAir

11

Parachute

12

UltraLight

13

RESERVED

14

UAV

15

Space

16

RESERVED

17

EmergencySurface

18

ServiceSurface

19

PointObstacle

ADSB_LEN_WIDTH: Aircraft length and width

Note: This parameter is for advanced users

Aircraft length and width dimension options in Length and Width in meters. In most cases, use a value of 1 for smallest size.

Values

Value

Meaning

0

NO_DATA

1

L15W23

2

L25W28P5

3

L25W34

4

L35W33

5

L35W38

6

L45W39P5

7

L45W45

8

L55W45

9

L55W52

10

L65W59P5

11

L65W67

12

L75W72P5

13

L75W80

14

L85W80

15

L85W90

ADSB_OFFSET_LAT: GPS antenna lateral offset

Note: This parameter is for advanced users

GPS antenna lateral offset. This describes the physical location offest from center of the GPS antenna on the aircraft.

Values

Value

Meaning

0

NoData

1

Left2m

2

Left4m

3

Left6m

4

Center

5

Right2m

6

Right4m

7

Right6m

ADSB_OFFSET_LON: GPS antenna longitudinal offset

Note: This parameter is for advanced users

GPS antenna longitudinal offset. This is usually set to 1, Applied By Sensor

Values

Value

Meaning

0

NO_DATA

1

AppliedBySensor

ADSB_RF_SELECT: Transceiver RF selection

Note: This parameter is for advanced users

Transceiver RF selection for Rx enable and/or Tx enable. This only effects devices that can Tx and/or Rx. Rx-only devices should override this to always be Rx-only.

Bitmask

Bit

Meaning

0

Rx

1

Tx

ADSB_SQUAWK: Squawk code

Note: This parameter is for advanced users

VFR squawk (Mode 3/A) code is a pre-programmed default code when the pilot is flying VFR and not in contact with ATC. In the USA, the VFR squawk code is octal 1200 (hex 0x280, decimal 640) and in most parts of Europe the VFR squawk code is octal 7000. If an invalid octal number is set then it will be reset to 1200.

Range

Units

0 - 7777

octal

ADSB_RF_CAPABLE: RF capabilities

Note: This parameter is for advanced users

Describes your hardware RF In/Out capabilities.

Bitmask

Bit

Meaning

0

UAT_in

1

1090ES_in

2

UAT_out

3

1090ES_out

ADSB_LIST_ALT: ADSB vehicle list altitude filter

Note: This parameter is for advanced users

ADSB vehicle list altitude filter. Vehicles detected above this altitude will be completely ignored. They will not show up in the SRx_ADSB stream to the GCS and will not be considered in any avoidance calculations. A value of 0 will disable this filter.

Range

Units

0 - 32767

meters

ADSB_ICAO_SPECL: ICAO_ID of special vehicle

Note: This parameter is for advanced users

ICAO_ID of special vehicle that ignores ADSB_LIST_RADIUS and ADSB_LIST_ALT. The vehicle is always tracked. Use 0 to disable.

ADSB_LOG: ADS-B logging

Note: This parameter is for advanced users

0: no logging, 1: log only special ID, 2:log all

Values

Value

Meaning

0

no logging

1

log only special ID

2

log all

AFS_ Parameters

AFS_ENABLE: Enable Advanced Failsafe

Note: This parameter is for advanced users

This enables the advanced failsafe system. If this is set to zero (disable) then all the other AFS options have no effect

AFS_MAN_PIN: Manual Pin

Note: This parameter is for advanced users

This sets a digital output pin to set high when in manual mode

AFS_HB_PIN: Heartbeat Pin

Note: This parameter is for advanced users

This sets a digital output pin which is cycled at 10Hz when termination is not activated. Note that if a FS_TERM_PIN is set then the heartbeat pin will continue to cycle at 10Hz when termination is activated, to allow the termination board to distinguish between autopilot crash and termination.

Values

Value

Meaning

-1

Disabled

49

BB Blue GP0 pin 4

50

AUXOUT1

51

AUXOUT2

52

AUXOUT3

53

AUXOUT4

54

AUXOUT5

55

AUXOUT6

57

BB Blue GP0 pin 3

113

BB Blue GP0 pin 6

116

BB Blue GP0 pin 5

AFS_WP_COMMS: Comms Waypoint

Note: This parameter is for advanced users

Waypoint number to navigate to on comms loss

AFS_WP_GPS_LOSS: GPS Loss Waypoint

Note: This parameter is for advanced users

Waypoint number to navigate to on GPS lock loss

AFS_TERMINATE: Force Terminate

Note: This parameter is for advanced users

Can be set in flight to force termination of the heartbeat signal

AFS_TERM_ACTION: Terminate action

Note: This parameter is for advanced users

This can be used to force an action on flight termination. Normally this is handled by an external failsafe board, but you can setup ArduPilot to handle it here. Please consult the wiki for more information on the possible values of the parameter

AFS_TERM_PIN: Terminate Pin

Note: This parameter is for advanced users

This sets a digital output pin to set high on flight termination

Values

Value

Meaning

-1

Disabled

49

BB Blue GP0 pin 4

50

AUXOUT1

51

AUXOUT2

52

AUXOUT3

53

AUXOUT4

54

AUXOUT5

55

AUXOUT6

57

BB Blue GP0 pin 3

113

BB Blue GP0 pin 6

116

BB Blue GP0 pin 5

AFS_AMSL_LIMIT: AMSL limit

Note: This parameter is for advanced users

This sets the AMSL (above mean sea level) altitude limit. If the pressure altitude determined by QNH exceeds this limit then flight termination will be forced. Note that this limit is in meters, whereas pressure altitude limits are often quoted in feet. A value of zero disables the pressure altitude limit.

Units

meters

AFS_AMSL_ERR_GPS: Error margin for GPS based AMSL limit

Note: This parameter is for advanced users

This sets margin for error in GPS derived altitude limit. This error margin is only used if the barometer has failed. If the barometer fails then the GPS will be used to enforce the AMSL_LIMIT, but this margin will be subtracted from the AMSL_LIMIT first, to ensure that even with the given amount of GPS altitude error the pressure altitude is not breached. OBC users should set this to comply with their D2 safety case. A value of -1 will mean that barometer failure will lead to immediate termination.

Units

meters

AFS_QNH_PRESSURE: QNH pressure

Note: This parameter is for advanced users

This sets the QNH pressure in millibars to be used for pressure altitude in the altitude limit. A value of zero disables the altitude limit.

Units

hectopascal

AFS_MAX_GPS_LOSS: Maximum number of GPS loss events

Note: This parameter is for advanced users

Maximum number of GPS loss events before the aircraft stops returning to mission on GPS recovery. Use zero to allow for any number of GPS loss events.

AFS_MAX_COM_LOSS: Maximum number of comms loss events

Note: This parameter is for advanced users

Maximum number of comms loss events before the aircraft stops returning to mission on comms recovery. Use zero to allow for any number of comms loss events.

AFS_GEOFENCE: Enable geofence Advanced Failsafe

Note: This parameter is for advanced users

This enables the geofence part of the AFS. Will only be in effect if AFS_ENABLE is also 1

AFS_RC: Enable RC Advanced Failsafe

Note: This parameter is for advanced users

This enables the RC part of the AFS. Will only be in effect if AFS_ENABLE is also 1

AFS_RC_MAN_ONLY: Enable RC Termination only in manual control modes

Note: This parameter is for advanced users

If this parameter is set to 1, then an RC loss will only cause the plane to terminate in manual control modes. If it is 0, then the plane will terminate in any flight mode.

AFS_DUAL_LOSS: Enable dual loss terminate due to failure of both GCS and GPS simultaneously

Note: This parameter is for advanced users

This enables the dual loss termination part of the AFS system. If this parameter is 1 and both GPS and the ground control station fail simultaneously, this will be considered a "dual loss" and cause termination.

AFS_RC_FAIL_TIME: RC failure time

Note: This parameter is for advanced users

This is the time in seconds in manual mode that failsafe termination will activate if RC input is lost. For the OBC rules this should be (1.5). Use 0 to disable.

Units

seconds

AFS_MAX_RANGE: Max allowed range

Note: This parameter is for advanced users

This is the maximum range of the vehicle in kilometers from first arming. If the vehicle goes beyond this range then the TERM_ACTION is performed. A value of zero disables this feature.

Units

kilometers

AHRS_ Parameters

AHRS_GPS_GAIN: AHRS GPS gain

Note: This parameter is for advanced users

This controls how much to use the GPS to correct the attitude. This should never be set to zero for a plane as it would result in the plane losing control in turns. For a plane please use the default value of 1.0.

Increment

Range

.01

0.0 - 1.0

AHRS_GPS_USE: AHRS use GPS for navigation

Note: This parameter is for advanced users

This controls whether to use dead-reckoning or GPS based navigation. If set to 0 then the GPS won't be used for navigation, and only dead reckoning will be used. A value of zero should never be used for normal flight. Currently this affects only the DCM-based AHRS: the EKF uses GPS whenever it is available.

Values

Value

Meaning

0

Disabled

1

Enabled

AHRS_YAW_P: Yaw P

Note: This parameter is for advanced users

This controls the weight the compass or GPS has on the heading. A higher value means the heading will track the yaw source (GPS or compass) more rapidly.

Increment

Range

.01

0.1 - 0.4

AHRS_RP_P: AHRS RP_P

Note: This parameter is for advanced users

This controls how fast the accelerometers correct the attitude

Increment

Range

.01

0.1 - 0.4

AHRS_WIND_MAX: Maximum wind

Note: This parameter is for advanced users

This sets the maximum allowable difference between ground speed and airspeed. This allows the plane to cope with a failing airspeed sensor. A value of zero means to use the airspeed as is. See ARSPD_OPTIONS and ARSPD_MAX_WIND to disable airspeed sensors.

Increment

Range

Units

1

0 - 127

meters per second

AHRS_TRIM_X: AHRS Trim Roll

Compensates for the roll angle difference between the control board and the frame. Positive values make the vehicle roll right.

Increment

Range

Units

0.01

-0.1745 - +0.1745

radians

AHRS_TRIM_Y: AHRS Trim Pitch

Compensates for the pitch angle difference between the control board and the frame. Positive values make the vehicle pitch up/back.

Increment

Range

Units

0.01

-0.1745 - +0.1745

radians

AHRS_TRIM_Z: AHRS Trim Yaw

Note: This parameter is for advanced users

Not Used

Increment

Range

Units

0.01

-0.1745 - +0.1745

radians

AHRS_ORIENTATION: Board Orientation

Note: This parameter is for advanced users

Overall board orientation relative to the standard orientation for the board type. This rotates the IMU and compass readings to allow the board to be oriented in your vehicle at any 90 or 45 degree angle. This option takes affect on next boot. After changing you will need to re-level your vehicle.

Values

Value

Meaning

0

None

1

Yaw45

2

Yaw90

3

Yaw135

4

Yaw180

5

Yaw225

6

Yaw270

7

Yaw315

8

Roll180

9

Roll180Yaw45

10

Roll180Yaw90

11

Roll180Yaw135

12

Pitch180

13

Roll180Yaw225

14

Roll180Yaw270

15

Roll180Yaw315

16

Roll90

17

Roll90Yaw45

18

Roll90Yaw90

19

Roll90Yaw135

20

Roll270

21

Roll270Yaw45

22

Roll270Yaw90

23

Roll270Yaw135

24

Pitch90

25

Pitch270

26

Pitch180Yaw90

27

Pitch180Yaw270

28

Roll90Pitch90

29

Roll180Pitch90

30

Roll270Pitch90

31

Roll90Pitch180

32

Roll270Pitch180

33

Roll90Pitch270

34

Roll180Pitch270

35

Roll270Pitch270

36

Roll90Pitch180Yaw90

37

Roll90Yaw270

38

Yaw293Pitch68Roll180

39

Pitch315

40

Roll90Pitch315

100

Custom

AHRS_COMP_BETA: AHRS Velocity Complementary Filter Beta Coefficient

Note: This parameter is for advanced users

This controls the time constant for the cross-over frequency used to fuse AHRS (airspeed and heading) and GPS data to estimate ground velocity. Time constant is 0.1/beta. A larger time constant will use GPS data less and a small time constant will use air data less.

Increment

Range

.01

0.001 - 0.5

AHRS_GPS_MINSATS: AHRS GPS Minimum satellites

Note: This parameter is for advanced users

Minimum number of satellites visible to use GPS for velocity based corrections attitude correction. This defaults to 6, which is about the point at which the velocity numbers from a GPS become too unreliable for accurate correction of the accelerometers.

Increment

Range

1

0 - 10

AHRS_EKF_TYPE: Use NavEKF Kalman filter for attitude and position estimation

Note: This parameter is for advanced users

This controls which NavEKF Kalman filter version is used for attitude and position estimation

Values

Value

Meaning

0

Disabled

2

Enable EKF2

3

Enable EKF3

11

ExternalAHRS

AHRS_CUSTOM_ROLL: Board orientation roll offset

Note: This parameter is for advanced users

Autopilot mounting position roll offset. Positive values = roll right, negative values = roll left. This parameter is only used when AHRS_ORIENTATION is set to CUSTOM.

Increment

Range

Units

1

-180 - 180

degrees

AHRS_CUSTOM_PIT: Board orientation pitch offset

Note: This parameter is for advanced users

Autopilot mounting position pitch offset. Positive values = pitch up, negative values = pitch down. This parameter is only used when AHRS_ORIENTATION is set to CUSTOM.

Increment

Range

Units

1

-180 - 180

degrees

AHRS_CUSTOM_YAW: Board orientation yaw offset

Note: This parameter is for advanced users

Autopilot mounting position yaw offset. Positive values = yaw right, negative values = yaw left. This parameter is only used when AHRS_ORIENTATION is set to CUSTOM.

Increment

Range

Units

1

-180 - 180

degrees

ARMING_ Parameters

ARMING_REQUIRE: Require Arming Motors

Note: This parameter is for advanced users

Arming disabled until some requirements are met. If 0, there are no requirements (arm immediately). If 1, require rudder stick or GCS arming before arming motors and sends the minimum throttle PWM value to the throttle channel when disarmed. If 2, require rudder stick or GCS arming and send 0 PWM to throttle channel when disarmed. See the ARMING_CHECK_* parameters to see what checks are done before arming. Note, if setting this parameter to 0 a reboot is required to arm the plane. Also note, even with this parameter at 0, if ARMING_CHECK parameter is not also zero the plane may fail to arm throttle at boot due to a pre-arm check failure.

Values

Value

Meaning

0

Disabled

1

THR_MIN PWM when disarmed

2

0 PWM when disarmed

ARMING_ACCTHRESH: Accelerometer error threshold

Note: This parameter is for advanced users

Accelerometer error threshold used to determine inconsistent accelerometers. Compares this error range to other accelerometers to detect a hardware or calibration error. Lower value means tighter check and harder to pass arming check. Not all accelerometers are created equal.

Range

Units

0.25 - 3.0

meters per square second

ARMING_RUDDER: Arming with Rudder enable/disable

Note: This parameter is for advanced users

Allow arm/disarm by rudder input. When enabled arming can be done with right rudder, disarming with left rudder. Rudder arming only works in manual throttle modes with throttle at zero +- deadzone (RCx_DZ)

Values

Value

Meaning

0

Disabled

1

ArmingOnly

2

ArmOrDisarm

ARMING_MIS_ITEMS: Required mission items

Note: This parameter is for advanced users

Bitmask of mission items that are required to be planned in order to arm the aircraft

Bitmask

Bit

Meaning

0

Land

1

VTOL Land

2

DO_LAND_START

3

Takeoff

4

VTOL Takeoff

5

Rallypoint

ARMING_CHECK: Arm Checks to Perform (bitmask)

Checks prior to arming motor. This is a bitmask of checks that will be performed before allowing arming. For most users it is recommended to leave this at the default of 1 (all checks enabled). You can select whatever checks you prefer by adding together the values of each check type to set this parameter. For example, to only allow arming when you have GPS lock and no RC failsafe you would set ARMING_CHECK to 72.

Bitmask

Bit

Meaning

0

All

1

Barometer

2

Compass

3

GPS lock

4

INS

5

Parameters

6

RC Channels

7

Board voltage

8

Battery Level

9

Airspeed

10

Logging Available

11

Hardware safety switch

12

GPS Configuration

13

System

14

Mission

15

Rangefinder

16

Camera

17

AuxAuth

19

FFT

ARSPD Parameters

ARSPD_TYPE: Airspeed type

Type of airspeed sensor

Values

Value

Meaning

0

None

1

I2C-MS4525D0

2

Analog

3

I2C-MS5525

4

I2C-MS5525 (0x76)

5

I2C-MS5525 (0x77)

6

I2C-SDP3X

7

I2C-DLVR-5in

8

UAVCAN

9

I2C-DLVR-10in

10

I2C-DLVR-20in

11

I2C-DLVR-30in

12

I2C-DLVR-60in

13

NMEA water speed

14

MSP

15

ASP5033

ARSPD_USE: Airspeed use

Enables airspeed use for automatic throttle modes and replaces control from THR_TRIM. Continues to display and log airspeed if set to 0. Uses airspeed for control if set to 1. Only uses airspeed when throttle = 0 if set to 2 (useful for gliders with airspeed sensors behind propellers).

Values

Value

Meaning

0

DoNotUse

1

Use

2

UseWhenZeroThrottle

ARSPD_OFFSET: Airspeed offset

Note: This parameter is for advanced users

Airspeed calibration offset

Increment

0.1

ARSPD_RATIO: Airspeed ratio

Note: This parameter is for advanced users

Calibrates pitot tube pressure to velocity. Increasing this value will indicate a higher airspeed at any given dynamic pressure.

Increment

0.1

ARSPD_PIN: Airspeed pin

Note: This parameter is for advanced users

The pin number that the airspeed sensor is connected to for analog sensors. Set to 15 on the Pixhawk for the analog airspeed port.

ARSPD_AUTOCAL: Automatic airspeed ratio calibration

Note: This parameter is for advanced users

Enables automatic adjustment of ARSPD_RATIO during a calibration flight based on estimation of ground speed and true airspeed. New ratio saved every 2 minutes if change is > 5%. Should not be left enabled.

ARSPD_TUBE_ORDER: Control pitot tube order

Note: This parameter is for advanced users

Changes the pitot tube order to specify the dynamic pressure side of the sensor. Accepts either if set to 2. Accepts only one side if set to 0 or 1 and can help detect excessive pressure on the static port without indicating positive airspeed.

ARSPD_SKIP_CAL: Skip airspeed calibration on startup

Note: This parameter is for advanced users

This parameter allows you to skip airspeed offset calibration on startup, instead using the offset from the last calibration. This may be desirable if the offset variance between flights for your sensor is low and you want to avoid having to cover the pitot tube on each boot.

Values

Value

Meaning

0

Disable

1

Enable

ARSPD_PSI_RANGE: The PSI range of the device

Note: This parameter is for advanced users

This parameter allows you to to set the PSI (pounds per square inch) range for your sensor. You should not change this unless you examine the datasheet for your device

ARSPD_BUS: Airspeed I2C bus

Note: This parameter is for advanced users

Bus number of the I2C bus where the airspeed sensor is connected

Values

Value

Meaning

0

Bus0(internal)

1

Bus1(external)

2

Bus2(auxillary)

ARSPD_PRIMARY: Primary airspeed sensor

Note: This parameter is for advanced users

This selects which airspeed sensor will be the primary if multiple sensors are found

Values

Value

Meaning

0

FirstSensor

1

2ndSensor

ARSPD_OPTIONS: Airspeed options bitmask

Note: This parameter is for advanced users

Bitmask of options to use with airspeed. Disable and/or re-enable sensor based on the difference between airspeed and ground speed based on ARSPD_WIND_MAX threshold, if set

Bitmask

Bit

Meaning

0

Disable sensor

1

Re-enable sensor

ARSPD_WIND_MAX: Maximum airspeed and ground speed difference

Note: This parameter is for advanced users

If the difference between airspeed and ground speed is greater than this value the sensor will be marked unhealthy. Using ARSPD_OPTION this health value can be used to disable the sensor.

Units

meters per second

ARSPD_WIND_WARN: Airspeed and ground speed difference that gives a warning

Note: This parameter is for advanced users

If the difference between airspeed and ground speed is greater than this value the sensor will issue a warning. If 0 ARSPD_WIND_MAX is used.

Units

meters per second

ARSPD2_TYPE: Second Airspeed type

Type of 2nd airspeed sensor

Values

Value

Meaning

0

None

1

I2C-MS4525D0

2

Analog

3

I2C-MS5525

4

I2C-MS5525 (0x76)

5

I2C-MS5525 (0x77)

6

I2C-SDP3X

7

I2C-DLVR-5in

8

UAVCAN

9

I2C-DLVR-10in

10

I2C-DLVR-20in

11

I2C-DLVR-30in

12

I2C-DLVR-60in

13

NMEA water speed

14

MSP

15

ASP5033

ARSPD2_USE: Enable use of 2nd airspeed sensor

use airspeed for flight control. When set to 0 airspeed sensor can be logged and displayed on a GCS but won't be used for flight. When set to 1 it will be logged and used. When set to 2 it will be only used when the throttle is zero, which can be useful in gliders with airspeed sensors behind a propeller

Values

Value

Meaning

0

Don’t Use

1

use

2

UseWhenZeroThrottle

ARSPD2_OFFSET: Airspeed offset for 2nd airspeed sensor

Note: This parameter is for advanced users

Airspeed calibration offset

Increment

0.1

ARSPD2_RATIO: Airspeed ratio for 2nd airspeed sensor

Note: This parameter is for advanced users

Airspeed calibration ratio

Increment

0.1

ARSPD2_PIN: Airspeed pin for 2nd airspeed sensor

Note: This parameter is for advanced users

Pin number indicating location of analog airspeed sensors. Pixhawk/Cube if set to 15.

ARSPD2_AUTOCAL: Automatic airspeed ratio calibration for 2nd airspeed sensor

Note: This parameter is for advanced users

If this is enabled then the autopilot will automatically adjust the ARSPD_RATIO during flight, based upon an estimation filter using ground speed and true airspeed. The automatic calibration will save the new ratio to EEPROM every 2 minutes if it changes by more than 5%. This option should be enabled for a calibration flight then disabled again when calibration is complete. Leaving it enabled all the time is not recommended.

ARSPD2_TUBE_ORDR: Control pitot tube order of 2nd airspeed sensor

Note: This parameter is for advanced users

This parameter allows you to control whether the order in which the tubes are attached to your pitot tube matters. If you set this to 0 then the top connector on the sensor needs to be the dynamic pressure. If set to 1 then the bottom connector needs to be the dynamic pressure. If set to 2 (the default) then the airspeed driver will accept either order. The reason you may wish to specify the order is it will allow your airspeed sensor to detect if the aircraft it receiving excessive pressure on the static port, which would otherwise be seen as a positive airspeed.

ARSPD2_SKIP_CAL: Skip airspeed calibration on startup for 2nd sensor

Note: This parameter is for advanced users

This parameter allows you to skip airspeed offset calibration on startup, instead using the offset from the last calibration. This may be desirable if the offset variance between flights for your sensor is low and you want to avoid having to cover the pitot tube on each boot.

Values

Value

Meaning

0

Disable

1

Enable

ARSPD2_PSI_RANGE: The PSI range of the device for 2nd sensor

Note: This parameter is for advanced users

This parameter allows you to to set the PSI (pounds per square inch) range for your sensor. You should not change this unless you examine the datasheet for your device

ARSPD2_BUS: Airspeed I2C bus for 2nd sensor

Note: This parameter is for advanced users

The bus number of the I2C bus to look for the sensor on

Values

Value

Meaning

0

Bus0(internal)

1

Bus1(external)

2

Bus2(auxillary)

AVD_ Parameters

AVD_ENABLE: Enable Avoidance using ADSB

Note: This parameter is for advanced users

Enable Avoidance using ADSB

Values

Value

Meaning

0

Disabled

1

Enabled

AVD_F_ACTION: Collision Avoidance Behavior

Note: This parameter is for advanced users

Specifies aircraft behaviour when a collision is imminent

Values

Value

Meaning

0

None

1

Report

2

Climb Or Descend

3

Move Horizontally

4

Move Perpendicularly in 3D

5

RTL

6

Hover

AVD_W_ACTION: Collision Avoidance Behavior - Warn

Note: This parameter is for advanced users

Specifies aircraft behaviour when a collision may occur

Values

Value

Meaning

0

None

1

Report

AVD_F_RCVRY: Recovery behaviour after a fail event

Note: This parameter is for advanced users

Determines what the aircraft will do after a fail event is resolved

Values

Value

Meaning

0

Remain in AVOID_ADSB

1

Resume previous flight mode

2

RTL

3

Resume if AUTO else Loiter

AVD_OBS_MAX: Maximum number of obstacles to track

Note: This parameter is for advanced users

Maximum number of obstacles to track

AVD_W_TIME: Time Horizon Warn

Note: This parameter is for advanced users

Aircraft velocity vectors are multiplied by this time to determine closest approach. If this results in an approach closer than W_DIST_XY or W_DIST_Z then W_ACTION is undertaken (assuming F_ACTION is not undertaken)

Units

seconds

AVD_F_TIME: Time Horizon Fail

Note: This parameter is for advanced users

Aircraft velocity vectors are multiplied by this time to determine closest approach. If this results in an approach closer than F_DIST_XY or F_DIST_Z then F_ACTION is undertaken

Units

seconds

AVD_W_DIST_XY: Distance Warn XY

Note: This parameter is for advanced users

Closest allowed projected distance before W_ACTION is undertaken

Units

meters

AVD_F_DIST_XY: Distance Fail XY

Note: This parameter is for advanced users

Closest allowed projected distance before F_ACTION is undertaken

Units

meters

AVD_W_DIST_Z: Distance Warn Z

Note: This parameter is for advanced users

Closest allowed projected distance before BEHAVIOUR_W is undertaken

Units

meters

AVD_F_DIST_Z: Distance Fail Z

Note: This parameter is for advanced users

Closest allowed projected distance before BEHAVIOUR_F is undertaken

Units

meters

AVD_F_ALT_MIN: ADS-B avoidance minimum altitude

Note: This parameter is for advanced users

Minimum AMSL (above mean sea level) altitude for ADS-B avoidance. If the vehicle is below this altitude, no avoidance action will take place. Useful to prevent ADS-B avoidance from activating while below the tree line or around structures. Default of 0 is no minimum.

Units

meters

BARO Parameters

BARO1_GND_PRESS: Ground Pressure

Note: This parameter is for advanced users

calibrated ground pressure in Pascals

Increment

ReadOnly

Units

Volatile

1

True

pascal

True

BARO_GND_TEMP: ground temperature

Note: This parameter is for advanced users

User provided ambient ground temperature in degrees Celsius. This is used to improve the calculation of the altitude the vehicle is at. This parameter is not persistent and will be reset to 0 every time the vehicle is rebooted. A value of 0 means use the internal measurement ambient temperature.

Increment

Units

Volatile

1

degrees Celsius

True

BARO_ALT_OFFSET: altitude offset

Note: This parameter is for advanced users

altitude offset in meters added to barometric altitude. This is used to allow for automatic adjustment of the base barometric altitude by a ground station equipped with a barometer. The value is added to the barometric altitude read by the aircraft. It is automatically reset to 0 when the barometer is calibrated on each reboot or when a preflight calibration is performed.

Increment

Units

0.1

meters

BARO_PRIMARY: Primary barometer

Note: This parameter is for advanced users

This selects which barometer will be the primary if multiple barometers are found

Values

Value

Meaning

0

FirstBaro

1

2ndBaro

2

3rdBaro

BARO_EXT_BUS: External baro bus

Note: This parameter is for advanced users

This selects the bus number for looking for an I2C barometer. When set to -1 it will probe all external i2c buses based on the GND_PROBE_EXT parameter.

Values

Value

Meaning

-1

Disabled

0

Bus0

1

Bus1

BARO_SPEC_GRAV: Specific Gravity (For water depth measurement)

This sets the specific gravity of the fluid when flying an underwater ROV.

Values

1.0:Freshwater,1.024:Saltwater

BARO2_GND_PRESS: Ground Pressure

Note: This parameter is for advanced users

calibrated ground pressure in Pascals

Increment

ReadOnly

Units

Volatile

1

True

pascal

True

BARO3_GND_PRESS: Absolute Pressure

Note: This parameter is for advanced users

calibrated ground pressure in Pascals

Increment

ReadOnly

Units

Volatile

1

True

pascal

True

BARO_FLTR_RNG: Range in which sample is accepted

This sets the range around the average value that new samples must be within to be accepted. This can help reduce the impact of noise on sensors that are on long I2C cables. The value is a percentage from the average value. A value of zero disables this filter.

Increment

Range

Units

1

0 - 100

percent

BARO_PROBE_EXT: External barometers to probe

Note: This parameter is for advanced users

This sets which types of external i2c barometer to look for. It is a bitmask of barometer types. The I2C buses to probe is based on GND_EXT_BUS. If BARO_EXT_BUS is -1 then it will probe all external buses, otherwise it will probe just the bus number given in GND_EXT_BUS.

Bitmask

Bit

Meaning

0

BMP085

1

BMP280

2

MS5611

3

MS5607

4

MS5637

5

FBM320

6

DPS280

7

LPS25H

8

Keller

9

MS5837

10

BMP388

11

SPL06

12

MSP

BARO1_DEVID: Baro ID

Note: This parameter is for advanced users

Barometer sensor ID, taking into account its type, bus and instance

ReadOnly

True

BARO2_DEVID: Baro ID2

Note: This parameter is for advanced users

Barometer2 sensor ID, taking into account its type, bus and instance

ReadOnly

True

BARO3_DEVID: Baro ID3

Note: This parameter is for advanced users

Barometer3 sensor ID, taking into account its type, bus and instance

ReadOnly

True

BARO1_WCF_ Parameters

BARO1_WCF_ENABLE: Wind coefficient enable

Note: This parameter is for advanced users

This enables the use of wind coefficients for barometer compensation

Values

Value

Meaning

0

Disabled

1

Enabled

BARO1_WCF_FWD: Pressure error coefficient in positive X direction (forward)

Note: This parameter is for advanced users

This is the ratio of static pressure error to dynamic pressure generated by a positive wind relative velocity along the X body axis. If the baro height estimate rises during forwards flight, then this will be a negative number. Multirotors can use this feature only if using EKF3 and if the EK3_BCOEF_X and EK3_BCOEF_Y parameters have been tuned.

Increment

Range

0.05

-1.0 - 1.0

BARO1_WCF_BCK: Pressure error coefficient in negative X direction (backwards)

Note: This parameter is for advanced users

This is the ratio of static pressure error to dynamic pressure generated by a negative wind relative velocity along the X body axis. If the baro height estimate rises during backwards flight, then this will be a negative number. Multirotors can use this feature only if using EKF3 and if the EK3_BCOEF_X and EK3_BCOEF_Y parameters have been tuned.

Increment

Range

0.05

-1.0 - 1.0

BARO1_WCF_RGT: Pressure error coefficient in positive Y direction (right)

Note: This parameter is for advanced users

This is the ratio of static pressure error to dynamic pressure generated by a positive wind relative velocity along the Y body axis. If the baro height estimate rises during sideways flight to the right, then this should be a negative number. Multirotors can use this feature only if using EKF3 and if the EK3_BCOEF_X and EK3_BCOEF_Y parameters have been tuned.

Increment

Range

0.05

-1.0 - 1.0

BARO1_WCF_LFT: Pressure error coefficient in negative Y direction (left)

Note: This parameter is for advanced users

This is the ratio of static pressure error to dynamic pressure generated by a negative wind relative velocity along the Y body axis. If the baro height estimate rises during sideways flight to the left, then this should be a negative number. Multirotors can use this feature only if using EKF3 and if the EK3_BCOEF_X and EK3_BCOEF_Y parameters have been tuned.

Increment

Range

0.05

-1.0 - 1.0

BARO2_WCF_ Parameters

BARO2_WCF_ENABLE: Wind coefficient enable

Note: This parameter is for advanced users

This enables the use of wind coefficients for barometer compensation

Values

Value

Meaning

0

Disabled

1

Enabled

BARO2_WCF_FWD: Pressure error coefficient in positive X direction (forward)

Note: This parameter is for advanced users

This is the ratio of static pressure error to dynamic pressure generated by a positive wind relative velocity along the X body axis. If the baro height estimate rises during forwards flight, then this will be a negative number. Multirotors can use this feature only if using EKF3 and if the EK3_BCOEF_X and EK3_BCOEF_Y parameters have been tuned.

Increment

Range

0.05

-1.0 - 1.0

BARO2_WCF_BCK: Pressure error coefficient in negative X direction (backwards)

Note: This parameter is for advanced users

This is the ratio of static pressure error to dynamic pressure generated by a negative wind relative velocity along the X body axis. If the baro height estimate rises during backwards flight, then this will be a negative number. Multirotors can use this feature only if using EKF3 and if the EK3_BCOEF_X and EK3_BCOEF_Y parameters have been tuned.

Increment

Range

0.05

-1.0 - 1.0

BARO2_WCF_RGT: Pressure error coefficient in positive Y direction (right)

Note: This parameter is for advanced users

This is the ratio of static pressure error to dynamic pressure generated by a positive wind relative velocity along the Y body axis. If the baro height estimate rises during sideways flight to the right, then this should be a negative number. Multirotors can use this feature only if using EKF3 and if the EK3_BCOEF_X and EK3_BCOEF_Y parameters have been tuned.

Increment

Range

0.05

-1.0 - 1.0

BARO2_WCF_LFT: Pressure error coefficient in negative Y direction (left)

Note: This parameter is for advanced users

This is the ratio of static pressure error to dynamic pressure generated by a negative wind relative velocity along the Y body axis. If the baro height estimate rises during sideways flight to the left, then this should be a negative number. Multirotors can use this feature only if using EKF3 and if the EK3_BCOEF_X and EK3_BCOEF_Y parameters have been tuned.

Increment

Range

0.05

-1.0 - 1.0

BARO3_WCF_ Parameters

BARO3_WCF_ENABLE: Wind coefficient enable

Note: This parameter is for advanced users

This enables the use of wind coefficients for barometer compensation

Values

Value

Meaning

0

Disabled

1

Enabled

BARO3_WCF_FWD: Pressure error coefficient in positive X direction (forward)

Note: This parameter is for advanced users

This is the ratio of static pressure error to dynamic pressure generated by a positive wind relative velocity along the X body axis. If the baro height estimate rises during forwards flight, then this will be a negative number. Multirotors can use this feature only if using EKF3 and if the EK3_BCOEF_X and EK3_BCOEF_Y parameters have been tuned.

Increment

Range

0.05

-1.0 - 1.0

BARO3_WCF_BCK: Pressure error coefficient in negative X direction (backwards)

Note: This parameter is for advanced users

This is the ratio of static pressure error to dynamic pressure generated by a negative wind relative velocity along the X body axis. If the baro height estimate rises during backwards flight, then this will be a negative number. Multirotors can use this feature only if using EKF3 and if the EK3_BCOEF_X and EK3_BCOEF_Y parameters have been tuned.

Increment

Range

0.05

-1.0 - 1.0

BARO3_WCF_RGT: Pressure error coefficient in positive Y direction (right)

Note: This parameter is for advanced users

This is the ratio of static pressure error to dynamic pressure generated by a positive wind relative velocity along the Y body axis. If the baro height estimate rises during sideways flight to the right, then this should be a negative number. Multirotors can use this feature only if using EKF3 and if the EK3_BCOEF_X and EK3_BCOEF_Y parameters have been tuned.

Increment

Range

0.05

-1.0 - 1.0

BARO3_WCF_LFT: Pressure error coefficient in negative Y direction (left)

Note: This parameter is for advanced users

This is the ratio of static pressure error to dynamic pressure generated by a negative wind relative velocity along the Y body axis. If the baro height estimate rises during sideways flight to the left, then this should be a negative number. Multirotors can use this feature only if using EKF3 and if the EK3_BCOEF_X and EK3_BCOEF_Y parameters have been tuned.

Increment

Range

0.05

-1.0 - 1.0

BATT2_ Parameters

BATT2_MONITOR: Battery monitoring

Controls enabling monitoring of the battery's voltage and current

RebootRequired

Values

True

Value

Meaning

0

Disabled

3

Analog Voltage Only

4

Analog Voltage and Current

5

Solo

6

Bebop

7

SMBus-Generic

8

UAVCAN-BatteryInfo

9

ESC

10

SumOfFollowing

11

FuelFlow

12

FuelLevelPWM

13

SMBUS-SUI3

14

SMBUS-SUI6

15

NeoDesign

16

SMBus-Maxell

17

Generator-Elec

18

Generator-Fuel

19

Rotoye

BATT2_VOLT_PIN: Battery Voltage sensing pin

Sets the analog input pin that should be used for voltage monitoring.

RebootRequired

Values

True

Value

Meaning

-1

Disabled

2

Pixhawk/Pixracer/Navio2/Pixhawk2_PM1

13

Pixhawk2_PM2/CubeOrange_PM2

14

CubeOrange

16

Durandal

100

PX4-v1

BATT2_CURR_PIN: Battery Current sensing pin

Sets the analog input pin that should be used for current monitoring.

RebootRequired

Values

True

Value

Meaning

-1

Disabled

3

Pixhawk/Pixracer/Navio2/Pixhawk2_PM1

4

CubeOrange_PM2

14

Pixhawk2_PM2

15

CubeOrange

17

Durandal

101

PX4-v1

BATT2_VOLT_MULT: Voltage Multiplier

Note: This parameter is for advanced users

Used to convert the voltage of the voltage sensing pin (BATT2_VOLT_PIN) to the actual battery's voltage (pin_voltage * VOLT_MULT). For the 3DR Power brick with a Pixhawk, this should be set to 10.1. For the Pixhawk with the 3DR 4in1 ESC this should be 12.02. For the PX using the PX4IO power supply this should be set to 1.

BATT2_AMP_PERVLT: Amps per volt

Number of amps that a 1V reading on the current sensor corresponds to. With a Pixhawk using the 3DR Power brick this should be set to 17. For the Pixhawk with the 3DR 4in1 ESC this should be 17.

Units

ampere per volt

BATT2_AMP_OFFSET: AMP offset

Voltage offset at zero current on current sensor

Units

volt

BATT2_CAPACITY: Battery capacity

Capacity of the battery in mAh when full

Increment

Units

50

milliampere hour

BATT2_WATT_MAX: Maximum allowed power (Watts)

Note: This parameter is for advanced users

If battery wattage (voltage * current) exceeds this value then the system will reduce max throttle (THR_MAX, TKOFF_THR_MAX and THR_MIN for reverse thrust) to satisfy this limit. This helps limit high current to low C rated batteries regardless of battery voltage. The max throttle will slowly grow back to THR_MAX (or TKOFF_THR_MAX ) and THR_MIN if demanding the current max and under the watt max. Use 0 to disable.

Increment

Units

1

watt

BATT2_SERIAL_NUM: Battery serial number

Note: This parameter is for advanced users

Battery serial number, automatically filled in for SMBus batteries, otherwise will be -1. With UAVCAN it is the battery_id.

BATT2_LOW_TIMER: Low voltage timeout

Note: This parameter is for advanced users

This is the timeout in seconds before a low voltage event will be triggered. For aircraft with low C batteries it may be necessary to raise this in order to cope with low voltage on long takeoffs. A value of zero disables low voltage errors.

Increment

Range

Units

1

0 - 120

seconds

BATT2_FS_VOLTSRC: Failsafe voltage source

Note: This parameter is for advanced users

Voltage type used for detection of low voltage event

Values

Value

Meaning

0

Raw Voltage

1

Sag Compensated Voltage

BATT2_LOW_VOLT: Low battery voltage

Battery voltage that triggers a low battery failsafe. Set to 0 to disable. If the battery voltage drops below this voltage continuously for more then the period specified by the BATT2_LOW_TIMER parameter then the vehicle will perform the failsafe specified by the BATT2_FS_LOW_ACT parameter.

Increment

Units

0.1

volt

BATT2_LOW_MAH: Low battery capacity

Battery capacity at which the low battery failsafe is triggered. Set to 0 to disable battery remaining failsafe. If the battery capacity drops below this level the vehicle will perform the failsafe specified by the BATT2_FS_LOW_ACT parameter.

Increment

Units

50

milliampere hour

BATT2_CRT_VOLT: Critical battery voltage

Battery voltage that triggers a critical battery failsafe. Set to 0 to disable. If the battery voltage drops below this voltage continuously for more then the period specified by the BATT2_LOW_TIMER parameter then the vehicle will perform the failsafe specified by the BATT2_FS_CRT_ACT parameter.

Increment

Units

0.1

volt

BATT2_CRT_MAH: Battery critical capacity

Battery capacity at which the critical battery failsafe is triggered. Set to 0 to disable battery remaining failsafe. If the battery capacity drops below this level the vehicle will perform the failsafe specified by the BATT2__FS_CRT_ACT parameter.

Increment

Units

50

milliampere hour

BATT2_FS_LOW_ACT: Low battery failsafe action

What action the vehicle should perform if it hits a low battery failsafe

Values

Value

Meaning

0

None

1

RTL

2

Land

3

Terminate

4

QLand

BATT2_FS_CRT_ACT: Critical battery failsafe action

What action the vehicle should perform if it hits a critical battery failsafe

Values

Value

Meaning

0

None

1

RTL

2

Land

3

Terminate

4

QLand

5

Parachute

BATT2_ARM_VOLT: Required arming voltage

Note: This parameter is for advanced users

Battery voltage level which is required to arm the aircraft. Set to 0 to allow arming at any voltage.

Increment

Units

0.1

volt

BATT2_ARM_MAH: Required arming remaining capacity

Note: This parameter is for advanced users

Battery capacity remaining which is required to arm the aircraft. Set to 0 to allow arming at any capacity. Note that execept for smart batteries rebooting the vehicle will always reset the remaining capacity estimate, which can lead to this check not providing sufficent protection, it is recommended to always use this in conjunction with the BATT2__ARM_VOLT parameter.

Increment

Units

50

milliampere hour

BATT2_BUS: Battery monitor I2C bus number

Battery monitor I2C bus number

Range

0 - 3

BATT2_OPTIONS: Battery monitor options

Note: This parameter is for advanced users

This sets options to change the behaviour of the battery monitor

Bitmask

Bit

Meaning

0

Ignore UAVCAN SoC

BATT3_ Parameters

BATT3_MONITOR: Battery monitoring

Controls enabling monitoring of the battery's voltage and current

RebootRequired

Values

True

Value

Meaning

0

Disabled

3

Analog Voltage Only

4

Analog Voltage and Current

5

Solo

6

Bebop

7

SMBus-Generic

8

UAVCAN-BatteryInfo

9

ESC

10

SumOfFollowing

11

FuelFlow

12

FuelLevelPWM

13

SMBUS-SUI3

14

SMBUS-SUI6

15

NeoDesign

16

SMBus-Maxell

17

Generator-Elec

18

Generator-Fuel

19

Rotoye

BATT3_VOLT_PIN: Battery Voltage sensing pin

Sets the analog input pin that should be used for voltage monitoring.

RebootRequired

Values

True

Value

Meaning

-1

Disabled

2

Pixhawk/Pixracer/Navio2/Pixhawk2_PM1

13

Pixhawk2_PM2/CubeOrange_PM2

14

CubeOrange

16

Durandal

100

PX4-v1

BATT3_CURR_PIN: Battery Current sensing pin

Sets the analog input pin that should be used for current monitoring.

RebootRequired

Values

True

Value

Meaning

-1

Disabled

3

Pixhawk/Pixracer/Navio2/Pixhawk2_PM1

4

CubeOrange_PM2

14

Pixhawk2_PM2

15

CubeOrange

17

Durandal

101

PX4-v1

BATT3_VOLT_MULT: Voltage Multiplier

Note: This parameter is for advanced users

Used to convert the voltage of the voltage sensing pin (BATT3_VOLT_PIN) to the actual battery's voltage (pin_voltage * VOLT_MULT). For the 3DR Power brick with a Pixhawk, this should be set to 10.1. For the Pixhawk with the 3DR 4in1 ESC this should be 12.02. For the PX using the PX4IO power supply this should be set to 1.

BATT3_AMP_PERVLT: Amps per volt

Number of amps that a 1V reading on the current sensor corresponds to. With a Pixhawk using the 3DR Power brick this should be set to 17. For the Pixhawk with the 3DR 4in1 ESC this should be 17.

Units

ampere per volt

BATT3_AMP_OFFSET: AMP offset

Voltage offset at zero current on current sensor

Units

volt

BATT3_CAPACITY: Battery capacity

Capacity of the battery in mAh when full

Increment

Units

50

milliampere hour

BATT3_WATT_MAX: Maximum allowed power (Watts)

Note: This parameter is for advanced users

If battery wattage (voltage * current) exceeds this value then the system will reduce max throttle (THR_MAX, TKOFF_THR_MAX and THR_MIN for reverse thrust) to satisfy this limit. This helps limit high current to low C rated batteries regardless of battery voltage. The max throttle will slowly grow back to THR_MAX (or TKOFF_THR_MAX ) and THR_MIN if demanding the current max and under the watt max. Use 0 to disable.

Increment

Units

1

watt

BATT3_SERIAL_NUM: Battery serial number

Note: This parameter is for advanced users

Battery serial number, automatically filled in for SMBus batteries, otherwise will be -1. With UAVCAN it is the battery_id.

BATT3_LOW_TIMER: Low voltage timeout

Note: This parameter is for advanced users

This is the timeout in seconds before a low voltage event will be triggered. For aircraft with low C batteries it may be necessary to raise this in order to cope with low voltage on long takeoffs. A value of zero disables low voltage errors.

Increment

Range

Units

1

0 - 120

seconds

BATT3_FS_VOLTSRC: Failsafe voltage source

Note: This parameter is for advanced users

Voltage type used for detection of low voltage event

Values

Value

Meaning

0

Raw Voltage

1

Sag Compensated Voltage

BATT3_LOW_VOLT: Low battery voltage

Battery voltage that triggers a low battery failsafe. Set to 0 to disable. If the battery voltage drops below this voltage continuously for more then the period specified by the BATT3_LOW_TIMER parameter then the vehicle will perform the failsafe specified by the BATT3_FS_LOW_ACT parameter.

Increment

Units

0.1

volt

BATT3_LOW_MAH: Low battery capacity

Battery capacity at which the low battery failsafe is triggered. Set to 0 to disable battery remaining failsafe. If the battery capacity drops below this level the vehicle will perform the failsafe specified by the BATT3_FS_LOW_ACT parameter.

Increment

Units

50

milliampere hour

BATT3_CRT_VOLT: Critical battery voltage

Battery voltage that triggers a critical battery failsafe. Set to 0 to disable. If the battery voltage drops below this voltage continuously for more then the period specified by the BATT3_LOW_TIMER parameter then the vehicle will perform the failsafe specified by the BATT3_FS_CRT_ACT parameter.

Increment

Units

0.1

volt

BATT3_CRT_MAH: Battery critical capacity

Battery capacity at which the critical battery failsafe is triggered. Set to 0 to disable battery remaining failsafe. If the battery capacity drops below this level the vehicle will perform the failsafe specified by the BATT3__FS_CRT_ACT parameter.

Increment

Units

50

milliampere hour

BATT3_FS_LOW_ACT: Low battery failsafe action

What action the vehicle should perform if it hits a low battery failsafe

Values

Value

Meaning

0

None

1

RTL

2

Land

3

Terminate

4

QLand

BATT3_FS_CRT_ACT: Critical battery failsafe action

What action the vehicle should perform if it hits a critical battery failsafe

Values

Value

Meaning

0

None

1

RTL

2

Land

3

Terminate

4

QLand

5

Parachute

BATT3_ARM_VOLT: Required arming voltage

Note: This parameter is for advanced users

Battery voltage level which is required to arm the aircraft. Set to 0 to allow arming at any voltage.

Increment

Units

0.1

volt

BATT3_ARM_MAH: Required arming remaining capacity

Note: This parameter is for advanced users

Battery capacity remaining which is required to arm the aircraft. Set to 0 to allow arming at any capacity. Note that execept for smart batteries rebooting the vehicle will always reset the remaining capacity estimate, which can lead to this check not providing sufficent protection, it is recommended to always use this in conjunction with the BATT3__ARM_VOLT parameter.

Increment

Units

50

milliampere hour

BATT3_BUS: Battery monitor I2C bus number

Battery monitor I2C bus number

Range

0 - 3

BATT3_OPTIONS: Battery monitor options

Note: This parameter is for advanced users

This sets options to change the behaviour of the battery monitor

Bitmask

Bit

Meaning

0

Ignore UAVCAN SoC

BATT4_ Parameters

BATT4_MONITOR: Battery monitoring

Controls enabling monitoring of the battery's voltage and current

RebootRequired

Values

True

Value

Meaning

0

Disabled

3

Analog Voltage Only

4

Analog Voltage and Current

5

Solo

6

Bebop

7

SMBus-Generic

8

UAVCAN-BatteryInfo

9

ESC

10

SumOfFollowing

11

FuelFlow

12

FuelLevelPWM

13

SMBUS-SUI3

14

SMBUS-SUI6

15

NeoDesign

16

SMBus-Maxell

17

Generator-Elec

18

Generator-Fuel

19

Rotoye

BATT4_VOLT_PIN: Battery Voltage sensing pin

Sets the analog input pin that should be used for voltage monitoring.

RebootRequired

Values

True

Value

Meaning

-1

Disabled

2

Pixhawk/Pixracer/Navio2/Pixhawk2_PM1

13

Pixhawk2_PM2/CubeOrange_PM2

14

CubeOrange

16

Durandal

100

PX4-v1

BATT4_CURR_PIN: Battery Current sensing pin

Sets the analog input pin that should be used for current monitoring.

RebootRequired

Values

True

Value

Meaning

-1

Disabled

3

Pixhawk/Pixracer/Navio2/Pixhawk2_PM1

4

CubeOrange_PM2

14

Pixhawk2_PM2

15

CubeOrange

17

Durandal

101

PX4-v1

BATT4_VOLT_MULT: Voltage Multiplier

Note: This parameter is for advanced users

Used to convert the voltage of the voltage sensing pin (BATT4_VOLT_PIN) to the actual battery's voltage (pin_voltage * VOLT_MULT). For the 3DR Power brick with a Pixhawk, this should be set to 10.1. For the Pixhawk with the 3DR 4in1 ESC this should be 12.02. For the PX using the PX4IO power supply this should be set to 1.

BATT4_AMP_PERVLT: Amps per volt

Number of amps that a 1V reading on the current sensor corresponds to. With a Pixhawk using the 3DR Power brick this should be set to 17. For the Pixhawk with the 3DR 4in1 ESC this should be 17.

Units

ampere per volt

BATT4_AMP_OFFSET: AMP offset

Voltage offset at zero current on current sensor

Units

volt

BATT4_CAPACITY: Battery capacity

Capacity of the battery in mAh when full

Increment

Units

50

milliampere hour

BATT4_WATT_MAX: Maximum allowed power (Watts)

Note: This parameter is for advanced users

If battery wattage (voltage * current) exceeds this value then the system will reduce max throttle (THR_MAX, TKOFF_THR_MAX and THR_MIN for reverse thrust) to satisfy this limit. This helps limit high current to low C rated batteries regardless of battery voltage. The max throttle will slowly grow back to THR_MAX (or TKOFF_THR_MAX ) and THR_MIN if demanding the current max and under the watt max. Use 0 to disable.

Increment

Units

1

watt

BATT4_SERIAL_NUM: Battery serial number

Note: This parameter is for advanced users

Battery serial number, automatically filled in for SMBus batteries, otherwise will be -1. With UAVCAN it is the battery_id.

BATT4_LOW_TIMER: Low voltage timeout

Note: This parameter is for advanced users

This is the timeout in seconds before a low voltage event will be triggered. For aircraft with low C batteries it may be necessary to raise this in order to cope with low voltage on long takeoffs. A value of zero disables low voltage errors.

Increment

Range

Units

1

0 - 120

seconds

BATT4_FS_VOLTSRC: Failsafe voltage source

Note: This parameter is for advanced users

Voltage type used for detection of low voltage event

Values

Value

Meaning

0

Raw Voltage

1

Sag Compensated Voltage

BATT4_LOW_VOLT: Low battery voltage

Battery voltage that triggers a low battery failsafe. Set to 0 to disable. If the battery voltage drops below this voltage continuously for more then the period specified by the BATT4_LOW_TIMER parameter then the vehicle will perform the failsafe specified by the BATT4_FS_LOW_ACT parameter.

Increment

Units

0.1

volt

BATT4_LOW_MAH: Low battery capacity

Battery capacity at which the low battery failsafe is triggered. Set to 0 to disable battery remaining failsafe. If the battery capacity drops below this level the vehicle will perform the failsafe specified by the BATT4_FS_LOW_ACT parameter.

Increment

Units

50

milliampere hour

BATT4_CRT_VOLT: Critical battery voltage

Battery voltage that triggers a critical battery failsafe. Set to 0 to disable. If the battery voltage drops below this voltage continuously for more then the period specified by the BATT4_LOW_TIMER parameter then the vehicle will perform the failsafe specified by the BATT4_FS_CRT_ACT parameter.

Increment

Units

0.1

volt

BATT4_CRT_MAH: Battery critical capacity

Battery capacity at which the critical battery failsafe is triggered. Set to 0 to disable battery remaining failsafe. If the battery capacity drops below this level the vehicle will perform the failsafe specified by the BATT4__FS_CRT_ACT parameter.

Increment

Units

50

milliampere hour

BATT4_FS_LOW_ACT: Low battery failsafe action

What action the vehicle should perform if it hits a low battery failsafe

Values

Value

Meaning

0

None

1

RTL

2

Land

3

Terminate

4

QLand

BATT4_FS_CRT_ACT: Critical battery failsafe action

What action the vehicle should perform if it hits a critical battery failsafe

Values

Value

Meaning

0

None

1

RTL

2

Land

3

Terminate

4

QLand

5

Parachute

BATT4_ARM_VOLT: Required arming voltage

Note: This parameter is for advanced users

Battery voltage level which is required to arm the aircraft. Set to 0 to allow arming at any voltage.

Increment

Units

0.1

volt

BATT4_ARM_MAH: Required arming remaining capacity

Note: This parameter is for advanced users

Battery capacity remaining which is required to arm the aircraft. Set to 0 to allow arming at any capacity. Note that execept for smart batteries rebooting the vehicle will always reset the remaining capacity estimate, which can lead to this check not providing sufficent protection, it is recommended to always use this in conjunction with the BATT4__ARM_VOLT parameter.

Increment

Units

50

milliampere hour

BATT4_BUS: Battery monitor I2C bus number

Battery monitor I2C bus number

Range

0 - 3

BATT4_OPTIONS: Battery monitor options

Note: This parameter is for advanced users

This sets options to change the behaviour of the battery monitor

Bitmask

Bit

Meaning

0

Ignore UAVCAN SoC

BATT5_ Parameters

BATT5_MONITOR: Battery monitoring

Controls enabling monitoring of the battery's voltage and current

RebootRequired

Values

True

Value

Meaning

0

Disabled

3

Analog Voltage Only

4

Analog Voltage and Current

5

Solo

6

Bebop

7

SMBus-Generic

8

UAVCAN-BatteryInfo

9

ESC

10

SumOfFollowing

11

FuelFlow

12

FuelLevelPWM

13

SMBUS-SUI3

14

SMBUS-SUI6

15

NeoDesign

16

SMBus-Maxell

17

Generator-Elec

18

Generator-Fuel

19

Rotoye

BATT5_VOLT_PIN: Battery Voltage sensing pin

Sets the analog input pin that should be used for voltage monitoring.

RebootRequired

Values

True

Value

Meaning

-1

Disabled

2

Pixhawk/Pixracer/Navio2/Pixhawk2_PM1

13

Pixhawk2_PM2/CubeOrange_PM2

14

CubeOrange

16

Durandal

100

PX4-v1

BATT5_CURR_PIN: Battery Current sensing pin

Sets the analog input pin that should be used for current monitoring.

RebootRequired

Values

True

Value

Meaning

-1

Disabled

3

Pixhawk/Pixracer/Navio2/Pixhawk2_PM1

4

CubeOrange_PM2

14

Pixhawk2_PM2

15

CubeOrange

17

Durandal

101

PX4-v1

BATT5_VOLT_MULT: Voltage Multiplier

Note: This parameter is for advanced users

Used to convert the voltage of the voltage sensing pin (BATT5_VOLT_PIN) to the actual battery's voltage (pin_voltage * VOLT_MULT). For the 3DR Power brick with a Pixhawk, this should be set to 10.1. For the Pixhawk with the 3DR 4in1 ESC this should be 12.02. For the PX using the PX4IO power supply this should be set to 1.

BATT5_AMP_PERVLT: Amps per volt

Number of amps that a 1V reading on the current sensor corresponds to. With a Pixhawk using the 3DR Power brick this should be set to 17. For the Pixhawk with the 3DR 4in1 ESC this should be 17.

Units

ampere per volt

BATT5_AMP_OFFSET: AMP offset

Voltage offset at zero current on current sensor

Units

volt

BATT5_CAPACITY: Battery capacity

Capacity of the battery in mAh when full

Increment

Units

50

milliampere hour

BATT5_WATT_MAX: Maximum allowed power (Watts)

Note: This parameter is for advanced users

If battery wattage (voltage * current) exceeds this value then the system will reduce max throttle (THR_MAX, TKOFF_THR_MAX and THR_MIN for reverse thrust) to satisfy this limit. This helps limit high current to low C rated batteries regardless of battery voltage. The max throttle will slowly grow back to THR_MAX (or TKOFF_THR_MAX ) and THR_MIN if demanding the current max and under the watt max. Use 0 to disable.

Increment

Units

1

watt

BATT5_SERIAL_NUM: Battery serial number

Note: This parameter is for advanced users

Battery serial number, automatically filled in for SMBus batteries, otherwise will be -1. With UAVCAN it is the battery_id.

BATT5_LOW_TIMER: Low voltage timeout

Note: This parameter is for advanced users

This is the timeout in seconds before a low voltage event will be triggered. For aircraft with low C batteries it may be necessary to raise this in order to cope with low voltage on long takeoffs. A value of zero disables low voltage errors.

Increment

Range

Units

1

0 - 120

seconds

BATT5_FS_VOLTSRC: Failsafe voltage source

Note: This parameter is for advanced users

Voltage type used for detection of low voltage event

Values

Value

Meaning

0

Raw Voltage

1

Sag Compensated Voltage

BATT5_LOW_VOLT: Low battery voltage

Battery voltage that triggers a low battery failsafe. Set to 0 to disable. If the battery voltage drops below this voltage continuously for more then the period specified by the BATT5_LOW_TIMER parameter then the vehicle will perform the failsafe specified by the BATT5_FS_LOW_ACT parameter.

Increment

Units

0.1

volt

BATT5_LOW_MAH: Low battery capacity

Battery capacity at which the low battery failsafe is triggered. Set to 0 to disable battery remaining failsafe. If the battery capacity drops below this level the vehicle will perform the failsafe specified by the BATT5_FS_LOW_ACT parameter.

Increment

Units

50

milliampere hour

BATT5_CRT_VOLT: Critical battery voltage

Battery voltage that triggers a critical battery failsafe. Set to 0 to disable. If the battery voltage drops below this voltage continuously for more then the period specified by the BATT5_LOW_TIMER parameter then the vehicle will perform the failsafe specified by the BATT5_FS_CRT_ACT parameter.

Increment

Units

0.1

volt

BATT5_CRT_MAH: Battery critical capacity

Battery capacity at which the critical battery failsafe is triggered. Set to 0 to disable battery remaining failsafe. If the battery capacity drops below this level the vehicle will perform the failsafe specified by the BATT5__FS_CRT_ACT parameter.

Increment

Units

50

milliampere hour

BATT5_FS_LOW_ACT: Low battery failsafe action

What action the vehicle should perform if it hits a low battery failsafe

Values

Value

Meaning

0

None

1

RTL

2

Land

3

Terminate

4

QLand

BATT5_FS_CRT_ACT: Critical battery failsafe action

What action the vehicle should perform if it hits a critical battery failsafe

Values

Value

Meaning

0

None

1

RTL

2

Land

3

Terminate

4

QLand

5

Parachute

BATT5_ARM_VOLT: Required arming voltage

Note: This parameter is for advanced users

Battery voltage level which is required to arm the aircraft. Set to 0 to allow arming at any voltage.

Increment

Units

0.1

volt

BATT5_ARM_MAH: Required arming remaining capacity

Note: This parameter is for advanced users

Battery capacity remaining which is required to arm the aircraft. Set to 0 to allow arming at any capacity. Note that execept for smart batteries rebooting the vehicle will always reset the remaining capacity estimate, which can lead to this check not providing sufficent protection, it is recommended to always use this in conjunction with the BATT5__ARM_VOLT parameter.

Increment

Units

50

milliampere hour

BATT5_BUS: Battery monitor I2C bus number

Battery monitor I2C bus number

Range

0 - 3

BATT5_OPTIONS: Battery monitor options

Note: This parameter is for advanced users

This sets options to change the behaviour of the battery monitor

Bitmask

Bit

Meaning

0

Ignore UAVCAN SoC

BATT6_ Parameters

BATT6_MONITOR: Battery monitoring

Controls enabling monitoring of the battery's voltage and current

RebootRequired

Values

True

Value

Meaning

0

Disabled

3

Analog Voltage Only

4

Analog Voltage and Current

5

Solo

6

Bebop

7

SMBus-Generic

8

UAVCAN-BatteryInfo

9

ESC

10

SumOfFollowing

11

FuelFlow

12

FuelLevelPWM

13

SMBUS-SUI3

14

SMBUS-SUI6

15

NeoDesign

16

SMBus-Maxell

17

Generator-Elec

18

Generator-Fuel

19

Rotoye

BATT6_VOLT_PIN: Battery Voltage sensing pin

Sets the analog input pin that should be used for voltage monitoring.

RebootRequired

Values

True

Value

Meaning

-1

Disabled

2

Pixhawk/Pixracer/Navio2/Pixhawk2_PM1

13

Pixhawk2_PM2/CubeOrange_PM2

14

CubeOrange

16

Durandal

100

PX4-v1

BATT6_CURR_PIN: Battery Current sensing pin

Sets the analog input pin that should be used for current monitoring.

RebootRequired

Values

True

Value

Meaning

-1

Disabled

3

Pixhawk/Pixracer/Navio2/Pixhawk2_PM1

4

CubeOrange_PM2

14

Pixhawk2_PM2

15

CubeOrange

17

Durandal

101

PX4-v1

BATT6_VOLT_MULT: Voltage Multiplier

Note: This parameter is for advanced users

Used to convert the voltage of the voltage sensing pin (BATT6_VOLT_PIN) to the actual battery's voltage (pin_voltage * VOLT_MULT). For the 3DR Power brick with a Pixhawk, this should be set to 10.1. For the Pixhawk with the 3DR 4in1 ESC this should be 12.02. For the PX using the PX4IO power supply this should be set to 1.

BATT6_AMP_PERVLT: Amps per volt

Number of amps that a 1V reading on the current sensor corresponds to. With a Pixhawk using the 3DR Power brick this should be set to 17. For the Pixhawk with the 3DR 4in1 ESC this should be 17.

Units

ampere per volt

BATT6_AMP_OFFSET: AMP offset

Voltage offset at zero current on current sensor

Units

volt

BATT6_CAPACITY: Battery capacity

Capacity of the battery in mAh when full

Increment

Units

50

milliampere hour

BATT6_WATT_MAX: Maximum allowed power (Watts)

Note: This parameter is for advanced users

If battery wattage (voltage * current) exceeds this value then the system will reduce max throttle (THR_MAX, TKOFF_THR_MAX and THR_MIN for reverse thrust) to satisfy this limit. This helps limit high current to low C rated batteries regardless of battery voltage. The max throttle will slowly grow back to THR_MAX (or TKOFF_THR_MAX ) and THR_MIN if demanding the current max and under the watt max. Use 0 to disable.

Increment

Units

1

watt

BATT6_SERIAL_NUM: Battery serial number

Note: This parameter is for advanced users

Battery serial number, automatically filled in for SMBus batteries, otherwise will be -1. With UAVCAN it is the battery_id.

BATT6_LOW_TIMER: Low voltage timeout

Note: This parameter is for advanced users

This is the timeout in seconds before a low voltage event will be triggered. For aircraft with low C batteries it may be necessary to raise this in order to cope with low voltage on long takeoffs. A value of zero disables low voltage errors.

Increment

Range

Units

1

0 - 120

seconds

BATT6_FS_VOLTSRC: Failsafe voltage source

Note: This parameter is for advanced users

Voltage type used for detection of low voltage event

Values

Value

Meaning

0

Raw Voltage

1

Sag Compensated Voltage

BATT6_LOW_VOLT: Low battery voltage

Battery voltage that triggers a low battery failsafe. Set to 0 to disable. If the battery voltage drops below this voltage continuously for more then the period specified by the BATT6_LOW_TIMER parameter then the vehicle will perform the failsafe specified by the BATT6_FS_LOW_ACT parameter.

Increment

Units

0.1

volt

BATT6_LOW_MAH: Low battery capacity

Battery capacity at which the low battery failsafe is triggered. Set to 0 to disable battery remaining failsafe. If the battery capacity drops below this level the vehicle will perform the failsafe specified by the BATT6_FS_LOW_ACT parameter.

Increment

Units

50

milliampere hour

BATT6_CRT_VOLT: Critical battery voltage

Battery voltage that triggers a critical battery failsafe. Set to 0 to disable. If the battery voltage drops below this voltage continuously for more then the period specified by the BATT6_LOW_TIMER parameter then the vehicle will perform the failsafe specified by the BATT6_FS_CRT_ACT parameter.

Increment

Units

0.1

volt

BATT6_CRT_MAH: Battery critical capacity

Battery capacity at which the critical battery failsafe is triggered. Set to 0 to disable battery remaining failsafe. If the battery capacity drops below this level the vehicle will perform the failsafe specified by the BATT6__FS_CRT_ACT parameter.

Increment

Units

50

milliampere hour

BATT6_FS_LOW_ACT: Low battery failsafe action

What action the vehicle should perform if it hits a low battery failsafe

Values

Value

Meaning

0

None

1

RTL

2

Land

3

Terminate

4

QLand

BATT6_FS_CRT_ACT: Critical battery failsafe action

What action the vehicle should perform if it hits a critical battery failsafe

Values

Value

Meaning

0

None

1

RTL

2

Land

3

Terminate

4

QLand

5

Parachute

BATT6_ARM_VOLT: Required arming voltage

Note: This parameter is for advanced users

Battery voltage level which is required to arm the aircraft. Set to 0 to allow arming at any voltage.

Increment

Units

0.1

volt

BATT6_ARM_MAH: Required arming remaining capacity

Note: This parameter is for advanced users

Battery capacity remaining which is required to arm the aircraft. Set to 0 to allow arming at any capacity. Note that execept for smart batteries rebooting the vehicle will always reset the remaining capacity estimate, which can lead to this check not providing sufficent protection, it is recommended to always use this in conjunction with the BATT6__ARM_VOLT parameter.

Increment

Units

50

milliampere hour

BATT6_BUS: Battery monitor I2C bus number

Battery monitor I2C bus number

Range

0 - 3

BATT6_OPTIONS: Battery monitor options

Note: This parameter is for advanced users

This sets options to change the behaviour of the battery monitor

Bitmask

Bit

Meaning

0

Ignore UAVCAN SoC

BATT7_ Parameters

BATT7_MONITOR: Battery monitoring

Controls enabling monitoring of the battery's voltage and current

RebootRequired

Values

True

Value

Meaning

0

Disabled

3

Analog Voltage Only

4

Analog Voltage and Current

5

Solo

6

Bebop

7

SMBus-Generic

8

UAVCAN-BatteryInfo

9

ESC

10

SumOfFollowing

11

FuelFlow

12

FuelLevelPWM

13

SMBUS-SUI3

14

SMBUS-SUI6

15

NeoDesign

16

SMBus-Maxell

17

Generator-Elec

18

Generator-Fuel

19

Rotoye

BATT7_VOLT_PIN: Battery Voltage sensing pin

Sets the analog input pin that should be used for voltage monitoring.

RebootRequired

Values

True

Value

Meaning

-1

Disabled

2

Pixhawk/Pixracer/Navio2/Pixhawk2_PM1

13

Pixhawk2_PM2/CubeOrange_PM2

14

CubeOrange

16

Durandal

100

PX4-v1

BATT7_CURR_PIN: Battery Current sensing pin

Sets the analog input pin that should be used for current monitoring.

RebootRequired

Values

True

Value

Meaning

-1

Disabled

3

Pixhawk/Pixracer/Navio2/Pixhawk2_PM1

4

CubeOrange_PM2

14

Pixhawk2_PM2

15

CubeOrange

17

Durandal

101

PX4-v1

BATT7_VOLT_MULT: Voltage Multiplier

Note: This parameter is for advanced users

Used to convert the voltage of the voltage sensing pin (BATT7_VOLT_PIN) to the actual battery's voltage (pin_voltage * VOLT_MULT). For the 3DR Power brick with a Pixhawk, this should be set to 10.1. For the Pixhawk with the 3DR 4in1 ESC this should be 12.02. For the PX using the PX4IO power supply this should be set to 1.

BATT7_AMP_PERVLT: Amps per volt

Number of amps that a 1V reading on the current sensor corresponds to. With a Pixhawk using the 3DR Power brick this should be set to 17. For the Pixhawk with the 3DR 4in1 ESC this should be 17.

Units

ampere per volt

BATT7_AMP_OFFSET: AMP offset

Voltage offset at zero current on current sensor

Units

volt

BATT7_CAPACITY: Battery capacity

Capacity of the battery in mAh when full

Increment

Units

50

milliampere hour

BATT7_WATT_MAX: Maximum allowed power (Watts)

Note: This parameter is for advanced users

If battery wattage (voltage * current) exceeds this value then the system will reduce max throttle (THR_MAX, TKOFF_THR_MAX and THR_MIN for reverse thrust) to satisfy this limit. This helps limit high current to low C rated batteries regardless of battery voltage. The max throttle will slowly grow back to THR_MAX (or TKOFF_THR_MAX ) and THR_MIN if demanding the current max and under the watt max. Use 0 to disable.

Increment

Units

1

watt

BATT7_SERIAL_NUM: Battery serial number

Note: This parameter is for advanced users

Battery serial number, automatically filled in for SMBus batteries, otherwise will be -1. With UAVCAN it is the battery_id.

BATT7_LOW_TIMER: Low voltage timeout

Note: This parameter is for advanced users

This is the timeout in seconds before a low voltage event will be triggered. For aircraft with low C batteries it may be necessary to raise this in order to cope with low voltage on long takeoffs. A value of zero disables low voltage errors.

Increment

Range

Units

1

0 - 120

seconds

BATT7_FS_VOLTSRC: Failsafe voltage source

Note: This parameter is for advanced users

Voltage type used for detection of low voltage event

Values

Value

Meaning

0

Raw Voltage

1

Sag Compensated Voltage

BATT7_LOW_VOLT: Low battery voltage

Battery voltage that triggers a low battery failsafe. Set to 0 to disable. If the battery voltage drops below this voltage continuously for more then the period specified by the BATT7_LOW_TIMER parameter then the vehicle will perform the failsafe specified by the BATT7_FS_LOW_ACT parameter.

Increment

Units

0.1

volt

BATT7_LOW_MAH: Low battery capacity

Battery capacity at which the low battery failsafe is triggered. Set to 0 to disable battery remaining failsafe. If the battery capacity drops below this level the vehicle will perform the failsafe specified by the BATT7_FS_LOW_ACT parameter.

Increment

Units

50

milliampere hour

BATT7_CRT_VOLT: Critical battery voltage

Battery voltage that triggers a critical battery failsafe. Set to 0 to disable. If the battery voltage drops below this voltage continuously for more then the period specified by the BATT7_LOW_TIMER parameter then the vehicle will perform the failsafe specified by the BATT7_FS_CRT_ACT parameter.

Increment

Units

0.1

volt

BATT7_CRT_MAH: Battery critical capacity

Battery capacity at which the critical battery failsafe is triggered. Set to 0 to disable battery remaining failsafe. If the battery capacity drops below this level the vehicle will perform the failsafe specified by the BATT7__FS_CRT_ACT parameter.

Increment

Units

50

milliampere hour

BATT7_FS_LOW_ACT: Low battery failsafe action

What action the vehicle should perform if it hits a low battery failsafe

Values

Value

Meaning

0

None

1

RTL

2

Land

3

Terminate

4

QLand

BATT7_FS_CRT_ACT: Critical battery failsafe action

What action the vehicle should perform if it hits a critical battery failsafe

Values

Value

Meaning

0

None

1

RTL

2

Land

3

Terminate

4

QLand

5

Parachute

BATT7_ARM_VOLT: Required arming voltage

Note: This parameter is for advanced users

Battery voltage level which is required to arm the aircraft. Set to 0 to allow arming at any voltage.

Increment

Units

0.1

volt

BATT7_ARM_MAH: Required arming remaining capacity

Note: This parameter is for advanced users

Battery capacity remaining which is required to arm the aircraft. Set to 0 to allow arming at any capacity. Note that execept for smart batteries rebooting the vehicle will always reset the remaining capacity estimate, which can lead to this check not providing sufficent protection, it is recommended to always use this in conjunction with the BATT7__ARM_VOLT parameter.

Increment

Units

50

milliampere hour

BATT7_BUS: Battery monitor I2C bus number

Battery monitor I2C bus number

Range

0 - 3

BATT7_OPTIONS: Battery monitor options

Note: This parameter is for advanced users

This sets options to change the behaviour of the battery monitor

Bitmask

Bit

Meaning

0

Ignore UAVCAN SoC

BATT8_ Parameters

BATT8_MONITOR: Battery monitoring

Controls enabling monitoring of the battery's voltage and current

RebootRequired

Values

True

Value

Meaning

0

Disabled

3

Analog Voltage Only

4

Analog Voltage and Current

5

Solo

6

Bebop

7

SMBus-Generic

8

UAVCAN-BatteryInfo

9

ESC

10

SumOfFollowing

11

FuelFlow

12

FuelLevelPWM

13

SMBUS-SUI3

14

SMBUS-SUI6

15

NeoDesign

16

SMBus-Maxell

17

Generator-Elec

18

Generator-Fuel

19

Rotoye

BATT8_VOLT_PIN: Battery Voltage sensing pin

Sets the analog input pin that should be used for voltage monitoring.

RebootRequired

Values

True

Value

Meaning

-1

Disabled

2

Pixhawk/Pixracer/Navio2/Pixhawk2_PM1

13

Pixhawk2_PM2/CubeOrange_PM2

14

CubeOrange

16

Durandal

100

PX4-v1

BATT8_CURR_PIN: Battery Current sensing pin

Sets the analog input pin that should be used for current monitoring.

RebootRequired

Values

True

Value

Meaning

-1

Disabled

3

Pixhawk/Pixracer/Navio2/Pixhawk2_PM1

4

CubeOrange_PM2

14

Pixhawk2_PM2

15

CubeOrange

17

Durandal

101

PX4-v1

BATT8_VOLT_MULT: Voltage Multiplier

Note: This parameter is for advanced users

Used to convert the voltage of the voltage sensing pin (BATT8_VOLT_PIN) to the actual battery's voltage (pin_voltage * VOLT_MULT). For the 3DR Power brick with a Pixhawk, this should be set to 10.1. For the Pixhawk with the 3DR 4in1 ESC this should be 12.02. For the PX using the PX4IO power supply this should be set to 1.

BATT8_AMP_PERVLT: Amps per volt

Number of amps that a 1V reading on the current sensor corresponds to. With a Pixhawk using the 3DR Power brick this should be set to 17. For the Pixhawk with the 3DR 4in1 ESC this should be 17.

Units

ampere per volt

BATT8_AMP_OFFSET: AMP offset

Voltage offset at zero current on current sensor

Units

volt

BATT8_CAPACITY: Battery capacity

Capacity of the battery in mAh when full

Increment

Units

50

milliampere hour

BATT8_WATT_MAX: Maximum allowed power (Watts)

Note: This parameter is for advanced users

If battery wattage (voltage * current) exceeds this value then the system will reduce max throttle (THR_MAX, TKOFF_THR_MAX and THR_MIN for reverse thrust) to satisfy this limit. This helps limit high current to low C rated batteries regardless of battery voltage. The max throttle will slowly grow back to THR_MAX (or TKOFF_THR_MAX ) and THR_MIN if demanding the current max and under the watt max. Use 0 to disable.

Increment

Units

1

watt

BATT8_SERIAL_NUM: Battery serial number

Note: This parameter is for advanced users

Battery serial number, automatically filled in for SMBus batteries, otherwise will be -1. With UAVCAN it is the battery_id.

BATT8_LOW_TIMER: Low voltage timeout

Note: This parameter is for advanced users

This is the timeout in seconds before a low voltage event will be triggered. For aircraft with low C batteries it may be necessary to raise this in order to cope with low voltage on long takeoffs. A value of zero disables low voltage errors.

Increment

Range

Units

1

0 - 120

seconds

BATT8_FS_VOLTSRC: Failsafe voltage source

Note: This parameter is for advanced users

Voltage type used for detection of low voltage event

Values

Value

Meaning

0

Raw Voltage

1

Sag Compensated Voltage

BATT8_LOW_VOLT: Low battery voltage

Battery voltage that triggers a low battery failsafe. Set to 0 to disable. If the battery voltage drops below this voltage continuously for more then the period specified by the BATT8_LOW_TIMER parameter then the vehicle will perform the failsafe specified by the BATT8_FS_LOW_ACT parameter.

Increment

Units

0.1

volt

BATT8_LOW_MAH: Low battery capacity

Battery capacity at which the low battery failsafe is triggered. Set to 0 to disable battery remaining failsafe. If the battery capacity drops below this level the vehicle will perform the failsafe specified by the BATT8_FS_LOW_ACT parameter.

Increment

Units

50

milliampere hour

BATT8_CRT_VOLT: Critical battery voltage

Battery voltage that triggers a critical battery failsafe. Set to 0 to disable. If the battery voltage drops below this voltage continuously for more then the period specified by the BATT8_LOW_TIMER parameter then the vehicle will perform the failsafe specified by the BATT8_FS_CRT_ACT parameter.

Increment

Units

0.1

volt

BATT8_CRT_MAH: Battery critical capacity

Battery capacity at which the critical battery failsafe is triggered. Set to 0 to disable battery remaining failsafe. If the battery capacity drops below this level the vehicle will perform the failsafe specified by the BATT8__FS_CRT_ACT parameter.

Increment

Units

50

milliampere hour

BATT8_FS_LOW_ACT: Low battery failsafe action

What action the vehicle should perform if it hits a low battery failsafe

Values

Value

Meaning

0

None

1

RTL

2

Land

3

Terminate

4

QLand

BATT8_FS_CRT_ACT: Critical battery failsafe action

What action the vehicle should perform if it hits a critical battery failsafe

Values

Value

Meaning

0

None

1

RTL

2

Land

3

Terminate

4

QLand

5

Parachute

BATT8_ARM_VOLT: Required arming voltage

Note: This parameter is for advanced users

Battery voltage level which is required to arm the aircraft. Set to 0 to allow arming at any voltage.

Increment

Units

0.1

volt

BATT8_ARM_MAH: Required arming remaining capacity

Note: This parameter is for advanced users

Battery capacity remaining which is required to arm the aircraft. Set to 0 to allow arming at any capacity. Note that execept for smart batteries rebooting the vehicle will always reset the remaining capacity estimate, which can lead to this check not providing sufficent protection, it is recommended to always use this in conjunction with the BATT8__ARM_VOLT parameter.

Increment

Units

50

milliampere hour

BATT8_BUS: Battery monitor I2C bus number

Battery monitor I2C bus number

Range

0 - 3

BATT8_OPTIONS: Battery monitor options

Note: This parameter is for advanced users

This sets options to change the behaviour of the battery monitor

Bitmask

Bit

Meaning

0

Ignore UAVCAN SoC

BATT9_ Parameters

BATT9_MONITOR: Battery monitoring

Controls enabling monitoring of the battery's voltage and current

RebootRequired

Values

True

Value

Meaning

0

Disabled

3

Analog Voltage Only

4

Analog Voltage and Current

5

Solo

6

Bebop

7

SMBus-Generic

8

UAVCAN-BatteryInfo

9

ESC

10

SumOfFollowing

11

FuelFlow

12

FuelLevelPWM

13

SMBUS-SUI3

14

SMBUS-SUI6

15

NeoDesign

16

SMBus-Maxell

17

Generator-Elec

18

Generator-Fuel

19

Rotoye

BATT9_VOLT_PIN: Battery Voltage sensing pin

Sets the analog input pin that should be used for voltage monitoring.

RebootRequired

Values

True

Value

Meaning

-1

Disabled

2

Pixhawk/Pixracer/Navio2/Pixhawk2_PM1

13

Pixhawk2_PM2/CubeOrange_PM2

14

CubeOrange

16

Durandal

100

PX4-v1

BATT9_CURR_PIN: Battery Current sensing pin

Sets the analog input pin that should be used for current monitoring.

RebootRequired

Values

True

Value

Meaning

-1

Disabled

3

Pixhawk/Pixracer/Navio2/Pixhawk2_PM1

4

CubeOrange_PM2

14

Pixhawk2_PM2

15

CubeOrange

17

Durandal

101

PX4-v1

BATT9_VOLT_MULT: Voltage Multiplier

Note: This parameter is for advanced users

Used to convert the voltage of the voltage sensing pin (BATT9_VOLT_PIN) to the actual battery's voltage (pin_voltage * VOLT_MULT). For the 3DR Power brick with a Pixhawk, this should be set to 10.1. For the Pixhawk with the 3DR 4in1 ESC this should be 12.02. For the PX using the PX4IO power supply this should be set to 1.

BATT9_AMP_PERVLT: Amps per volt

Number of amps that a 1V reading on the current sensor corresponds to. With a Pixhawk using the 3DR Power brick this should be set to 17. For the Pixhawk with the 3DR 4in1 ESC this should be 17.

Units

ampere per volt

BATT9_AMP_OFFSET: AMP offset

Voltage offset at zero current on current sensor

Units

volt

BATT9_CAPACITY: Battery capacity

Capacity of the battery in mAh when full

Increment

Units

50

milliampere hour

BATT9_WATT_MAX: Maximum allowed power (Watts)

Note: This parameter is for advanced users

If battery wattage (voltage * current) exceeds this value then the system will reduce max throttle (THR_MAX, TKOFF_THR_MAX and THR_MIN for reverse thrust) to satisfy this limit. This helps limit high current to low C rated batteries regardless of battery voltage. The max throttle will slowly grow back to THR_MAX (or TKOFF_THR_MAX ) and THR_MIN if demanding the current max and under the watt max. Use 0 to disable.

Increment

Units

1

watt

BATT9_SERIAL_NUM: Battery serial number

Note: This parameter is for advanced users

Battery serial number, automatically filled in for SMBus batteries, otherwise will be -1. With UAVCAN it is the battery_id.

BATT9_LOW_TIMER: Low voltage timeout

Note: This parameter is for advanced users

This is the timeout in seconds before a low voltage event will be triggered. For aircraft with low C batteries it may be necessary to raise this in order to cope with low voltage on long takeoffs. A value of zero disables low voltage errors.

Increment

Range

Units

1

0 - 120

seconds

BATT9_FS_VOLTSRC: Failsafe voltage source

Note: This parameter is for advanced users

Voltage type used for detection of low voltage event

Values

Value

Meaning

0

Raw Voltage

1

Sag Compensated Voltage

BATT9_LOW_VOLT: Low battery voltage

Battery voltage that triggers a low battery failsafe. Set to 0 to disable. If the battery voltage drops below this voltage continuously for more then the period specified by the BATT9_LOW_TIMER parameter then the vehicle will perform the failsafe specified by the BATT9_FS_LOW_ACT parameter.

Increment

Units

0.1

volt

BATT9_LOW_MAH: Low battery capacity

Battery capacity at which the low battery failsafe is triggered. Set to 0 to disable battery remaining failsafe. If the battery capacity drops below this level the vehicle will perform the failsafe specified by the BATT9_FS_LOW_ACT parameter.

Increment

Units

50

milliampere hour

BATT9_CRT_VOLT: Critical battery voltage

Battery voltage that triggers a critical battery failsafe. Set to 0 to disable. If the battery voltage drops below this voltage continuously for more then the period specified by the BATT9_LOW_TIMER parameter then the vehicle will perform the failsafe specified by the BATT9_FS_CRT_ACT parameter.

Increment

Units

0.1

volt

BATT9_CRT_MAH: Battery critical capacity

Battery capacity at which the critical battery failsafe is triggered. Set to 0 to disable battery remaining failsafe. If the battery capacity drops below this level the vehicle will perform the failsafe specified by the BATT9__FS_CRT_ACT parameter.

Increment

Units

50

milliampere hour

BATT9_FS_LOW_ACT: Low battery failsafe action

What action the vehicle should perform if it hits a low battery failsafe

Values

Value

Meaning

0

None

1

RTL

2

Land

3

Terminate

4

QLand

BATT9_FS_CRT_ACT: Critical battery failsafe action

What action the vehicle should perform if it hits a critical battery failsafe

Values

Value

Meaning

0

None

1

RTL

2

Land

3

Terminate

4

QLand

5

Parachute

BATT9_ARM_VOLT: Required arming voltage

Note: This parameter is for advanced users

Battery voltage level which is required to arm the aircraft. Set to 0 to allow arming at any voltage.

Increment

Units

0.1

volt

BATT9_ARM_MAH: Required arming remaining capacity

Note: This parameter is for advanced users

Battery capacity remaining which is required to arm the aircraft. Set to 0 to allow arming at any capacity. Note that execept for smart batteries rebooting the vehicle will always reset the remaining capacity estimate, which can lead to this check not providing sufficent protection, it is recommended to always use this in conjunction with the BATT9__ARM_VOLT parameter.

Increment

Units

50

milliampere hour

BATT9_BUS: Battery monitor I2C bus number

Battery monitor I2C bus number

Range

0 - 3

BATT9_OPTIONS: Battery monitor options

Note: This parameter is for advanced users

This sets options to change the behaviour of the battery monitor

Bitmask

Bit

Meaning

0

Ignore UAVCAN SoC

BATT_ Parameters

BATT_MONITOR: Battery monitoring

Controls enabling monitoring of the battery's voltage and current

RebootRequired

Values

True

Value

Meaning

0

Disabled

3

Analog Voltage Only

4

Analog Voltage and Current

5

Solo

6

Bebop

7

SMBus-Generic

8

UAVCAN-BatteryInfo

9

ESC

10

SumOfFollowing

11

FuelFlow

12

FuelLevelPWM

13

SMBUS-SUI3

14

SMBUS-SUI6

15

NeoDesign

16

SMBus-Maxell

17

Generator-Elec

18

Generator-Fuel

19

Rotoye

BATT_VOLT_PIN: Battery Voltage sensing pin

Sets the analog input pin that should be used for voltage monitoring.

RebootRequired

Values

True

Value

Meaning

-1

Disabled

2

Pixhawk/Pixracer/Navio2/Pixhawk2_PM1

13

Pixhawk2_PM2/CubeOrange_PM2

14

CubeOrange

16

Durandal

100

PX4-v1

BATT_CURR_PIN: Battery Current sensing pin

Sets the analog input pin that should be used for current monitoring.

RebootRequired

Values

True

Value

Meaning

-1

Disabled

3

Pixhawk/Pixracer/Navio2/Pixhawk2_PM1

4

CubeOrange_PM2

14

Pixhawk2_PM2

15

CubeOrange

17

Durandal

101

PX4-v1

BATT_VOLT_MULT: Voltage Multiplier

Note: This parameter is for advanced users

Used to convert the voltage of the voltage sensing pin (BATT_VOLT_PIN) to the actual battery's voltage (pin_voltage * VOLT_MULT). For the 3DR Power brick with a Pixhawk, this should be set to 10.1. For the Pixhawk with the 3DR 4in1 ESC this should be 12.02. For the PX using the PX4IO power supply this should be set to 1.

BATT_AMP_PERVLT: Amps per volt

Number of amps that a 1V reading on the current sensor corresponds to. With a Pixhawk using the 3DR Power brick this should be set to 17. For the Pixhawk with the 3DR 4in1 ESC this should be 17.

Units

ampere per volt

BATT_AMP_OFFSET: AMP offset

Voltage offset at zero current on current sensor

Units

volt

BATT_CAPACITY: Battery capacity

Capacity of the battery in mAh when full

Increment

Units

50

milliampere hour

BATT_WATT_MAX: Maximum allowed power (Watts)

Note: This parameter is for advanced users

If battery wattage (voltage * current) exceeds this value then the system will reduce max throttle (THR_MAX, TKOFF_THR_MAX and THR_MIN for reverse thrust) to satisfy this limit. This helps limit high current to low C rated batteries regardless of battery voltage. The max throttle will slowly grow back to THR_MAX (or TKOFF_THR_MAX ) and THR_MIN if demanding the current max and under the watt max. Use 0 to disable.

Increment

Units

1

watt

BATT_SERIAL_NUM: Battery serial number

Note: This parameter is for advanced users

Battery serial number, automatically filled in for SMBus batteries, otherwise will be -1. With UAVCAN it is the battery_id.

BATT_LOW_TIMER: Low voltage timeout

Note: This parameter is for advanced users

This is the timeout in seconds before a low voltage event will be triggered. For aircraft with low C batteries it may be necessary to raise this in order to cope with low voltage on long takeoffs. A value of zero disables low voltage errors.

Increment

Range

Units

1

0 - 120

seconds

BATT_FS_VOLTSRC: Failsafe voltage source

Note: This parameter is for advanced users

Voltage type used for detection of low voltage event

Values

Value

Meaning

0

Raw Voltage

1

Sag Compensated Voltage

BATT_LOW_VOLT: Low battery voltage

Battery voltage that triggers a low battery failsafe. Set to 0 to disable. If the battery voltage drops below this voltage continuously for more then the period specified by the BATT_LOW_TIMER parameter then the vehicle will perform the failsafe specified by the BATT_FS_LOW_ACT parameter.

Increment

Units

0.1

volt

BATT_LOW_MAH: Low battery capacity

Battery capacity at which the low battery failsafe is triggered. Set to 0 to disable battery remaining failsafe. If the battery capacity drops below this level the vehicle will perform the failsafe specified by the BATT_FS_LOW_ACT parameter.

Increment

Units

50

milliampere hour

BATT_CRT_VOLT: Critical battery voltage

Battery voltage that triggers a critical battery failsafe. Set to 0 to disable. If the battery voltage drops below this voltage continuously for more then the period specified by the BATT_LOW_TIMER parameter then the vehicle will perform the failsafe specified by the BATT_FS_CRT_ACT parameter.

Increment

Units

0.1

volt

BATT_CRT_MAH: Battery critical capacity

Battery capacity at which the critical battery failsafe is triggered. Set to 0 to disable battery remaining failsafe. If the battery capacity drops below this level the vehicle will perform the failsafe specified by the BATT__FS_CRT_ACT parameter.

Increment

Units

50

milliampere hour

BATT_FS_LOW_ACT: Low battery failsafe action

What action the vehicle should perform if it hits a low battery failsafe

Values

Value

Meaning

0

None

1

RTL

2

Land

3

Terminate

4

QLand

BATT_FS_CRT_ACT: Critical battery failsafe action

What action the vehicle should perform if it hits a critical battery failsafe

Values

Value

Meaning

0

None

1

RTL

2

Land

3

Terminate

4

QLand

5

Parachute

BATT_ARM_VOLT: Required arming voltage

Note: This parameter is for advanced users

Battery voltage level which is required to arm the aircraft. Set to 0 to allow arming at any voltage.

Increment

Units

0.1

volt

BATT_ARM_MAH: Required arming remaining capacity

Note: This parameter is for advanced users

Battery capacity remaining which is required to arm the aircraft. Set to 0 to allow arming at any capacity. Note that execept for smart batteries rebooting the vehicle will always reset the remaining capacity estimate, which can lead to this check not providing sufficent protection, it is recommended to always use this in conjunction with the BATT__ARM_VOLT parameter.

Increment

Units

50

milliampere hour

BATT_BUS: Battery monitor I2C bus number

Battery monitor I2C bus number

Range

0 - 3

BATT_OPTIONS: Battery monitor options

Note: This parameter is for advanced users

This sets options to change the behaviour of the battery monitor

Bitmask

Bit

Meaning

0

Ignore UAVCAN SoC

BRD_ Parameters

BRD_PWM_COUNT: Auxiliary pin config

Note: This parameter is for advanced users

Controls number of FMU outputs which are setup for PWM. All unassigned pins can be used for GPIO

RebootRequired

Values

True

Value

Meaning

0

No PWMs

1

One PWMs

2

Two PWMs

3

Three PWMs

4

Four PWMs

5

Five PWMs

6

Six PWMs

7

Seven PWMs

8

Eight PWMs

BRD_SER1_RTSCTS: Serial 1 flow control

Note: This parameter is for advanced users

Enable flow control on serial 1 (telemetry 1) on Pixhawk. You must have the RTS and CTS pins connected to your radio. The standard DF13 6 pin connector for a 3DR radio does have those pins connected. If this is set to 2 then flow control will be auto-detected by checking for the output buffer filling on startup. Note that the PX4v1 does not have hardware flow control pins on this port, so you should leave this disabled.

RebootRequired

Values

True

Value

Meaning

0

Disabled

1

Enabled

2

Auto

BRD_SER2_RTSCTS: Serial 2 flow control

Note: This parameter is for advanced users

Enable flow control on serial 2 (telemetry 2) on Pixhawk and STATE. You must have the RTS and CTS pins connected to your radio. The standard DF13 6 pin connector for a 3DR radio does have those pins connected. If this is set to 2 then flow control will be auto-detected by checking for the output buffer filling on startup.

RebootRequired

Values

True

Value

Meaning

0

Disabled

1

Enabled

2

Auto

BRD_SER3_RTSCTS: Serial 3 flow control

Note: This parameter is for advanced users

Enable flow control on serial 3. You must have the RTS and CTS pins connected to your radio. The standard DF13 6 pin connector for a 3DR radio does have those pins connected. If this is set to 2 then flow control will be auto-detected by checking for the output buffer filling on startup.

RebootRequired

Values

True

Value

Meaning

0

Disabled

1

Enabled

2

Auto

BRD_SER4_RTSCTS: Serial 4 flow control

Note: This parameter is for advanced users

Enable flow control on serial 4. You must have the RTS and CTS pins connected to your radio. The standard DF13 6 pin connector for a 3DR radio does have those pins connected. If this is set to 2 then flow control will be auto-detected by checking for the output buffer filling on startup.

RebootRequired

Values

True

Value

Meaning

0

Disabled

1

Enabled

2

Auto

BRD_SER5_RTSCTS: Serial 5 flow control

Note: This parameter is for advanced users

Enable flow control on serial 5. You must have the RTS and CTS pins connected to your radio. The standard DF13 6 pin connector for a 3DR radio does have those pins connected. If this is set to 2 then flow control will be auto-detected by checking for the output buffer filling on startup.

RebootRequired

Values

True

Value

Meaning

0

Disabled

1

Enabled

2

Auto

BRD_SAFETYENABLE: Enable use of safety arming switch

This controls the default state of the safety switch at startup. When set to 1 the safety switch will start in the safe state (flashing) at boot. When set to zero the safety switch will start in the unsafe state (solid) at startup. Note that if a safety switch is fitted the user can still control the safety state after startup using the switch. The safety state can also be controlled in software using a MAVLink message.

RebootRequired

Values

True

Value

Meaning

0

Disabled

1

Enabled

BRD_SBUS_OUT: SBUS output rate

Note: This parameter is for advanced users

This sets the SBUS output frame rate in Hz

RebootRequired

Values

True

Value

Meaning

0

Disabled

1

50Hz

2

75Hz

3

100Hz

4

150Hz

5

200Hz

6

250Hz

7

300Hz

BRD_SERIAL_NUM: User-defined serial number

User-defined serial number of this vehicle, it can be any arbitrary number you want and has no effect on the autopilot

Range

-32768 - 32767

BRD_SAFETY_MASK: Outputs which ignore the safety switch state

Note: This parameter is for advanced users

A bitmask which controls what outputs can move while the safety switch has not been pressed

Bitmask

RebootRequired

Bit

Meaning

0

Output1

1

Output2

2

Output3

3

Output4

4

Output5

5

Output6

6

Output7

7

Output8

8

Output9

9

Output10

10

Output11

11

Output12

12

Output13

13

Output14

True

BRD_IMU_TARGTEMP: Target IMU temperature

Note: This parameter is for advanced users

This sets the target IMU temperature for boards with controllable IMU heating units. DO NOT SET to -1 on the Cube. Set to -1 to disable the heater, please reboot after setting to -1.

Range

Units

-1 - 80

degrees Celsius

BRD_TYPE: Board type

Note: This parameter is for advanced users

This allows selection of a PX4 or VRBRAIN board type. If set to zero then the board type is auto-detected (PX4)

RebootRequired

Values

True

Value

Meaning

0

AUTO

1

PX4V1

2

Pixhawk

3

Cube/Pixhawk2

4

Pixracer

5

PixhawkMini

6

Pixhawk2Slim

13

Intel Aero FC

14

Pixhawk Pro

20

AUAV2.1

21

PCNC1

22

MINDPXV2

23

SP01

24

CUAVv5/FMUV5

30

VRX BRAIN51

32

VRX BRAIN52

33

VRX BRAIN52E

34

VRX UBRAIN51

35

VRX UBRAIN52

36

VRX CORE10

38

VRX BRAIN54

39

PX4 FMUV6

100

PX4 OLDDRIVERS

BRD_IO_ENABLE: Enable IO co-processor

Note: This parameter is for advanced users

This allows for the IO co-processor on FMUv1 and FMUv2 to be disabled

RebootRequired

Values

True

Value

Meaning

0

Disabled

1

Enabled

BRD_SAFETYOPTION: Options for safety button behavior

This controls the activation of the safety button. It allows you to control if the safety button can be used for safety enable and/or disable, and whether the button is only active when disarmed

Bitmask

Bit

Meaning

0

ActiveForSafetyEnable

1

ActiveForSafetyDisable

2

ActiveWhenArmed

3

Force safety on when the aircraft disarms

BRD_VBUS_MIN: Autopilot board voltage requirement

Note: This parameter is for advanced users

Minimum voltage on the autopilot power rail to allow the aircraft to arm. 0 to disable the check.

Increment

Range

Units

0.1

4.0 - 5.5

volt

BRD_VSERVO_MIN: Servo voltage requirement

Note: This parameter is for advanced users

Minimum voltage on the servo rail to allow the aircraft to arm. 0 to disable the check.

Increment

Range

Units

0.1

3.3 - 12.0

volt

BRD_SD_SLOWDOWN: microSD slowdown

Note: This parameter is for advanced users

This is a scaling factor to slow down microSD operation. It can be used on flight board and microSD card combinations where full speed is not reliable. For normal full speed operation a value of 0 should be used.

Increment

Range

1

0 - 32

BRD_PWM_VOLT_SEL: Set PWM Out Voltage

Note: This parameter is for advanced users

This sets the voltage max for PWM output pulses. 0 for 3.3V and 1 for 5V output.

Values

Value

Meaning

0

3.3V

1

5V

BRD_OPTIONS: Board options

Note: This parameter is for advanced users

Board specific option flags

Bitmask

Bit

Meaning

0

Enable hardware watchdog

1

Disable MAVftp

2

Enable set of internal parameters

3

Enable Debug Pins

BRD_BOOT_DELAY: Boot delay

Note: This parameter is for advanced users

This adds a delay in milliseconds to boot to ensure peripherals initialise fully

Range

Units

0 - 10000

milliseconds

BRD_IMUHEAT_P: IMU Heater P gain

Note: This parameter is for advanced users

IMU Heater P gain

Increment

Range

1

1 - 500

BRD_IMUHEAT_I: IMU Heater I gain

Note: This parameter is for advanced users

IMU Heater integrator gain

Increment

Range

0.1

0 - 1

BRD_IMUHEAT_IMAX: IMU Heater IMAX

Note: This parameter is for advanced users

IMU Heater integrator maximum

Increment

Range

1

0 - 100

BRD_ALT_CONFIG: Alternative HW config

Note: This parameter is for advanced users

Select an alternative hardware configuration. A value of zero selects the default configuration for this board. Other values are board specific. Please see the documentation for your board for details on any alternative configuration values that may be available.

Increment

Range

RebootRequired

1

0 - 10

True

BRD_RADIO Parameters

BRD_RADIO_TYPE: Set type of direct attached radio

This enables support for direct attached radio receivers

Values

Value

Meaning

0

None

1

CYRF6936

2

CC2500

3

BK2425

BRD_RADIO_PROT: protocol

Note: This parameter is for advanced users

Select air protocol

Values

Value

Meaning

0

Auto

1

DSM2

2

DSMX

BRD_RADIO_DEBUG: debug level

Note: This parameter is for advanced users

radio debug level

Range

0 - 4

BRD_RADIO_DISCRC: disable receive CRC

Note: This parameter is for advanced users

disable receive CRC (for debug)

Values

Value

Meaning

0

NotDisabled

1

Disabled

BRD_RADIO_SIGCH: RSSI signal strength

Note: This parameter is for advanced users

Channel to show receive RSSI signal strength, or zero for disabled

Range

0 - 16

BRD_RADIO_PPSCH: Packet rate channel

Note: This parameter is for advanced users

Channel to show received packet-per-second rate, or zero for disabled

Range

0 - 16

BRD_RADIO_TELEM: Enable telemetry

Note: This parameter is for advanced users

If this is non-zero then telemetry packets will be sent over DSM

Values

Value

Meaning

0

Disabled

1

Enabled

BRD_RADIO_TXPOW: Telemetry Transmit power

Note: This parameter is for advanced users

Set telemetry transmit power. This is the power level (from 1 to 8) for telemetry packets sent from the RX to the TX

Range

1 - 8

BRD_RADIO_FCCTST: Put radio into FCC test mode

Note: This parameter is for advanced users

If this is enabled then the radio will continuously transmit as required for FCC testing. The transmit channel is set by the value of the parameter. The radio will not work for RC input while this is enabled

Values

Value

Meaning

0

Disabled

1

MinChannel

2

MidChannel

3

MaxChannel

4

MinChannelCW

5

MidChannelCW

6

MaxChannelCW

BRD_RADIO_STKMD: Stick input mode

Note: This parameter is for advanced users

This selects between different stick input modes. The default is mode2, which has throttle on the left stick and pitch on the right stick. You can instead set mode1, which has throttle on the right stick and pitch on the left stick.

Values

Value

Meaning

1

Mode1

2

Mode2

BRD_RADIO_TESTCH: Set radio to factory test channel

Note: This parameter is for advanced users

This sets the radio to a fixed test channel for factory testing. Using a fixed channel avoids the need for binding in factory testing.

Values

Value

Meaning

0

Disabled

1

TestChan1

2

TestChan2

3

TestChan3

4

TestChan4

5

TestChan5

6

TestChan6

7

TestChan7

8

TestChan8

BRD_RADIO_TSIGCH: RSSI value channel for telemetry data on transmitter

Note: This parameter is for advanced users

Channel to show telemetry RSSI value as received by TX

Range

0 - 16

BRD_RADIO_TPPSCH: Telemetry PPS channel

Note: This parameter is for advanced users

Channel to show telemetry packets-per-second value, as received at TX

Range

0 - 16

BRD_RADIO_TXMAX: Transmitter transmit power

Note: This parameter is for advanced users

Set transmitter maximum transmit power (from 1 to 8)

Range

1 - 8

BRD_RADIO_BZOFS: Transmitter buzzer adjustment

Note: This parameter is for advanced users

Set transmitter buzzer note adjustment (adjust frequency up)

Range

0 - 40

BRD_RADIO_ABTIME: Auto-bind time

Note: This parameter is for advanced users

When non-zero this sets the time with no transmitter packets before we start looking for auto-bind packets.

Range

0 - 120

BRD_RADIO_ABLVL: Auto-bind level

Note: This parameter is for advanced users

This sets the minimum RSSI of an auto-bind packet for it to be accepted. This should be set so that auto-bind will only happen at short range to minimise the change of an auto-bind happening accidentially

Range

0 - 31

BRD_RTC Parameters

BRD_RTC_TYPES: Allowed sources of RTC time

Note: This parameter is for advanced users

Specifies which sources of UTC time will be accepted

Bitmask

Bit

Meaning

0

GPS

1

MAVLINK_SYSTEM_TIME

2

HW

BRD_RTC_TZ_MIN: Timezone offset from UTC

Note: This parameter is for advanced users

Adds offset in +- minutes from UTC to calculate local time

Range

-720 - +840

BTN_ Parameters

BTN_ENABLE: Enable button reporting

Note: This parameter is for advanced users

This enables the button checking module. When this is disabled the parameters for setting button inputs are not visible

Values

Value

Meaning

0

Disabled

1

Enabled

BTN_PIN1: First button Pin

Digital pin number for first button input.

Values

Value

Meaning

-1

Disabled

50

AUXOUT1

51

AUXOUT2

52

AUXOUT3

53

AUXOUT4

54

AUXOUT5

55

AUXOUT6

BTN_PIN2: Second button Pin

Digital pin number for second button input.

Values

Value

Meaning

-1

Disabled

50

AUXOUT1

51

AUXOUT2

52

AUXOUT3

53

AUXOUT4

54

AUXOUT5

55

AUXOUT6

BTN_PIN3: Third button Pin

Digital pin number for third button input.

Values

Value

Meaning

-1

Disabled

50

AUXOUT1

51

AUXOUT2

52

AUXOUT3

53

AUXOUT4

54

AUXOUT5

55

AUXOUT6

BTN_PIN4: Fourth button Pin

Digital pin number for fourth button input.

Values

Value

Meaning

-1

Disabled

50

AUXOUT1

51

AUXOUT2

52

AUXOUT3

53

AUXOUT4

54

AUXOUT5

55

AUXOUT6

BTN_REPORT_SEND: Report send time

The duration in seconds that a BUTTON_CHANGE report is repeatedly sent to the GCS regarding a button changing state. Note that the BUTTON_CHANGE message is MAVLink2 only.

Range

0 - 3600

BTN_OPTIONS1: Button Pin 1 Options

Options for Pin 1. PWM input detects PWM above or below 1800/1200us instead of logic level. Invert changes HIGH state to be logic low voltage on pin, or below 1200us, if PWM input.

Bitmask

Bit

Meaning

0

PWM Input

1

InvertInput

BTN_OPTIONS2: Button Pin 2 Options

Options for Pin 2. PWM input detects PWM above or below 1800/1200us instead of logic level. Invert changes HIGH state to be logic low voltage on pin, or below 1200us, if PWM input.

Bitmask

Bit

Meaning

0

PWM Input

1

InvertInput

BTN_OPTIONS3: Button Pin 3 Options

Options for Pin 3. PWM input detects PWM above or below 1800/1200us instead of logic level. Invert changes HIGH state to be logic low voltage on pin, or below 1200us, if PWM input.

Bitmask

Bit

Meaning

0

PWM Input

1

InvertInput

BTN_OPTIONS4: Button Pin 4 Options

Options for Pin 4. PWM input detects PWM above or below 1800/1200us instead of logic level. Invert changes HIGH state to be logic low voltage on pin, or below 1200us, if PWM input.

Bitmask

Bit

Meaning

0

PWM Input

1

InvertInput

BTN_FUNC1: Button Pin 1 RC Channel function

Auxiliary RC Options function executed on pin change

Values

Value

Meaning

0

Do Nothing

4

ModeRTL

9

Camera Trigger

16

ModeAuto

24

Auto Mission Reset

27

Retract Mount

28

Relay On/Off

29

Landing Gear

30

Lost Plane Sound

31

Motor Emergency Stop

34

Relay2 On/Off

35

Relay3 On/Off

36

Relay4 On/Off

38

ADSB Avoidance En

41

ArmDisarm

43

InvertedFlight

46

RC Override Enable

51

ModeManual

55

ModeGuided

56

ModeLoiter

58

Clear Waypoints

62

Compass Learn

64

Reverse Throttle

65

GPS Disable

66

Relay5

67

Relay6

72

ModeCircle

77

ModeTakeoff

78

RunCam Control

79

RunCam OSD Control

81

Disarm

82

QAssist 3pos

84

Air Mode

85

Generator

86

Non Auto Terrain Follow Disable

87

Crow Select

88

Soaring Enable

89

Landing Flare

90

EKF Pos Source

91

Airspeed Ratio Calibration

92

FBWA

100

KillIMU1

101

KillIMU2

102

Camera Mode Toggle

105

GPS Disable Yaw

208

Flap

209

Forward Throttle

300

Scripting1

301

Scripting2

302

Scripting3

303

Scripting4

304

Scripting5

305

Scripting6

306

Scripting7

307

Scripting8

BTN_FUNC2: Button Pin 2 RC Channel function

Auxiliary RC Options function executed on pin change

Values

Value

Meaning

0

Do Nothing

4

ModeRTL

9

Camera Trigger

16

ModeAuto

24

Auto Mission Reset

27

Retract Mount

28

Relay On/Off

29

Landing Gear

30

Lost Plane Sound

31

Motor Emergency Stop

34

Relay2 On/Off

35

Relay3 On/Off

36

Relay4 On/Off

38

ADSB Avoidance En

41

ArmDisarm

43

InvertedFlight

46

RC Override Enable

51

ModeManual

55

ModeGuided

56

ModeLoiter

58

Clear Waypoints

62

Compass Learn

64

Reverse Throttle

65

GPS Disable

66

Relay5

67

Relay6

72

ModeCircle

77

ModeTakeoff

78

RunCam Control

79

RunCam OSD Control

81

Disarm

82

QAssist 3pos

84

Air Mode

85

Generator

86

Non Auto Terrain Follow Disable

87

Crow Select

88

Soaring Enable

89

Landing Flare

90

EKF Pos Source

91

Airspeed Ratio Calibration

92

FBWA

100

KillIMU1

101

KillIMU2

102

Camera Mode Toggle

105

GPS Disable Yaw

208

Flap

209

Forward Throttle

300

Scripting1

301

Scripting2

302

Scripting3

303

Scripting4

304

Scripting5

305

Scripting6

306

Scripting7

307

Scripting8

BTN_FUNC3: Button Pin 3 RC Channel function

Auxiliary RC Options function executed on pin change

Values

Value

Meaning

0

Do Nothing

4

ModeRTL

9

Camera Trigger

16

ModeAuto

24

Auto Mission Reset

27

Retract Mount

28

Relay On/Off

29

Landing Gear

30

Lost Plane Sound

31

Motor Emergency Stop

34

Relay2 On/Off

35

Relay3 On/Off

36

Relay4 On/Off

38

ADSB Avoidance En

41

ArmDisarm

43

InvertedFlight

46

RC Override Enable

51

ModeManual

55

ModeGuided

56

ModeLoiter

58

Clear Waypoints

62

Compass Learn

64

Reverse Throttle

65

GPS Disable

66

Relay5

67

Relay6

72

ModeCircle

77

ModeTakeoff

78

RunCam Control

79

RunCam OSD Control

81

Disarm

82

QAssist 3pos

84

Air Mode

85

Generator

86

Non Auto Terrain Follow Disable

87

Crow Select

88

Soaring Enable

89

Landing Flare

90

EKF Pos Source

91

Airspeed Ratio Calibration

92

FBWA

100

KillIMU1

101

KillIMU2

102

Camera Mode Toggle

105

GPS Disable Yaw

208

Flap

209

Forward Throttle

300

Scripting1

301

Scripting2

302

Scripting3

303

Scripting4

304

Scripting5

305

Scripting6

306

Scripting7

307

Scripting8

BTN_FUNC4: Button Pin 4 RC Channel function

Auxiliary RC Options function executed on pin change

Values

Value

Meaning

0

Do Nothing

4

ModeRTL

9

Camera Trigger

16

ModeAuto

24

Auto Mission Reset

27

Retract Mount

28

Relay On/Off

29

Landing Gear

30

Lost Plane Sound

31

Motor Emergency Stop

34

Relay2 On/Off

35

Relay3 On/Off

36

Relay4 On/Off

38

ADSB Avoidance En

41

ArmDisarm

43

InvertedFlight

46

RC Override Enable

51

ModeManual

55

ModeGuided

56

ModeLoiter

58

Clear Waypoints

62

Compass Learn

64

Reverse Throttle

65

GPS Disable

66

Relay5

67

Relay6

72

ModeCircle

77

ModeTakeoff

78

RunCam Control

79

RunCam OSD Control

81

Disarm

82

QAssist 3pos

84

Air Mode

85

Generator

86

Non Auto Terrain Follow Disable

87

Crow Select

88

Soaring Enable

89

Landing Flare

90

EKF Pos Source

91

Airspeed Ratio Calibration

92

FBWA

100

KillIMU1

101

KillIMU2

102

Camera Mode Toggle

105

GPS Disable Yaw

208

Flap

209

Forward Throttle

300

Scripting1

301

Scripting2

302

Scripting3

303

Scripting4

304

Scripting5

305

Scripting6

306

Scripting7

307

Scripting8

CAM_ Parameters

CAM_TRIGG_TYPE: Camera shutter (trigger) type

how to trigger the camera to take a picture

Values

Value

Meaning

0

Servo

1

Relay

2

GoPro in Solo Gimbal

CAM_DURATION: Duration that shutter is held open

How long the shutter will be held open in 10ths of a second (i.e. enter 10 for 1second, 50 for 5seconds)

Range

Units

0 - 50

deciseconds

CAM_SERVO_ON: Servo ON PWM value

PWM value in microseconds to move servo to when shutter is activated

Range

Units

1000 - 2000

PWM in microseconds

CAM_SERVO_OFF: Servo OFF PWM value

PWM value in microseconds to move servo to when shutter is deactivated

Range

Units

1000 - 2000

PWM in microseconds

CAM_TRIGG_DIST: Camera trigger distance

Distance in meters between camera triggers. If this value is non-zero then the camera will trigger whenever the position changes by this number of meters regardless of what mode the APM is in. Note that this parameter can also be set in an auto mission using the DO_SET_CAM_TRIGG_DIST command, allowing you to enable/disable the triggering of the camera during the flight.

Range

Units

0 - 1000

meters

CAM_RELAY_ON: Relay ON value

This sets whether the relay goes high or low when it triggers. Note that you should also set RELAY_DEFAULT appropriately for your camera

Values

Value

Meaning

0

Low

1

High

CAM_MIN_INTERVAL: Minimum time between photos

Postpone shooting if previous picture was taken less than preset time(ms) ago.

Range

Units

0 - 10000

milliseconds

CAM_MAX_ROLL: Maximum photo roll angle.

Postpone shooting if roll is greater than limit. (0=Disable, will shoot regardless of roll).

Range

Units

0 - 180

degrees

CAM_FEEDBACK_PIN: Camera feedback pin

pin number to use for save accurate camera feedback messages. If set to -1 then don't use a pin flag for this, otherwise this is a pin number which if held high after a picture trigger order, will save camera messages when camera really takes a picture. A universal camera hot shoe is needed. The pin should be held high for at least 2 milliseconds for reliable trigger detection. See also the CAM_FEEDBACK_POL option.

RebootRequired

Values

True

Value

Meaning

-1

Disabled

50

AUX1

51

AUX2

52

AUX3

53

AUX4

54

AUX5

55

AUX6

CAM_FEEDBACK_POL: Camera feedback pin polarity

Polarity for feedback pin. If this is 1 then the feedback pin should go high on trigger. If set to 0 then it should go low

Values

Value

Meaning

0

TriggerLow

1

TriggerHigh

CAM_AUTO_ONLY: Distance-trigging in AUTO mode only

When enabled, trigging by distance is done in AUTO mode only.

Values

Value

Meaning

0

Always

1

Only when in AUTO

CAM_TYPE: Type of camera (0: None, 1: BMMCC)

Set the camera type that is being used, certain cameras have custom functions that need further configuration, this enables that.

Values

Value

Meaning

0

Default

1

BMMCC

CAM_RC_ Parameters

CAM_RC_TYPE: RunCam device type

RunCam deviee type used to determine OSD menu structure and shutter options.

Values

Value

Meaning

0

Disabled

1

RunCam Split Micro/RunCam with UART

2

RunCam Split

3

RunCam Split4 4k

4

RunCam Hybrid

CAM_RC_FEATURES: RunCam features available

Note: This parameter is for advanced users

The available features of the attached RunCam device. If 0 then the RunCam device will be queried for the features it supports, otherwise this setting is used.

Bitmask

Bit

Meaning

0

Power Button

1

WiFi Button

2

Change Mode

3

5-Key OSD

4

Settings Access

5

DisplayPort

6

Start Recording

7

Stop Recording

CAM_RC_BT_DELAY: RunCam boot delay before allowing updates

Note: This parameter is for advanced users

Time it takes for the RunCam to become fully ready in ms. If this is too short then commands can get out of sync.

CAM_RC_BTN_DELAY: RunCam button delay before allowing further button presses

Note: This parameter is for advanced users

Time it takes for the a RunCam button press to be actived in ms. If this is too short then commands can get out of sync.

CAM_RC_MDE_DELAY: RunCam mode delay before allowing further button presses

Note: This parameter is for advanced users

Time it takes for the a RunCam mode button press to be actived in ms. If a mode change first requires a video recording change then double this value is used. If this is too short then commands can get out of sync.

CAM_RC_CONTROL: RunCam control option

Note: This parameter is for advanced users

Specifies the allowed actions required to enter the OSD menu

Bitmask

Bit

Meaning

0

Stick yaw right

1

Stick roll right

2

3-position switch

3

2-position switch

4

Autorecording enabled

CAN_ Parameters

CAN_LOGLEVEL: Loglevel

Note: This parameter is for advanced users

Loglevel for recording initialisation and debug information from CAN Interface

Range

Values

0 - 4

Value

Meaning

0

Log None

1

Log Error

2

Log Warning and below

3

Log Info and below

4

Log Everything

CAN_D1_ Parameters

CAN_D1_PROTOCOL: Enable use of specific protocol over virtual driver

Note: This parameter is for advanced users

Enabling this option starts selected protocol that will use this virtual driver

RebootRequired

Values

True

Value

Meaning

0

Disabled

1

UAVCAN

3

ToshibaCAN

4

PiccoloCAN

5

CANTester

8

KDECAN

9

PacketDigitalCAN

11

Benewake

CAN_D1_KDE_ Parameters

CAN_D1_KDE_NPOLE: Number of motor poles

Sets the number of motor poles to calculate the correct RPM value

CAN_D1_PC_ Parameters

CAN_D1_PC_ESC_BM: ESC channels

Note: This parameter is for advanced users

Bitmask defining which ESC (motor) channels are to be transmitted over Piccolo CAN

Bitmask

0: ESC 1, 1: ESC 2, 2: ESC 3, 3: ESC 4, 4: ESC 5, 5: ESC 6, 6: ESC 7, 7: ESC 8, 8: ESC 9, 9: ESC 10, 10: ESC 11, 11: ESC 12, 12: ESC 13, 13: ESC 14, 14: ESC 15, 15: ESC 16

CAN_D1_PC_ESC_RT: ESC output rate

Note: This parameter is for advanced users

Output rate of ESC command messages

Range

Units

1 - 500

hertz

CAN_D1_PC_SRV_BM: Servo channels

Note: This parameter is for advanced users

Bitmask defining which servo channels are to be transmitted over Piccolo CAN

Bitmask

0: Servo 1, 1: Servo 2, 2: Servo 3, 3: Servo 4, 4: Servo 5, 5: Servo 6, 6: Servo 7, 7: Servo 8, 8: Servo 9, 9: Servo 10, 10: Servo 11, 11: Servo 12, 12: Servo 13, 13: Servo 14, 14: Servo 15, 15: Servo 16

CAN_D1_PC_SRV_RT: Servo command output rate

Note: This parameter is for advanced users

Output rate of servo command messages

Range

Units

1 - 500

hertz

CAN_D1_TST_ Parameters

CAN_D1_TST_ID: CAN Test Index

Note: This parameter is for advanced users

Selects the Index of Test that needs to be run recursively, this value gets reset to 0 at boot.

Range

Values

0 - 4

Value

Meaning

0

TEST_NONE

1

TEST_LOOPBACK

2

TEST_BUSOFF_RECOVERY

3

TEST_UAVCAN_DNA

4

TEST_TOSHIBA_CAN

5

TEST_KDE_CAN

6

TEST_UAVCAN_ESC

CAN_D1_TST_LPR8: CANTester LoopRate

Note: This parameter is for advanced users

Selects the Looprate of Test methods

Units

microseconds

CAN_D1_UC_ Parameters

CAN_D1_UC_NODE: UAVCAN node that is used for this network

Note: This parameter is for advanced users

UAVCAN node should be set implicitly

Range

1 - 250

CAN_D1_UC_SRV_BM: RC Out channels to be transmitted as servo over UAVCAN

Note: This parameter is for advanced users

Bitmask with one set for channel to be transmitted as a servo command over UAVCAN

Bitmask

0: Servo 1, 1: Servo 2, 2: Servo 3, 3: Servo 4, 4: Servo 5, 5: Servo 6, 6: Servo 7, 7: Servo 8, 8: Servo 9, 9: Servo 10, 10: Servo 11, 11: Servo 12, 12: Servo 13, 13: Servo 14, 14: Servo 15

CAN_D1_UC_ESC_BM: RC Out channels to be transmitted as ESC over UAVCAN

Note: This parameter is for advanced users

Bitmask with one set for channel to be transmitted as a ESC command over UAVCAN

Bitmask

0: ESC 1, 1: ESC 2, 2: ESC 3, 3: ESC 4, 4: ESC 5, 5: ESC 6, 6: ESC 7, 7: ESC 8, 8: ESC 9, 9: ESC 10, 10: ESC 11, 11: ESC 12, 12: ESC 13, 13: ESC 14, 14: ESC 15, 15: ESC 16

CAN_D1_UC_SRV_RT: Servo output rate

Note: This parameter is for advanced users

Maximum transmit rate for servo outputs

Range

Units

1 - 200

hertz

CAN_D1_UC_OPTION: UAVCAN options

Note: This parameter is for advanced users

Option flags

Bitmask

Bit

Meaning

0

ClearDNADatabase

1

IgnoreDNANodeConflicts

CAN_D2_ Parameters

CAN_D2_PROTOCOL: Enable use of specific protocol over virtual driver

Note: This parameter is for advanced users

Enabling this option starts selected protocol that will use this virtual driver

RebootRequired

Values

True

Value

Meaning

0

Disabled

1

UAVCAN

3

ToshibaCAN

4

PiccoloCAN

5

CANTester

8

KDECAN

9

PacketDigitalCAN

11

Benewake

CAN_D2_KDE_ Parameters

CAN_D2_KDE_NPOLE: Number of motor poles

Sets the number of motor poles to calculate the correct RPM value

CAN_D2_PC_ Parameters

CAN_D2_PC_ESC_BM: ESC channels

Note: This parameter is for advanced users

Bitmask defining which ESC (motor) channels are to be transmitted over Piccolo CAN

Bitmask

0: ESC 1, 1: ESC 2, 2: ESC 3, 3: ESC 4, 4: ESC 5, 5: ESC 6, 6: ESC 7, 7: ESC 8, 8: ESC 9, 9: ESC 10, 10: ESC 11, 11: ESC 12, 12: ESC 13, 13: ESC 14, 14: ESC 15, 15: ESC 16

CAN_D2_PC_ESC_RT: ESC output rate

Note: This parameter is for advanced users

Output rate of ESC command messages

Range

Units

1 - 500

hertz

CAN_D2_PC_SRV_BM: Servo channels

Note: This parameter is for advanced users

Bitmask defining which servo channels are to be transmitted over Piccolo CAN

Bitmask

0: Servo 1, 1: Servo 2, 2: Servo 3, 3: Servo 4, 4: Servo 5, 5: Servo 6, 6: Servo 7, 7: Servo 8, 8: Servo 9, 9: Servo 10, 10: Servo 11, 11: Servo 12, 12: Servo 13, 13: Servo 14, 14: Servo 15, 15: Servo 16

CAN_D2_PC_SRV_RT: Servo command output rate

Note: This parameter is for advanced users

Output rate of servo command messages

Range

Units

1 - 500

hertz

CAN_D2_TST_ Parameters

CAN_D2_TST_ID: CAN Test Index

Note: This parameter is for advanced users

Selects the Index of Test that needs to be run recursively, this value gets reset to 0 at boot.

Range

Values

0 - 4

Value

Meaning

0

TEST_NONE

1

TEST_LOOPBACK

2

TEST_BUSOFF_RECOVERY

3

TEST_UAVCAN_DNA

4

TEST_TOSHIBA_CAN

5

TEST_KDE_CAN

6

TEST_UAVCAN_ESC

CAN_D2_TST_LPR8: CANTester LoopRate

Note: This parameter is for advanced users

Selects the Looprate of Test methods

Units

microseconds

CAN_D2_UC_ Parameters

CAN_D2_UC_NODE: UAVCAN node that is used for this network

Note: This parameter is for advanced users

UAVCAN node should be set implicitly

Range

1 - 250

CAN_D2_UC_SRV_BM: RC Out channels to be transmitted as servo over UAVCAN

Note: This parameter is for advanced users

Bitmask with one set for channel to be transmitted as a servo command over UAVCAN

Bitmask

0: Servo 1, 1: Servo 2, 2: Servo 3, 3: Servo 4, 4: Servo 5, 5: Servo 6, 6: Servo 7, 7: Servo 8, 8: Servo 9, 9: Servo 10, 10: Servo 11, 11: Servo 12, 12: Servo 13, 13: Servo 14, 14: Servo 15

CAN_D2_UC_ESC_BM: RC Out channels to be transmitted as ESC over UAVCAN

Note: This parameter is for advanced users

Bitmask with one set for channel to be transmitted as a ESC command over UAVCAN

Bitmask

0: ESC 1, 1: ESC 2, 2: ESC 3, 3: ESC 4, 4: ESC 5, 5: ESC 6, 6: ESC 7, 7: ESC 8, 8: ESC 9, 9: ESC 10, 10: ESC 11, 11: ESC 12, 12: ESC 13, 13: ESC 14, 14: ESC 15, 15: ESC 16

CAN_D2_UC_SRV_RT: Servo output rate

Note: This parameter is for advanced users

Maximum transmit rate for servo outputs

Range

Units

1 - 200

hertz

CAN_D2_UC_OPTION: UAVCAN options

Note: This parameter is for advanced users

Option flags

Bitmask

Bit

Meaning

0

ClearDNADatabase

1

IgnoreDNANodeConflicts

CAN_D3_ Parameters

CAN_D3_PROTOCOL: Enable use of specific protocol over virtual driver

Note: This parameter is for advanced users

Enabling this option starts selected protocol that will use this virtual driver

RebootRequired

Values

True

Value

Meaning

0

Disabled

1

UAVCAN

3

ToshibaCAN

4

PiccoloCAN

5

CANTester

8

KDECAN

9

PacketDigitalCAN

11

Benewake

CAN_D3_KDE_ Parameters

CAN_D3_KDE_NPOLE: Number of motor poles

Sets the number of motor poles to calculate the correct RPM value

CAN_D3_PC_ Parameters

CAN_D3_PC_ESC_BM: ESC channels

Note: This parameter is for advanced users

Bitmask defining which ESC (motor) channels are to be transmitted over Piccolo CAN

Bitmask

0: ESC 1, 1: ESC 2, 2: ESC 3, 3: ESC 4, 4: ESC 5, 5: ESC 6, 6: ESC 7, 7: ESC 8, 8: ESC 9, 9: ESC 10, 10: ESC 11, 11: ESC 12, 12: ESC 13, 13: ESC 14, 14: ESC 15, 15: ESC 16

CAN_D3_PC_ESC_RT: ESC output rate

Note: This parameter is for advanced users

Output rate of ESC command messages

Range

Units

1 - 500

hertz

CAN_D3_PC_SRV_BM: Servo channels

Note: This parameter is for advanced users

Bitmask defining which servo channels are to be transmitted over Piccolo CAN

Bitmask

0: Servo 1, 1: Servo 2, 2: Servo 3, 3: Servo 4, 4: Servo 5, 5: Servo 6, 6: Servo 7, 7: Servo 8, 8: Servo 9, 9: Servo 10, 10: Servo 11, 11: Servo 12, 12: Servo 13, 13: Servo 14, 14: Servo 15, 15: Servo 16

CAN_D3_PC_SRV_RT: Servo command output rate

Note: This parameter is for advanced users

Output rate of servo command messages

Range

Units

1 - 500

hertz

CAN_D3_TST_ Parameters

CAN_D3_TST_ID: CAN Test Index

Note: This parameter is for advanced users

Selects the Index of Test that needs to be run recursively, this value gets reset to 0 at boot.

Range

Values

0 - 4

Value

Meaning

0

TEST_NONE

1

TEST_LOOPBACK

2

TEST_BUSOFF_RECOVERY

3

TEST_UAVCAN_DNA

4

TEST_TOSHIBA_CAN

5

TEST_KDE_CAN

6

TEST_UAVCAN_ESC

CAN_D3_TST_LPR8: CANTester LoopRate

Note: This parameter is for advanced users

Selects the Looprate of Test methods

Units

microseconds

CAN_D3_UC_ Parameters

CAN_D3_UC_NODE: UAVCAN node that is used for this network

Note: This parameter is for advanced users

UAVCAN node should be set implicitly

Range

1 - 250

CAN_D3_UC_SRV_BM: RC Out channels to be transmitted as servo over UAVCAN

Note: This parameter is for advanced users

Bitmask with one set for channel to be transmitted as a servo command over UAVCAN

Bitmask

0: Servo 1, 1: Servo 2, 2: Servo 3, 3: Servo 4, 4: Servo 5, 5: Servo 6, 6: Servo 7, 7: Servo 8, 8: Servo 9, 9: Servo 10, 10: Servo 11, 11: Servo 12, 12: Servo 13, 13: Servo 14, 14: Servo 15

CAN_D3_UC_ESC_BM: RC Out channels to be transmitted as ESC over UAVCAN

Note: This parameter is for advanced users

Bitmask with one set for channel to be transmitted as a ESC command over UAVCAN

Bitmask

0: ESC 1, 1: ESC 2, 2: ESC 3, 3: ESC 4, 4: ESC 5, 5: ESC 6, 6: ESC 7, 7: ESC 8, 8: ESC 9, 9: ESC 10, 10: ESC 11, 11: ESC 12, 12: ESC 13, 13: ESC 14, 14: ESC 15, 15: ESC 16

CAN_D3_UC_SRV_RT: Servo output rate

Note: This parameter is for advanced users

Maximum transmit rate for servo outputs

Range

Units

1 - 200

hertz

CAN_D3_UC_OPTION: UAVCAN options

Note: This parameter is for advanced users

Option flags

Bitmask

Bit

Meaning

0

ClearDNADatabase

1

IgnoreDNANodeConflicts

CAN_P1_ Parameters

CAN_P1_DRIVER: Index of virtual driver to be used with physical CAN interface

Enabling this option enables use of CAN buses.

RebootRequired

Values

True

Value

Meaning

0

Disabled

1

First driver

2

Second driver

CAN_P1_BITRATE: Bitrate of CAN interface

Note: This parameter is for advanced users

Bit rate can be set up to from 10000 to 1000000

Range

10000 - 1000000

CAN_P2_ Parameters

CAN_P2_DRIVER: Index of virtual driver to be used with physical CAN interface

Enabling this option enables use of CAN buses.

RebootRequired

Values

True

Value

Meaning

0

Disabled

1

First driver

2

Second driver

CAN_P2_BITRATE: Bitrate of CAN interface

Note: This parameter is for advanced users

Bit rate can be set up to from 10000 to 1000000

Range

10000 - 1000000

CAN_P3_ Parameters

CAN_P3_DRIVER: Index of virtual driver to be used with physical CAN interface

Enabling this option enables use of CAN buses.

RebootRequired

Values

True

Value

Meaning

0

Disabled

1

First driver

2

Second driver

CAN_P3_BITRATE: Bitrate of CAN interface

Note: This parameter is for advanced users

Bit rate can be set up to from 10000 to 1000000

Range

10000 - 1000000

CAN_SLCAN_ Parameters

CAN_SLCAN_CPORT: SLCAN Route

CAN Interface ID to be routed to SLCAN, 0 means no routing

RebootRequired

Values

True

Value

Meaning

0

Disabled

1

First interface

2

Second interface

CAN_SLCAN_SERNUM: SLCAN Serial Port

Serial Port ID to be used for temporary SLCAN iface, -1 means no temporary serial. This parameter is automatically reset on reboot or on timeout. See CAN_SLCAN_TIMOUT for timeout details

Values

Value

Meaning

-1

Disabled

0

Serial0

1

Serial1

2

Serial2

3

Serial3

4

Serial4

5

Serial5

6

Serial6

CAN_SLCAN_TIMOUT: SLCAN Timeout

Duration of inactivity after which SLCAN is switched back to original driver in seconds.

Range

0 - 127

CAN_SLCAN_SDELAY: SLCAN Start Delay

Duration after which slcan starts after setting SERNUM in seconds.

Range

0 - 127

CHUTE_ Parameters

CHUTE_ENABLED: Parachute release enabled or disabled

Parachute release enabled or disabled

Values

Value

Meaning

0

Disabled

1

Enabled

CHUTE_TYPE: Parachute release mechanism type (relay or servo)

Parachute release mechanism type (relay or servo)

Values

Value

Meaning

0

First Relay

1

Second Relay

2

Third Relay

3

Fourth Relay

10

Servo

CHUTE_SERVO_ON: Parachute Servo ON PWM value

Parachute Servo PWM value in microseconds when parachute is released

Increment

Range

Units

1

1000 - 2000

PWM in microseconds

CHUTE_SERVO_OFF: Servo OFF PWM value

Parachute Servo PWM value in microseconds when parachute is not released

Increment

Range

Units

1

1000 - 2000

PWM in microseconds

CHUTE_ALT_MIN: Parachute min altitude in meters above home

Parachute min altitude above home. Parachute will not be released below this altitude. 0 to disable alt check.

Increment

Range

Units

1

0 - 32000

meters

CHUTE_DELAY_MS: Parachute release delay

Delay in millseconds between motor stop and chute release

Increment

Range

Units

1

0 - 5000

milliseconds

CHUTE_CRT_SINK: Critical sink speed rate in m/s to trigger emergency parachute

Release parachute when critical sink rate is reached

Increment

Range

Units

1

0 - 15

meters per second

COMPASS_ Parameters

COMPASS_OFS_X: Compass offsets in milligauss on the X axis

Note: This parameter is for advanced users

Offset to be added to the compass x-axis values to compensate for metal in the frame

Calibration

Increment

Range

Units

1

1

-400 - 400

milligauss

COMPASS_OFS_Y: Compass offsets in milligauss on the Y axis

Note: This parameter is for advanced users

Offset to be added to the compass y-axis values to compensate for metal in the frame

Calibration

Increment

Range

Units

1

1

-400 - 400

milligauss

COMPASS_OFS_Z: Compass offsets in milligauss on the Z axis

Note: This parameter is for advanced users

Offset to be added to the compass z-axis values to compensate for metal in the frame

Increment

Range

Units

1

-400 - 400

milligauss

COMPASS_DEC: Compass declination

An angle to compensate between the true north and magnetic north

Increment

Range

Units

0.01

-3.142 - 3.142

radians

COMPASS_LEARN: Learn compass offsets automatically

Note: This parameter is for advanced users

Enable or disable the automatic learning of compass offsets. You can enable learning either using a compass-only method that is suitable only for fixed wing aircraft or using the offsets learnt by the active EKF state estimator. If this option is enabled then the learnt offsets are saved when you disarm the vehicle. If InFlight learning is enabled then the compass with automatically start learning once a flight starts (must be armed). While InFlight learning is running you cannot use position control modes.

Values

Value

Meaning

0

Disabled

1

Internal-Learning

2

EKF-Learning

3

InFlight-Learning

COMPASS_USE: Use compass for yaw

Note: This parameter is for advanced users

Enable or disable the use of the compass (instead of the GPS) for determining heading

Values

Value

Meaning

0

Disabled

1

Enabled

COMPASS_AUTODEC: Auto Declination

Note: This parameter is for advanced users

Enable or disable the automatic calculation of the declination based on gps location

Values

Value

Meaning

0

Disabled

1

Enabled

COMPASS_MOTCT: Motor interference compensation type

Note: This parameter is for advanced users

Set motor interference compensation type to disabled, throttle or current. Do not change manually.

Calibration

Values

1

Value

Meaning

0

Disabled

1

Use Throttle

2

Use Current

COMPASS_MOT_X: Motor interference compensation for body frame X axis

Note: This parameter is for advanced users

Multiplied by the current throttle and added to the compass's x-axis values to compensate for motor interference (Offset per Amp or at Full Throttle)

Calibration

Increment

Range

Units

1

1

-1000 - 1000

milligauss per ampere

COMPASS_MOT_Y: Motor interference compensation for body frame Y axis

Note: This parameter is for advanced users

Multiplied by the current throttle and added to the compass's y-axis values to compensate for motor interference (Offset per Amp or at Full Throttle)

Calibration

Increment

Range

Units

1

1

-1000 - 1000

milligauss per ampere

COMPASS_MOT_Z: Motor interference compensation for body frame Z axis

Note: This parameter is for advanced users

Multiplied by the current throttle and added to the compass's z-axis values to compensate for motor interference (Offset per Amp or at Full Throttle)

Increment

Range

Units

1

-1000 - 1000

milligauss per ampere

COMPASS_ORIENT: Compass orientation

Note: This parameter is for advanced users

The orientation of the first external compass relative to the vehicle frame. This value will be ignored unless this compass is set as an external compass. When set correctly in the northern hemisphere, pointing the nose and right side down should increase the MagX and MagY values respectively. Rolling the vehicle upside down should decrease the MagZ value. For southern hemisphere, switch increase and decrease. NOTE: For internal compasses, AHRS_ORIENT is used.

Values

Value

Meaning

0

None

1

Yaw45

2

Yaw90

3

Yaw135

4

Yaw180

5

Yaw225

6

Yaw270

7

Yaw315

8

Roll180

9

Roll180Yaw45

10

Roll180Yaw90

11

Roll180Yaw135

12

Pitch180

13

Roll180Yaw225

14

Roll180Yaw270

15

Roll180Yaw315

16

Roll90

17

Roll90Yaw45

18

Roll90Yaw90

19

Roll90Yaw135

20

Roll270

21

Roll270Yaw45

22

Roll270Yaw90

23

Roll270Yaw135

24

Pitch90

25

Pitch270

26

Pitch180Yaw90

27

Pitch180Yaw270

28

Roll90Pitch90

29

Roll180Pitch90

30

Roll270Pitch90

31

Roll90Pitch180

32

Roll270Pitch180

33

Roll90Pitch270

34

Roll180Pitch270

35

Roll270Pitch270

36

Roll90Pitch180Yaw90

37

Roll90Yaw270

38

Yaw293Pitch68Roll180

39

Pitch315

40

Roll90Pitch315

100

Custom

COMPASS_EXTERNAL: Compass is attached via an external cable

Note: This parameter is for advanced users

Configure compass so it is attached externally. This is auto-detected on PX4 and Pixhawk. Set to 1 if the compass is externally connected. When externally connected the COMPASS_ORIENT option operates independently of the AHRS_ORIENTATION board orientation option. If set to 0 or 1 then auto-detection by bus connection can override the value. If set to 2 then auto-detection will be disabled.

Values

Value

Meaning

0

Internal

1

External

2

ForcedExternal

COMPASS_OFS2_X: Compass2 offsets in milligauss on the X axis

Note: This parameter is for advanced users

Offset to be added to compass2's x-axis values to compensate for metal in the frame

Calibration

Increment

Range

Units

1

1

-400 - 400

milligauss

COMPASS_OFS2_Y: Compass2 offsets in milligauss on the Y axis

Note: This parameter is for advanced users

Offset to be added to compass2's y-axis values to compensate for metal in the frame

Calibration

Increment

Range

Units

1

1

-400 - 400

milligauss

COMPASS_OFS2_Z: Compass2 offsets in milligauss on the Z axis

Note: This parameter is for advanced users

Offset to be added to compass2's z-axis values to compensate for metal in the frame

Increment

Range

Units

1

-400 - 400

milligauss

COMPASS_MOT2_X: Motor interference compensation to compass2 for body frame X axis

Note: This parameter is for advanced users

Multiplied by the current throttle and added to compass2's x-axis values to compensate for motor interference (Offset per Amp or at Full Throttle)

Calibration

Increment

Range

Units

1

1

-1000 - 1000

milligauss per ampere

COMPASS_MOT2_Y: Motor interference compensation to compass2 for body frame Y axis

Note: This parameter is for advanced users

Multiplied by the current throttle and added to compass2's y-axis values to compensate for motor interference (Offset per Amp or at Full Throttle)

Calibration

Increment

Range

Units

1

1

-1000 - 1000

milligauss per ampere

COMPASS_MOT2_Z: Motor interference compensation to compass2 for body frame Z axis

Note: This parameter is for advanced users

Multiplied by the current throttle and added to compass2's z-axis values to compensate for motor interference (Offset per Amp or at Full Throttle)

Increment

Range

Units

1

-1000 - 1000

milligauss per ampere

COMPASS_OFS3_X: Compass3 offsets in milligauss on the X axis

Note: This parameter is for advanced users

Offset to be added to compass3's x-axis values to compensate for metal in the frame

Calibration

Increment

Range

Units

1

1

-400 - 400

milligauss

COMPASS_OFS3_Y: Compass3 offsets in milligauss on the Y axis

Note: This parameter is for advanced users

Offset to be added to compass3's y-axis values to compensate for metal in the frame

Calibration

Increment

Range

Units

1

1

-400 - 400

milligauss

COMPASS_OFS3_Z: Compass3 offsets in milligauss on the Z axis

Note: This parameter is for advanced users

Offset to be added to compass3's z-axis values to compensate for metal in the frame

Increment

Range

Units

1

-400 - 400

milligauss

COMPASS_MOT3_X: Motor interference compensation to compass3 for body frame X axis

Note: This parameter is for advanced users

Multiplied by the current throttle and added to compass3's x-axis values to compensate for motor interference (Offset per Amp or at Full Throttle)

Calibration

Increment

Range

Units

1

1

-1000 - 1000

milligauss per ampere

COMPASS_MOT3_Y: Motor interference compensation to compass3 for body frame Y axis

Note: This parameter is for advanced users

Multiplied by the current throttle and added to compass3's y-axis values to compensate for motor interference (Offset per Amp or at Full Throttle)

Calibration

Increment

Range

Units

1

1

-1000 - 1000

milligauss per ampere

COMPASS_MOT3_Z: Motor interference compensation to compass3 for body frame Z axis

Note: This parameter is for advanced users

Multiplied by the current throttle and added to compass3's z-axis values to compensate for motor interference (Offset per Amp or at Full Throttle)

Increment

Range

Units

1

-1000 - 1000

milligauss per ampere

COMPASS_DEV_ID: Compass device id

Note: This parameter is for advanced users

Compass device id. Automatically detected, do not set manually

ReadOnly

True

COMPASS_DEV_ID2: Compass2 device id

Note: This parameter is for advanced users

Second compass's device id. Automatically detected, do not set manually

ReadOnly

True

COMPASS_DEV_ID3: Compass3 device id

Note: This parameter is for advanced users

Third compass's device id. Automatically detected, do not set manually

ReadOnly

True

COMPASS_USE2: Compass2 used for yaw

Note: This parameter is for advanced users

Enable or disable the secondary compass for determining heading.

Values

Value

Meaning

0

Disabled

1

Enabled

COMPASS_ORIENT2: Compass2 orientation

Note: This parameter is for advanced users

The orientation of a second external compass relative to the vehicle frame. This value will be ignored unless this compass is set as an external compass. When set correctly in the northern hemisphere, pointing the nose and right side down should increase the MagX and MagY values respectively. Rolling the vehicle upside down should decrease the MagZ value. For southern hemisphere, switch increase and decrease. NOTE: For internal compasses, AHRS_ORIENT is used.

Values

Value

Meaning

0

None

1

Yaw45

2

Yaw90

3

Yaw135

4

Yaw180

5

Yaw225

6

Yaw270

7

Yaw315

8

Roll180

9

Roll180Yaw45

10

Roll180Yaw90

11

Roll180Yaw135

12

Pitch180

13

Roll180Yaw225

14

Roll180Yaw270

15

Roll180Yaw315

16

Roll90

17

Roll90Yaw45

18

Roll90Yaw90

19

Roll90Yaw135

20

Roll270

21

Roll270Yaw45

22

Roll270Yaw90

23

Roll270Yaw135

24

Pitch90

25

Pitch270

26

Pitch180Yaw90

27

Pitch180Yaw270

28

Roll90Pitch90

29

Roll180Pitch90

30

Roll270Pitch90

31

Roll90Pitch180

32

Roll270Pitch180

33

Roll90Pitch270

34

Roll180Pitch270

35

Roll270Pitch270

36

Roll90Pitch180Yaw90

37

Roll90Yaw270

38

Yaw293Pitch68Roll180

39

Pitch315

40

Roll90Pitch315

100

Custom

COMPASS_EXTERN2: Compass2 is attached via an external cable

Note: This parameter is for advanced users

Configure second compass so it is attached externally. This is auto-detected on PX4 and Pixhawk. If set to 0 or 1 then auto-detection by bus connection can override the value. If set to 2 then auto-detection will be disabled.

Values

Value

Meaning

0

Internal

1

External

2

ForcedExternal

COMPASS_USE3: Compass3 used for yaw

Note: This parameter is for advanced users

Enable or disable the tertiary compass for determining heading.

Values

Value

Meaning

0

Disabled

1

Enabled

COMPASS_ORIENT3: Compass3 orientation

Note: This parameter is for advanced users

The orientation of a third external compass relative to the vehicle frame. This value will be ignored unless this compass is set as an external compass. When set correctly in the northern hemisphere, pointing the nose and right side down should increase the MagX and MagY values respectively. Rolling the vehicle upside down should decrease the MagZ value. For southern hemisphere, switch increase and decrease. NOTE: For internal compasses, AHRS_ORIENT is used.

Values

Value

Meaning

0

None

1

Yaw45

2

Yaw90

3

Yaw135

4

Yaw180

5

Yaw225

6

Yaw270

7

Yaw315

8

Roll180

9

Roll180Yaw45

10

Roll180Yaw90

11

Roll180Yaw135

12

Pitch180

13

Roll180Yaw225

14

Roll180Yaw270

15

Roll180Yaw315

16

Roll90

17

Roll90Yaw45

18

Roll90Yaw90

19

Roll90Yaw135

20

Roll270

21

Roll270Yaw45

22

Roll270Yaw90

23

Roll270Yaw135

24

Pitch90

25

Pitch270

26

Pitch180Yaw90

27

Pitch180Yaw270

28

Roll90Pitch90

29

Roll180Pitch90

30

Roll270Pitch90

31

Roll90Pitch180

32

Roll270Pitch180

33

Roll90Pitch270

34

Roll180Pitch270

35

Roll270Pitch270

36

Roll90Pitch180Yaw90

37

Roll90Yaw270

38

Yaw293Pitch68Roll180

39

Pitch315

40

Roll90Pitch315

100

Custom

COMPASS_EXTERN3: Compass3 is attached via an external cable

Note: This parameter is for advanced users

Configure third compass so it is attached externally. This is auto-detected on PX4 and Pixhawk. If set to 0 or 1 then auto-detection by bus connection can override the value. If set to 2 then auto-detection will be disabled.

Values

Value

Meaning

0

Internal

1

External

2

ForcedExternal

COMPASS_DIA_X: Compass soft-iron diagonal X component

Note: This parameter is for advanced users

DIA_X in the compass soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

Calibration

1

COMPASS_DIA_Y: Compass soft-iron diagonal Y component

Note: This parameter is for advanced users

DIA_Y in the compass soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

Calibration

1

COMPASS_DIA_Z: Compass soft-iron diagonal Z component

Note: This parameter is for advanced users

DIA_Z in the compass soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

COMPASS_ODI_X: Compass soft-iron off-diagonal X component

Note: This parameter is for advanced users

ODI_X in the compass soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

Calibration

1

COMPASS_ODI_Y: Compass soft-iron off-diagonal Y component

Note: This parameter is for advanced users

ODI_Y in the compass soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

Calibration

1

COMPASS_ODI_Z: Compass soft-iron off-diagonal Z component

Note: This parameter is for advanced users

ODI_Z in the compass soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

COMPASS_DIA2_X: Compass2 soft-iron diagonal X component

Note: This parameter is for advanced users

DIA_X in the compass2 soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

Calibration

1

COMPASS_DIA2_Y: Compass2 soft-iron diagonal Y component

Note: This parameter is for advanced users

DIA_Y in the compass2 soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

Calibration

1

COMPASS_DIA2_Z: Compass2 soft-iron diagonal Z component

Note: This parameter is for advanced users

DIA_Z in the compass2 soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

COMPASS_ODI2_X: Compass2 soft-iron off-diagonal X component

Note: This parameter is for advanced users

ODI_X in the compass2 soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

Calibration

1

COMPASS_ODI2_Y: Compass2 soft-iron off-diagonal Y component

Note: This parameter is for advanced users

ODI_Y in the compass2 soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

Calibration

1

COMPASS_ODI2_Z: Compass2 soft-iron off-diagonal Z component

Note: This parameter is for advanced users

ODI_Z in the compass2 soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

COMPASS_DIA3_X: Compass3 soft-iron diagonal X component

Note: This parameter is for advanced users

DIA_X in the compass3 soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

Calibration

1

COMPASS_DIA3_Y: Compass3 soft-iron diagonal Y component

Note: This parameter is for advanced users

DIA_Y in the compass3 soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

Calibration

1

COMPASS_DIA3_Z: Compass3 soft-iron diagonal Z component

Note: This parameter is for advanced users

DIA_Z in the compass3 soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

COMPASS_ODI3_X: Compass3 soft-iron off-diagonal X component

Note: This parameter is for advanced users

ODI_X in the compass3 soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

Calibration

1

COMPASS_ODI3_Y: Compass3 soft-iron off-diagonal Y component

Note: This parameter is for advanced users

ODI_Y in the compass3 soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

Calibration

1

COMPASS_ODI3_Z: Compass3 soft-iron off-diagonal Z component

Note: This parameter is for advanced users

ODI_Z in the compass3 soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

COMPASS_CAL_FIT: Compass calibration fitness

Note: This parameter is for advanced users

This controls the fitness level required for a successful compass calibration. A lower value makes for a stricter fit (less likely to pass). This is the value used for the primary magnetometer. Other magnetometers get double the value.

Increment

Range

Values

0.1

4 - 32

Value

Meaning

4

Very Strict

8

Strict

16

Default

32

Relaxed

COMPASS_OFFS_MAX: Compass maximum offset

Note: This parameter is for advanced users

This sets the maximum allowed compass offset in calibration and arming checks

Increment

Range

1

500 - 3000

COMPASS_TYPEMASK: Compass disable driver type mask

Note: This parameter is for advanced users

This is a bitmask of driver types to disable. If a driver type is set in this mask then that driver will not try to find a sensor at startup

Bitmask

Bit

Meaning

0

HMC5883

1

LSM303D

2

AK8963

3

BMM150

4

LSM9DS1

5

LIS3MDL

6

AK09916

7

IST8310

8

ICM20948

9

MMC3416

11

UAVCAN

12

QMC5883

14

MAG3110

15

IST8308

16

RM3100

17

MSP

18

ExternalAHRS

COMPASS_FLTR_RNG: Range in which sample is accepted

This sets the range around the average value that new samples must be within to be accepted. This can help reduce the impact of noise on sensors that are on long I2C cables. The value is a percentage from the average value. A value of zero disables this filter.

Increment

Range

Units

1

0 - 100

percent

COMPASS_AUTO_ROT: Automatically check orientation

When enabled this will automatically check the orientation of compasses on successful completion of compass calibration. If set to 2 then external compasses will have their orientation automatically corrected.

Values

Value

Meaning

0

Disabled

1

CheckOnly

2

CheckAndFix

COMPASS_PRIO1_ID: Compass device id with 1st order priority

Note: This parameter is for advanced users

Compass device id with 1st order priority, set automatically if 0. Reboot required after change.

RebootRequired

True

COMPASS_PRIO2_ID: Compass device id with 2nd order priority

Note: This parameter is for advanced users

Compass device id with 2nd order priority, set automatically if 0. Reboot required after change.

RebootRequired

True

COMPASS_PRIO3_ID: Compass device id with 3rd order priority

Note: This parameter is for advanced users

Compass device id with 3rd order priority, set automatically if 0. Reboot required after change.

RebootRequired

True

COMPASS_ENABLE: Enable Compass

Setting this to Enabled(1) will enable the compass. Setting this to Disabled(0) will disable the compass. Note that this is separate from COMPASS_USE. This will enable the low level senor, and will enable logging of magnetometer data. To use the compass for navigation you must also set COMPASS_USE to 1.

Values

Value

Meaning

0

Disabled

1

Enabled

COMPASS_SCALE: Compass1 scale factor

Scaling factor for first compass to compensate for sensor scaling errors. If this is 0 then no scaling is done

Range

0 - 1.3

COMPASS_SCALE2: Compass2 scale factor

Scaling factor for 2nd compass to compensate for sensor scaling errors. If this is 0 then no scaling is done

Range

0 - 1.3

COMPASS_SCALE3: Compass3 scale factor

Scaling factor for 3rd compass to compensate for sensor scaling errors. If this is 0 then no scaling is done

Range

0 - 1.3

COMPASS_OPTIONS: Compass options

Note: This parameter is for advanced users

This sets options to change the behaviour of the compass

Bitmask

Bit

Meaning

0

CalRequireGPS

COMPASS_DEV_ID4: Compass4 device id

Note: This parameter is for advanced users

Extra 4th compass's device id. Automatically detected, do not set manually

ReadOnly

True

COMPASS_DEV_ID5: Compass5 device id

Note: This parameter is for advanced users

Extra 5th compass's device id. Automatically detected, do not set manually

ReadOnly

True

COMPASS_DEV_ID6: Compass6 device id

Note: This parameter is for advanced users

Extra 6th compass's device id. Automatically detected, do not set manually

ReadOnly

True

COMPASS_DEV_ID7: Compass7 device id

Note: This parameter is for advanced users

Extra 7th compass's device id. Automatically detected, do not set manually

ReadOnly

True

COMPASS_DEV_ID8: Compass8 device id

Note: This parameter is for advanced users

Extra 8th compass's device id. Automatically detected, do not set manually

ReadOnly

True

COMPASS_CUS_ROLL: Custom orientation roll offset

Note: This parameter is for advanced users

Compass mounting position roll offset. Positive values = roll right, negative values = roll left. This parameter is only used when COMPASS_ORIENT/2/3 is set to CUSTOM.

Increment

Range

RebootRequired

Units

1

-180 - 180

True

degrees

COMPASS_CUS_PIT: Custom orientation pitch offset

Note: This parameter is for advanced users

Compass mounting position pitch offset. Positive values = pitch up, negative values = pitch down. This parameter is only used when COMPASS_ORIENT/2/3 is set to CUSTOM.

Increment

Range

RebootRequired

Units

1

-180 - 180

True

degrees

COMPASS_CUS_YAW: Custom orientation yaw offset

Note: This parameter is for advanced users

Compass mounting position yaw offset. Positive values = yaw right, negative values = yaw left. This parameter is only used when COMPASS_ORIENT/2/3 is set to CUSTOM.

Increment

Range

RebootRequired

Units

1

-180 - 180

True

degrees

COMPASS_PMOT Parameters

COMPASS_PMOT_EN: per-motor compass correction enable

Note: This parameter is for advanced users

This enables per-motor compass corrections

Values

Value

Meaning

0

Disabled

1

Enabled

COMPASS_PMOT_EXP: per-motor exponential correction

Note: This parameter is for advanced users

This is the exponential correction for the power output of the motor for per-motor compass correction

Increment

Range

0.01

0 - 2

COMPASS_PMOT1_X: Compass per-motor1 X

Note: This parameter is for advanced users

Compensation for X axis of motor1

COMPASS_PMOT1_Y: Compass per-motor1 Y

Note: This parameter is for advanced users

Compensation for Y axis of motor1

COMPASS_PMOT1_Z: Compass per-motor1 Z

Note: This parameter is for advanced users

Compensation for Z axis of motor1

COMPASS_PMOT2_X: Compass per-motor2 X

Note: This parameter is for advanced users

Compensation for X axis of motor2

COMPASS_PMOT2_Y: Compass per-motor2 Y

Note: This parameter is for advanced users

Compensation for Y axis of motor2

COMPASS_PMOT2_Z: Compass per-motor2 Z

Note: This parameter is for advanced users

Compensation for Z axis of motor2

COMPASS_PMOT3_X: Compass per-motor3 X

Note: This parameter is for advanced users

Compensation for X axis of motor3

COMPASS_PMOT3_Y: Compass per-motor3 Y

Note: This parameter is for advanced users

Compensation for Y axis of motor3

COMPASS_PMOT3_Z: Compass per-motor3 Z

Note: This parameter is for advanced users

Compensation for Z axis of motor3

COMPASS_PMOT4_X: Compass per-motor4 X

Note: This parameter is for advanced users

Compensation for X axis of motor4

COMPASS_PMOT4_Y: Compass per-motor4 Y

Note: This parameter is for advanced users

Compensation for Y axis of motor4

COMPASS_PMOT4_Z: Compass per-motor4 Z

Note: This parameter is for advanced users

Compensation for Z axis of motor4

EAHRS Parameters

EAHRS_TYPE: AHRS type

Type of AHRS device

Values

Value

Meaning

0

None

1

VectorNav

EAHRS_RATE: AHRS data rate

Requested rate for AHRS device

Units

hertz

EFI Parameters

EFI_TYPE: EFI communication type

Note: This parameter is for advanced users

What method of communication is used for EFI #1

RebootRequired

Values

True

Value

Meaning

0

None

1

Serial-MS

2

NWPMU

EFI_COEF1: EFI Calibration Coefficient 1

Note: This parameter is for advanced users

Used to calibrate fuel flow for MS protocol (Slope)

Range

RebootRequired

0 - 1

False

EFI_COEF2: EFI Calibration Coefficient 2

Note: This parameter is for advanced users

Used to calibrate fuel flow for MS protocol (Offset)

Range

RebootRequired

0 - 10

False

EK2_ Parameters

EK2_ENABLE: Enable EKF2

Note: This parameter is for advanced users

This enables EKF2. Enabling EKF2 only makes the maths run, it does not mean it will be used for flight control. To use it for flight control set AHRS_EKF_TYPE=2. A reboot or restart will need to be performed after changing the value of EK2_ENABLE for it to take effect.

RebootRequired

Values

True

Value

Meaning

0

Disabled

1

Enabled

EK2_GPS_TYPE: GPS mode control

Note: This parameter is for advanced users

This controls use of GPS measurements : 0 = use 3D velocity & 2D position, 1 = use 2D velocity and 2D position, 2 = use 2D position, 3 = Inhibit GPS use - this can be useful when flying with an optical flow sensor in an environment where GPS quality is poor and subject to large multipath errors.

Values

Value

Meaning

0

GPS 3D Vel and 2D Pos

1

GPS 2D vel and 2D pos

2

GPS 2D pos

3

No GPS

EK2_VELNE_M_NSE: GPS horizontal velocity measurement noise (m/s)

Note: This parameter is for advanced users

This sets a lower limit on the speed accuracy reported by the GPS receiver that is used to set horizontal velocity observation noise. If the model of receiver used does not provide a speed accurcy estimate, then the parameter value will be used. Increasing it reduces the weighting of the GPS horizontal velocity measurements.

Increment

Range

Units

0.05

0.05 - 5.0

meters per second

EK2_VELD_M_NSE: GPS vertical velocity measurement noise (m/s)

Note: This parameter is for advanced users

This sets a lower limit on the speed accuracy reported by the GPS receiver that is used to set vertical velocity observation noise. If the model of receiver used does not provide a speed accurcy estimate, then the parameter value will be used. Increasing it reduces the weighting of the GPS vertical velocity measurements.

Increment

Range

Units

0.05

0.05 - 5.0

meters per second

EK2_VEL_I_GATE: GPS velocity innovation gate size

Note: This parameter is for advanced users

This sets the percentage number of standard deviations applied to the GPS velocity measurement innovation consistency check. Decreasing it makes it more likely that good measurements willbe rejected. Increasing it makes it more likely that bad measurements will be accepted.

Increment

Range

25

100 - 1000

EK2_POSNE_M_NSE: GPS horizontal position measurement noise (m)

Note: This parameter is for advanced users

This sets the GPS horizontal position observation noise. Increasing it reduces the weighting of GPS horizontal position measurements.

Increment

Range

Units

0.1

0.1 - 10.0

meters

EK2_POS_I_GATE: GPS position measurement gate size

Note: This parameter is for advanced users

This sets the percentage number of standard deviations applied to the GPS position measurement innovation consistency check. Decreasing it makes it more likely that good measurements will be rejected. Increasing it makes it more likely that bad measurements will be accepted.

Increment

Range

25

100 - 1000

EK2_GLITCH_RAD: GPS glitch radius gate size (m)

Note: This parameter is for advanced users

This controls the maximum radial uncertainty in position between the value predicted by the filter and the value measured by the GPS before the filter position and velocity states are reset to the GPS. Making this value larger allows the filter to ignore larger GPS glitches but also means that non-GPS errors such as IMU and compass can create a larger error in position before the filter is forced back to the GPS position.

Increment

Range

Units

5

10 - 100

meters

EK2_ALT_SOURCE: Primary altitude sensor source

Note: This parameter is for advanced users

Primary height sensor used by the EKF. If a sensor other than Baro is selected and becomes unavailable, then the Baro sensor will be used as a fallback. NOTE: The EK2_RNG_USE_HGT parameter can be used to switch to range-finder when close to the ground in conjunction with EK2_ALT_SOURCE = 0 or 2 (Baro or GPS).

RebootRequired

Values

True

Value

Meaning

0

Use Baro

1

Use Range Finder

2

Use GPS

3

Use Range Beacon

EK2_ALT_M_NSE: Altitude measurement noise (m)

Note: This parameter is for advanced users

This is the RMS value of noise in the altitude measurement. Increasing it reduces the weighting of the baro measurement and will make the filter respond more slowly to baro measurement errors, but will make it more sensitive to GPS and accelerometer errors.

Increment

Range

Units

0.1

0.1 - 10.0

meters

EK2_HGT_I_GATE: Height measurement gate size

Note: This parameter is for advanced users

This sets the percentage number of standard deviations applied to the height measurement innovation consistency check. Decreasing it makes it more likely that good measurements will be rejected. Increasing it makes it more likely that bad measurements will be accepted.

Increment

Range

25

100 - 1000

EK2_HGT_DELAY: Height measurement delay (msec)

Note: This parameter is for advanced users

This is the number of msec that the Height measurements lag behind the inertial measurements.

Increment

Range

RebootRequired

Units

10

0 - 250

True

milliseconds

EK2_MAG_M_NSE: Magnetometer measurement noise (Gauss)

Note: This parameter is for advanced users

This is the RMS value of noise in magnetometer measurements. Increasing it reduces the weighting on these measurements.

Increment

Range

Units

0.01

0.01 - 0.5

gauss

EK2_MAG_CAL: Magnetometer default fusion mode

Note: This parameter is for advanced users

This determines when the filter will use the 3-axis magnetometer fusion model that estimates both earth and body fixed magnetic field states, when it will use a simpler magnetic heading fusion model that does not use magnetic field states and when it will use an alternative method of yaw determination to the magnetometer. The 3-axis magnetometer fusion is only suitable for use when the external magnetic field environment is stable. EK2_MAG_CAL = 0 uses heading fusion on ground, 3-axis fusion in-flight, and is the default setting for Plane users. EK2_MAG_CAL = 1 uses 3-axis fusion only when manoeuvring. EK2_MAG_CAL = 2 uses heading fusion at all times, is recommended if the external magnetic field is varying and is the default for rovers. EK2_MAG_CAL = 3 uses heading fusion on the ground and 3-axis fusion after the first in-air field and yaw reset has completed, and is the default for copters. EK2_MAG_CAL = 4 uses 3-axis fusion at all times. NOTE: The fusion mode can be forced to 2 for specific EKF cores using the EK2_MAG_MASK parameter. NOTE: limited operation without a magnetometer or any other yaw sensor is possible by setting all COMPASS_USE, COMPASS_USE2, COMPASS_USE3, etc parameters to 0 with COMPASS_ENABLE set to 1. If this is done, the EK2_GSF_RUN and EK2_GSF_USE masks must be set to the same as EK2_IMU_MASK.

Values

Value

Meaning

0

When flying

1

When manoeuvring

2

Never

3

After first climb yaw reset

4

Always

EK2_MAG_I_GATE: Magnetometer measurement gate size

Note: This parameter is for advanced users

This sets the percentage number of standard deviations applied to the magnetometer measurement innovation consistency check. Decreasing it makes it more likely that good measurements will be rejected. Increasing it makes it more likely that bad measurements will be accepted.

Increment

Range

25

100 - 1000

EK2_EAS_M_NSE: Equivalent airspeed measurement noise (m/s)

Note: This parameter is for advanced users

This is the RMS value of noise in equivalent airspeed measurements used by planes. Increasing it reduces the weighting of airspeed measurements and will make wind speed estimates less noisy and slower to converge. Increasing also increases navigation errors when dead-reckoning without GPS measurements.

Increment

Range

Units

0.1

0.5 - 5.0

meters per second

EK2_EAS_I_GATE: Airspeed measurement gate size

Note: This parameter is for advanced users

This sets the percentage number of standard deviations applied to the airspeed measurement innovation consistency check. Decreasing it makes it more likely that good measurements will be rejected. Increasing it makes it more likely that bad measurements will be accepted.

Increment

Range

25

100 - 1000

EK2_RNG_M_NSE: Range finder measurement noise (m)

Note: This parameter is for advanced users

This is the RMS value of noise in the range finder measurement. Increasing it reduces the weighting on this measurement.

Increment

Range

Units

0.1

0.1 - 10.0

meters

EK2_RNG_I_GATE: Range finder measurement gate size

Note: This parameter is for advanced users

This sets the percentage number of standard deviations applied to the range finder innovation consistency check. Decreasing it makes it more likely that good measurements will be rejected. Increasing it makes it more likely that bad measurements will be accepted.

Increment

Range

25

100 - 1000

EK2_MAX_FLOW: Maximum valid optical flow rate

Note: This parameter is for advanced users

This sets the magnitude maximum optical flow rate in rad/sec that will be accepted by the filter

Increment

Range

Units

0.1

1.0 - 4.0

radians per second

EK2_FLOW_M_NSE: Optical flow measurement noise (rad/s)

Note: This parameter is for advanced users

This is the RMS value of noise and errors in optical flow measurements. Increasing it reduces the weighting on these measurements.

Increment

Range

Units

0.05

0.05 - 1.0

radians per second

EK2_FLOW_I_GATE: Optical Flow measurement gate size

Note: This parameter is for advanced users

This sets the percentage number of standard deviations applied to the optical flow innovation consistency check. Decreasing it makes it more likely that good measurements will be rejected. Increasing it makes it more likely that bad measurements will be accepted.

Increment

Range

25

100 - 1000

EK2_FLOW_DELAY: Optical Flow measurement delay (msec)

Note: This parameter is for advanced users

This is the number of msec that the optical flow measurements lag behind the inertial measurements. It is the time from the end of the optical flow averaging period and does not include the time delay due to the 100msec of averaging within the flow sensor.

Increment

Range

RebootRequired

Units

10

0 - 127

True

milliseconds

EK2_GYRO_P_NSE: Rate gyro noise (rad/s)

Note: This parameter is for advanced users

This control disturbance noise controls the growth of estimated error due to gyro measurement errors excluding bias. Increasing it makes the flter trust the gyro measurements less and other measurements more.

Increment

Range

Units

0.0001

0.0001 - 0.1

radians per second

EK2_ACC_P_NSE: Accelerometer noise (m/s^2)

Note: This parameter is for advanced users

This control disturbance noise controls the growth of estimated error due to accelerometer measurement errors excluding bias. Increasing it makes the flter trust the accelerometer measurements less and other measurements more.

Increment

Range

Units

0.01

0.01 - 1.0

meters per square second

EK2_GBIAS_P_NSE: Rate gyro bias stability (rad/s/s)

Note: This parameter is for advanced users

This state process noise controls growth of the gyro delta angle bias state error estimate. Increasing it makes rate gyro bias estimation faster and noisier.

Range

Units

0.00001 - 0.001

radians per square second

EK2_GSCL_P_NSE: Rate gyro scale factor stability (1/s)

Note: This parameter is for advanced users

This noise controls the rate of gyro scale factor learning. Increasing it makes rate gyro scale factor estimation faster and noisier.

Range

Units

0.000001 - 0.001

hertz

EK2_ABIAS_P_NSE: Accelerometer bias stability (m/s^3)

Note: This parameter is for advanced users

This noise controls the growth of the vertical accelerometer delta velocity bias state error estimate. Increasing it makes accelerometer bias estimation faster and noisier.

Range

Units

0.00001 - 0.005

meters per cubic second

EK2_WIND_P_NSE: Wind velocity process noise (m/s^2)

Note: This parameter is for advanced users

This state process noise controls the growth of wind state error estimates. Increasing it makes wind estimation faster and noisier.

Increment

Range

Units

0.1

0.01 - 1.0

meters per square second

EK2_WIND_PSCALE: Height rate to wind process noise scaler

Note: This parameter is for advanced users

This controls how much the process noise on the wind states is increased when gaining or losing altitude to take into account changes in wind speed and direction with altitude. Increasing this parameter increases how rapidly the wind states adapt when changing altitude, but does make wind velocity estimation noiser.

Increment

Range

0.1

0.0 - 1.0

EK2_GPS_CHECK: GPS preflight check

Note: This parameter is for advanced users

This is a 1 byte bitmap controlling which GPS preflight checks are performed. Set to 0 to bypass all checks. Set to 255 perform all checks. Set to 3 to check just the number of satellites and HDoP. Set to 31 for the most rigorous checks that will still allow checks to pass when the copter is moving, eg launch from a boat.

Bitmask

Bit

Meaning

0

NSats

1

HDoP

2

speed error

3

position error

4

yaw error

5

pos drift

6

vert speed

7

horiz speed

EK2_IMU_MASK: Bitmask of active IMUs

Note: This parameter is for advanced users

1 byte bitmap of IMUs to use in EKF2. A separate instance of EKF2 will be started for each IMU selected. Set to 1 to use the first IMU only (default), set to 2 to use the second IMU only, set to 3 to use the first and second IMU. Additional IMU's can be used up to a maximum of 6 if memory and processing resources permit. There may be insufficient memory and processing resources to run multiple instances. If this occurs EKF2 will fail to start.

Bitmask

RebootRequired

Bit

Meaning

0

FirstIMU

1

SecondIMU

2

ThirdIMU

3

FourthIMU

4

FifthIMU

5

SixthIMU

True

EK2_CHECK_SCALE: GPS accuracy check scaler (%)

Note: This parameter is for advanced users

This scales the thresholds that are used to check GPS accuracy before it is used by the EKF. A value of 100 is the default. Values greater than 100 increase and values less than 100 reduce the maximum GPS error the EKF will accept. A value of 200 will double the allowable GPS error.

Range

Units

50 - 200

percent

EK2_NOAID_M_NSE: Non-GPS operation position uncertainty (m)

Note: This parameter is for advanced users

This sets the amount of position variation that the EKF allows for when operating without external measurements (eg GPS or optical flow). Increasing this parameter makes the EKF attitude estimate less sensitive to vehicle manoeuvres but more sensitive to IMU errors.

Range

Units

0.5 - 50.0

meters

EK2_YAW_M_NSE: Yaw measurement noise (rad)

Note: This parameter is for advanced users

This is the RMS value of noise in yaw measurements from the magnetometer. Increasing it reduces the weighting on these measurements.

Increment

Range

Units

0.05

0.05 - 1.0

radians

EK2_YAW_I_GATE: Yaw measurement gate size

Note: This parameter is for advanced users

This sets the percentage number of standard deviations applied to the magnetometer yaw measurement innovation consistency check. Decreasing it makes it more likely that good measurements will be rejected. Increasing it makes it more likely that bad measurements will be accepted.

Increment

Range

25

100 - 1000

EK2_TAU_OUTPUT: Output complementary filter time constant (centi-sec)

Note: This parameter is for advanced users

Sets the time constant of the output complementary filter/predictor in centi-seconds.

Increment

Range

Units

5

10 - 50

centiseconds

EK2_MAGE_P_NSE: Earth magnetic field process noise (gauss/s)

Note: This parameter is for advanced users

This state process noise controls the growth of earth magnetic field state error estimates. Increasing it makes earth magnetic field estimation faster and noisier.

Range

Units

0.00001 - 0.01

gauss per second

EK2_MAGB_P_NSE: Body magnetic field process noise (gauss/s)

Note: This parameter is for advanced users

This state process noise controls the growth of body magnetic field state error estimates. Increasing it makes magnetometer bias error estimation faster and noisier.

Range

Units

0.00001 - 0.01

gauss per second

EK2_RNG_USE_HGT: Range finder switch height percentage

Note: This parameter is for advanced users

Range finder can be used as the primary height source when below this percentage of its maximum range (see RNGFND_MAX_CM). This will not work unless Baro or GPS height is selected as the primary height source vis EK2_ALT_SOURCE = 0 or 2 respectively. This feature should not be used for terrain following as it is designed for vertical takeoff and landing with climb above the range finder use height before commencing the mission, and with horizontal position changes below that height being limited to a flat region around the takeoff and landing point.

Increment

Range

Units

1

-1 - 70

percent

EK2_TERR_GRAD: Maximum terrain gradient

Note: This parameter is for advanced users

Specifies the maximum gradient of the terrain below the vehicle assumed when it is fusing range finder or optical flow to estimate terrain height.

Increment

Range

0.01

0 - 0.2

EK2_BCN_M_NSE: Range beacon measurement noise (m)

Note: This parameter is for advanced users

This is the RMS value of noise in the range beacon measurement. Increasing it reduces the weighting on this measurement.

Increment

Range

Units

0.1

0.1 - 10.0

meters

EK2_BCN_I_GTE: Range beacon measurement gate size

Note: This parameter is for advanced users

This sets the percentage number of standard deviations applied to the range beacon measurement innovation consistency check. Decreasing it makes it more likely that good measurements will be rejected. Increasing it makes it more likely that bad measurements will be accepted.

Increment

Range

25

100 - 1000

EK2_BCN_DELAY: Range beacon measurement delay (msec)

Note: This parameter is for advanced users

This is the number of msec that the range beacon measurements lag behind the inertial measurements. It is the time from the end of the optical flow averaging period and does not include the time delay due to the 100msec of averaging within the flow sensor.

Increment

Range

RebootRequired

Units

10

0 - 127

True

milliseconds

EK2_RNG_USE_SPD: Range finder max ground speed

Note: This parameter is for advanced users

The range finder will not be used as the primary height source when the horizontal ground speed is greater than this value.

Increment

Range

Units

0.5

2.0 - 6.0

meters per second

EK2_MAG_MASK: Bitmask of active EKF cores that will always use heading fusion

Note: This parameter is for advanced users

1 byte bitmap of EKF cores that will disable magnetic field states and use simple magnetic heading fusion at all times. This parameter enables specified cores to be used as a backup for flight into an environment with high levels of external magnetic interference which may degrade the EKF attitude estimate when using 3-axis magnetometer fusion. NOTE : Use of a different magnetometer fusion algorithm on different cores makes unwanted EKF core switches due to magnetometer errors more likely.

Bitmask

RebootRequired

Bit

Meaning

0

FirstEKF

1

SecondEKF

2

ThirdEKF

3

FourthEKF

4

FifthEKF

5

SixthEKF

True

EK2_OGN_HGT_MASK: Bitmask control of EKF reference height correction

Note: This parameter is for advanced users

When a height sensor other than GPS is used as the primary height source by the EKF, the position of the zero height datum is defined by that sensor and its frame of reference. If a GPS height measurement is also available, then the height of the WGS-84 height datum used by the EKF can be corrected so that the height returned by the getLLH() function is compensated for primary height sensor drift and change in datum over time. The first two bit positions control when the height datum will be corrected. Correction is performed using a Bayes filter and only operates when GPS quality permits. The third bit position controls where the corrections to the GPS reference datum are applied. Corrections can be applied to the local vertical position or to the reported EKF origin height (default).

Bitmask

RebootRequired

Bit

Meaning

0

Correct when using Baro height

1

Correct when using range finder height

2

Apply corrections to local position

True

EK2_FLOW_USE: Optical flow use bitmask

Note: This parameter is for advanced users

Controls if the optical flow data is fused into the 24-state navigation estimator OR the 1-state terrain height estimator.

RebootRequired

Values

True

Value

Meaning

0

None

1

Navigation

2

Terrain

EK2_MAG_EF_LIM: EarthField error limit

Note: This parameter is for advanced users

This limits the difference between the learned earth magnetic field and the earth field from the world magnetic model tables. A value of zero means to disable the use of the WMM tables.

Range

Units

0 - 500

milligauss

EK2_HRT_FILT: Height rate filter crossover frequency

Specifies the crossover frequency of the complementary filter used to calculate the output predictor height rate derivative.

Range

RebootRequired

Units

0.1 - 30.0

False

hertz

EK2_GSF_RUN_MASK: Bitmask of which EKF-GSF yaw estimators run

Note: This parameter is for advanced users

1 byte bitmap of which EKF2 instances run an independant EKF-GSF yaw estimator to provide a backup yaw estimate that doesn't rely on magnetometer data. This estimator uses IMU, GPS and, if available, airspeed data. EKF-GSF yaw estimator data for the primary EKF2 instance will be logged as GSF0 and GSF1 messages. Use of the yaw estimate generated by this algorithm is controlled by the EK2_GSF_USE, EK2_GSF_DELAY and EK2_GSF_MAXCOUNT parameters. To run the EKF-GSF yaw estimator in ride-along and logging only, set EK2_GSF_USE to 0.

Bitmask

RebootRequired

Bit

Meaning

0

FirstEKF

1

SecondEKF

2

ThirdEKF

3

FourthEKF

4

FifthEKF

5

SixthEKF

True

EK2_GSF_USE_MASK: Bitmask of which EKF-GSF yaw estimators are used

Note: This parameter is for advanced users

1 byte bitmap of which EKF2 instances will use the output from the EKF-GSF yaw estimator that has been turned on by the EK2_GSF_RUN parameter. If the inertial navigation calculation stops following the GPS, then the vehicle code can request EKF2 to attempt to resolve the issue, either by performing a yaw reset if enabled by this parameter by switching to another EKF2 instance. Additionally the EKF2 will initiate a reset internally if navigation is lost for more than EK2_GSF_DELAY milli seconds.

Bitmask

RebootRequired

Bit

Meaning

0

FirstEKF

1

SecondEKF

2

ThirdEKF

3

FourthEKF

4

FifthEKF

5

SixthEKF

True

EK2_GSF_RST_MAX: Maximum number of resets to the EKF-GSF yaw estimate allowed

Note: This parameter is for advanced users

Sets the maximum number of times the EKF2 will be allowed to reset it's yaw to the estimate from the EKF-GSF yaw estimator. No resets will be allowed unless the use of the EKF-GSF yaw estimate is enabled via the EK2_GSF_USE parameter.

Increment

Range

RebootRequired

1

1 - 10

True

EK3_ Parameters

EK3_ENABLE: Enable EKF3

Note: This parameter is for advanced users

This enables EKF3. Enabling EKF3 only makes the maths run, it does not mean it will be used for flight control. To use it for flight control set AHRS_EKF_TYPE=3. A reboot or restart will need to be performed after changing the value of EK3_ENABLE for it to take effect.

RebootRequired

Values

True

Value

Meaning

0

Disabled

1

Enabled

EK3_VELNE_M_NSE: GPS horizontal velocity measurement noise (m/s)

Note: This parameter is for advanced users

This sets a lower limit on the speed accuracy reported by the GPS receiver that is used to set horizontal velocity observation noise. If the model of receiver used does not provide a speed accurcy estimate, then the parameter value will be used. Increasing it reduces the weighting of the GPS horizontal velocity measurements.

Increment

Range

Units

0.05

0.05 - 5.0

meters per second

EK3_VELD_M_NSE: GPS vertical velocity measurement noise (m/s)

Note: This parameter is for advanced users

This sets a lower limit on the speed accuracy reported by the GPS receiver that is used to set vertical velocity observation noise. If the model of receiver used does not provide a speed accurcy estimate, then the parameter value will be used. Increasing it reduces the weighting of the GPS vertical velocity measurements.

Increment

Range

Units

0.05

0.05 - 5.0

meters per second

EK3_VEL_I_GATE: GPS velocity innovation gate size

Note: This parameter is for advanced users

This sets the percentage number of standard deviations applied to the GPS velocity measurement innovation consistency check. Decreasing it makes it more likely that good measurements willbe rejected. Increasing it makes it more likely that bad measurements will be accepted.

Increment

Range

25

100 - 1000

EK3_POSNE_M_NSE: GPS horizontal position measurement noise (m)

Note: This parameter is for advanced users

This sets the GPS horizontal position observation noise. Increasing it reduces the weighting of GPS horizontal position measurements.

Increment

Range

Units

0.1

0.1 - 10.0

meters

EK3_POS_I_GATE: GPS position measurement gate size

Note: This parameter is for advanced users

This sets the percentage number of standard deviations applied to the GPS position measurement innovation consistency check. Decreasing it makes it more likely that good measurements will be rejected. Increasing it makes it more likely that bad measurements will be accepted.

Increment

Range

25

100 - 1000

EK3_GLITCH_RAD: GPS glitch radius gate size (m)

Note: This parameter is for advanced users

This controls the maximum radial uncertainty in position between the value predicted by the filter and the value measured by the GPS before the filter position and velocity states are reset to the GPS. Making this value larger allows the filter to ignore larger GPS glitches but also means that non-GPS errors such as IMU and compass can create a larger error in position before the filter is forced back to the GPS position.

Increment

Range

Units

5

10 - 100

meters

EK3_ALT_M_NSE: Altitude measurement noise (m)

Note: This parameter is for advanced users

This is the RMS value of noise in the altitude measurement. Increasing it reduces the weighting of the baro measurement and will make the filter respond more slowly to baro measurement errors, but will make it more sensitive to GPS and accelerometer errors.

Increment

Range

Units

0.1

0.1 - 10.0

meters

EK3_HGT_I_GATE: Height measurement gate size

Note: This parameter is for advanced users

This sets the percentage number of standard deviations applied to the height measurement innovation consistency check. Decreasing it makes it more likely that good measurements will be rejected. Increasing it makes it more likely that bad measurements will be accepted.

Increment

Range

25

100 - 1000

EK3_HGT_DELAY: Height measurement delay (msec)

Note: This parameter is for advanced users

This is the number of msec that the Height measurements lag behind the inertial measurements.

Increment

Range

RebootRequired

Units

10

0 - 250

True

milliseconds

EK3_MAG_M_NSE: Magnetometer measurement noise (Gauss)

Note: This parameter is for advanced users

This is the RMS value of noise in magnetometer measurements. Increasing it reduces the weighting on these measurements.

Increment

Range

Units

0.01

0.01 - 0.5

gauss

EK3_MAG_CAL: Magnetometer default fusion mode

Note: This parameter is for advanced users

This determines when the filter will use the 3-axis magnetometer fusion model that estimates both earth and body fixed magnetic field states and when it will use a simpler magnetic heading fusion model that does not use magnetic field states. The 3-axis magnetometer fusion is only suitable for use when the external magnetic field environment is stable. EK3_MAG_CAL = 0 uses heading fusion on ground, 3-axis fusion in-flight, and is the default setting for Plane users. EK3_MAG_CAL = 1 uses 3-axis fusion only when manoeuvring. EK3_MAG_CAL = 2 uses heading fusion at all times, is recommended if the external magnetic field is varying and is the default for rovers. EK3_MAG_CAL = 3 uses heading fusion on the ground and 3-axis fusion after the first in-air field and yaw reset has completed, and is the default for copters. EK3_MAG_CAL = 4 uses 3-axis fusion at all times. EK3_MAG_CAL = 5 uses an external yaw sensor with simple heading fusion. NOTE : Use of simple heading magnetometer fusion makes vehicle compass calibration and alignment errors harder for the EKF to detect which reduces the sensitivity of the Copter EKF failsafe algorithm. NOTE: The fusion mode can be forced to 2 for specific EKF cores using the EK3_MAG_MASK parameter. EK3_MAG_CAL = 6 uses an external yaw sensor with fallback to compass when the external sensor is not available if we are flying. NOTE: The fusion mode can be forced to 2 for specific EKF cores using the EK3_MAG_MASK parameter. NOTE: limited operation without a magnetometer or any other yaw sensor is possible by setting all COMPASS_USE, COMPASS_USE2, COMPASS_USE3, etc parameters to 0 and setting COMPASS_ENABLE to 0. If this is done, the EK3_GSF_RUN and EK3_GSF_USE masks must be set to the same as EK3_IMU_MASK. A yaw angle derived from IMU and GPS velocity data using a Gaussian Sum Filter (GSF) will then be used to align the yaw when flight commences and there is sufficient movement.

RebootRequired

Values

True

Value

Meaning

0

When flying

1

When manoeuvring

2

Never

3

After first climb yaw reset

4

Always

5

Use external yaw sensor (Deprecated in 4.1+ see EK3_SRCn_YAW)

6

External yaw sensor with compass fallback (Deprecated in 4.1+ see EK3_SRCn_YAW)

EK3_MAG_I_GATE: Magnetometer measurement gate size

Note: This parameter is for advanced users

This sets the percentage number of standard deviations applied to the magnetometer measurement innovation consistency check. Decreasing it makes it more likely that good measurements will be rejected. Increasing it makes it more likely that bad measurements will be accepted.

Increment

Range

25

100 - 1000

EK3_EAS_M_NSE: Equivalent airspeed measurement noise (m/s)

Note: This parameter is for advanced users

This is the RMS value of noise in equivalent airspeed measurements used by planes. Increasing it reduces the weighting of airspeed measurements and will make wind speed estimates less noisy and slower to converge. Increasing also increases navigation errors when dead-reckoning without GPS measurements.

Increment

Range

Units

0.1

0.5 - 5.0

meters per second

EK3_EAS_I_GATE: Airspeed measurement gate size

Note: This parameter is for advanced users

This sets the percentage number of standard deviations applied to the airspeed measurement innovation consistency check. Decreasing it makes it more likely that good measurements will be rejected. Increasing it makes it more likely that bad measurements will be accepted.

Increment

Range

25

100 - 1000

EK3_RNG_M_NSE: Range finder measurement noise (m)

Note: This parameter is for advanced users

This is the RMS value of noise in the range finder measurement. Increasing it reduces the weighting on this measurement.

Increment

Range

Units

0.1

0.1 - 10.0

meters

EK3_RNG_I_GATE: Range finder measurement gate size

Note: This parameter is for advanced users

This sets the percentage number of standard deviations applied to the range finder innovation consistency check. Decreasing it makes it more likely that good measurements will be rejected. Increasing it makes it more likely that bad measurements will be accepted.

Increment

Range

25

100 - 1000

EK3_MAX_FLOW: Maximum valid optical flow rate

Note: This parameter is for advanced users

This sets the magnitude maximum optical flow rate in rad/sec that will be accepted by the filter

Increment

Range

Units

0.1

1.0 - 4.0

radians per second

EK3_FLOW_M_NSE: Optical flow measurement noise (rad/s)

Note: This parameter is for advanced users

This is the RMS value of noise and errors in optical flow measurements. Increasing it reduces the weighting on these measurements.

Increment

Range

Units

0.05

0.05 - 1.0

radians per second

EK3_FLOW_I_GATE: Optical Flow measurement gate size

Note: This parameter is for advanced users

This sets the percentage number of standard deviations applied to the optical flow innovation consistency check. Decreasing it makes it more likely that good measurements will be rejected. Increasing it makes it more likely that bad measurements will be accepted.

Increment

Range

25

100 - 1000

EK3_FLOW_DELAY: Optical Flow measurement delay (msec)

Note: This parameter is for advanced users

This is the number of msec that the optical flow measurements lag behind the inertial measurements. It is the time from the end of the optical flow averaging period and does not include the time delay due to the 100msec of averaging within the flow sensor.

Increment

Range

RebootRequired

Units

10

0 - 250

True

milliseconds

EK3_GYRO_P_NSE: Rate gyro noise (rad/s)

Note: This parameter is for advanced users

This control disturbance noise controls the growth of estimated error due to gyro measurement errors excluding bias. Increasing it makes the flter trust the gyro measurements less and other measurements more.

Increment

Range

Units

0.0001

0.0001 - 0.1

radians per second

EK3_ACC_P_NSE: Accelerometer noise (m/s^2)

Note: This parameter is for advanced users

This control disturbance noise controls the growth of estimated error due to accelerometer measurement errors excluding bias. Increasing it makes the flter trust the accelerometer measurements less and other measurements more.

Increment

Range

Units

0.01

0.01 - 1.0

meters per square second

EK3_GBIAS_P_NSE: Rate gyro bias stability (rad/s/s)

Note: This parameter is for advanced users

This state process noise controls growth of the gyro delta angle bias state error estimate. Increasing it makes rate gyro bias estimation faster and noisier.

Range

Units

0.00001 - 0.001

radians per square second

EK3_ABIAS_P_NSE: Accelerometer bias stability (m/s^3)

Note: This parameter is for advanced users

This noise controls the growth of the vertical accelerometer delta velocity bias state error estimate. Increasing it makes accelerometer bias estimation faster and noisier.

Range

Units

0.00001 - 0.005

meters per cubic second

EK3_WIND_P_NSE: Wind velocity process noise (m/s^2)

Note: This parameter is for advanced users

This state process noise controls the growth of wind state error estimates. Increasing it makes wind estimation faster and noisier.

Increment

Range

Units

0.1

0.01 - 2.0

meters per square second

EK3_WIND_PSCALE: Height rate to wind process noise scaler

Note: This parameter is for advanced users

This controls how much the process noise on the wind states is increased when gaining or losing altitude to take into account changes in wind speed and direction with altitude. Increasing this parameter increases how rapidly the wind states adapt when changing altitude, but does make wind velocity estimation noiser.

Increment

Range

0.1

0.0 - 2.0

EK3_GPS_CHECK: GPS preflight check

Note: This parameter is for advanced users

This is a 1 byte bitmap controlling which GPS preflight checks are performed. Set to 0 to bypass all checks. Set to 255 perform all checks. Set to 3 to check just the number of satellites and HDoP. Set to 31 for the most rigorous checks that will still allow checks to pass when the copter is moving, eg launch from a boat.

Bitmask

Bit

Meaning

0

NSats

1

HDoP

2

speed error

3

position error

4

yaw error

5

pos drift

6

vert speed

7

horiz speed

EK3_IMU_MASK: Bitmask of active IMUs

Note: This parameter is for advanced users

1 byte bitmap of IMUs to use in EKF3. A separate instance of EKF3 will be started for each IMU selected. Set to 1 to use the first IMU only (default), set to 2 to use the second IMU only, set to 3 to use the first and second IMU. Additional IMU's can be used up to a maximum of 6 if memory and processing resources permit. There may be insufficient memory and processing resources to run multiple instances. If this occurs EKF3 will fail to start.

Bitmask

RebootRequired

Bit

Meaning

0

FirstIMU

1

SecondIMU

2

ThirdIMU

3

FourthIMU

4

FifthIMU

5

SixthIMU

True

EK3_CHECK_SCALE: GPS accuracy check scaler (%)

Note: This parameter is for advanced users

This scales the thresholds that are used to check GPS accuracy before it is used by the EKF. A value of 100 is the default. Values greater than 100 increase and values less than 100 reduce the maximum GPS error the EKF will accept. A value of 200 will double the allowable GPS error.

Range

Units

50 - 200

percent

EK3_NOAID_M_NSE: Non-GPS operation position uncertainty (m)

Note: This parameter is for advanced users

This sets the amount of position variation that the EKF allows for when operating without external measurements (eg GPS or optical flow). Increasing this parameter makes the EKF attitude estimate less sensitive to vehicle manoeuvres but more sensitive to IMU errors.

Range

Units

0.5 - 50.0

meters

EK3_BETA_MASK: Bitmask controlling sidelip angle fusion

Note: This parameter is for advanced users

1 byte bitmap controlling use of sideslip angle fusion for estimation of non wind states during operation of 'fly forward' vehicle types such as fixed wing planes. By assuming that the angle of sideslip is small, the wind velocity state estimates are corrected whenever the EKF is not dead reckoning (e.g. has an independent velocity or position sensor such as GPS). This behaviour is on by default and cannot be disabled. When the EKF is dead reckoning, the wind states are used as a reference, enabling use of the small angle of sideslip assumption to correct non wind velocity states (eg attitude, velocity, position, etc) and improve navigation accuracy. This behaviour is on by default and cannot be disabled. The behaviour controlled by this parameter is the use of the small angle of sideslip assumption to correct non wind velocity states when the EKF is NOT dead reckoning. This is primarily of benefit to reduce the buildup of yaw angle errors during straight and level flight without a yaw sensor (e.g. magnetometer or dual antenna GPS yaw) provided aerobatic flight maneuvers with large sideslip angles are not performed. The 'always' option might be used where the yaw sensor is intentionally not fitted or disabled. The 'WhenNoYawSensor' option might be used if a yaw sensor is fitted, but protection against in-flight failure and continual rejection by the EKF is desired. For vehicles operated within visual range of the operator performing frequent turning maneuvers, setting this parameter is unnecessary.

Bitmask

RebootRequired

Bit

Meaning

0

Always

1

WhenNoYawSensor

True

EK3_YAW_M_NSE: Yaw measurement noise (rad)

Note: This parameter is for advanced users

This is the RMS value of noise in yaw measurements from the magnetometer. Increasing it reduces the weighting on these measurements.

Increment

Range

Units

0.05

0.05 - 1.0

radians

EK3_YAW_I_GATE: Yaw measurement gate size

Note: This parameter is for advanced users

This sets the percentage number of standard deviations applied to the magnetometer yaw measurement innovation consistency check. Decreasing it makes it more likely that good measurements will be rejected. Increasing it makes it more likely that bad measurements will be accepted.

Increment

Range

25

100 - 1000

EK3_TAU_OUTPUT: Output complementary filter time constant (centi-sec)

Note: This parameter is for advanced users

Sets the time constant of the output complementary filter/predictor in centi-seconds.

Increment

Range

Units

5

10 - 50

centiseconds

EK3_MAGE_P_NSE: Earth magnetic field process noise (gauss/s)

Note: This parameter is for advanced users

This state process noise controls the growth of earth magnetic field state error estimates. Increasing it makes earth magnetic field estimation faster and noisier.

Range

Units

0.00001 - 0.01

gauss per second

EK3_MAGB_P_NSE: Body magnetic field process noise (gauss/s)

Note: This parameter is for advanced users

This state process noise controls the growth of body magnetic field state error estimates. Increasing it makes magnetometer bias error estimation faster and noisier.

Range

Units

0.00001 - 0.01

gauss per second

EK3_RNG_USE_HGT: Range finder switch height percentage

Note: This parameter is for advanced users

Range finder can be used as the primary height source when below this percentage of its maximum range (see RNGFNDx_MAX_CM) and the primary height source is Baro or GPS (see EK3_SRCx_POSZ). This feature should not be used for terrain following as it is designed for vertical takeoff and landing with climb above the range finder use height before commencing the mission, and with horizontal position changes below that height being limited to a flat region around the takeoff and landing point.

Increment

Range

Units

1

-1 - 70

percent

EK3_TERR_GRAD: Maximum terrain gradient

Note: This parameter is for advanced users

Specifies the maximum gradient of the terrain below the vehicle when it is using range finder as a height reference

Increment

Range

0.01

0 - 0.2

EK3_BCN_M_NSE: Range beacon measurement noise (m)

Note: This parameter is for advanced users

This is the RMS value of noise in the range beacon measurement. Increasing it reduces the weighting on this measurement.

Increment

Range

Units

0.1

0.1 - 10.0

meters

EK3_BCN_I_GTE: Range beacon measurement gate size

Note: This parameter is for advanced users

This sets the percentage number of standard deviations applied to the range beacon measurement innovation consistency check. Decreasing it makes it more likely that good measurements will be rejected. Increasing it makes it more likely that bad measurements will be accepted.

Increment

Range

25

100 - 1000

EK3_BCN_DELAY: Range beacon measurement delay (msec)

Note: This parameter is for advanced users

This is the number of msec that the range beacon measurements lag behind the inertial measurements.

Increment

Range

RebootRequired

Units

10

0 - 250

True

milliseconds

EK3_RNG_USE_SPD: Range finder max ground speed

Note: This parameter is for advanced users

The range finder will not be used as the primary height source when the horizontal ground speed is greater than this value.

Increment

Range

Units

0.5

2.0 - 6.0

meters per second

EK3_ACC_BIAS_LIM: Accelerometer bias limit

Note: This parameter is for advanced users

The accelerometer bias state will be limited to +- this value

Increment

Range

Units

0.1

0.5 - 2.5

meters per square second

EK3_MAG_MASK: Bitmask of active EKF cores that will always use heading fusion

Note: This parameter is for advanced users

1 byte bitmap of EKF cores that will disable magnetic field states and use simple magnetic heading fusion at all times. This parameter enables specified cores to be used as a backup for flight into an environment with high levels of external magnetic interference which may degrade the EKF attitude estimate when using 3-axis magnetometer fusion. NOTE : Use of a different magnetometer fusion algorithm on different cores makes unwanted EKF core switches due to magnetometer errors more likely.

Bitmask

RebootRequired

Bit

Meaning

0

FirstEKF

1

SecondEKF

2

ThirdEKF

3

FourthEKF

4

FifthEKF

5

SixthEKF

True

EK3_OGN_HGT_MASK: Bitmask control of EKF reference height correction

Note: This parameter is for advanced users

When a height sensor other than GPS is used as the primary height source by the EKF, the position of the zero height datum is defined by that sensor and its frame of reference. If a GPS height measurement is also available, then the height of the WGS-84 height datum used by the EKF can be corrected so that the height returned by the getLLH() function is compensated for primary height sensor drift and change in datum over time. The first two bit positions control when the height datum will be corrected. Correction is performed using a Bayes filter and only operates when GPS quality permits. The third bit position controls where the corrections to the GPS reference datum are applied. Corrections can be applied to the local vertical position or to the reported EKF origin height (default).

Bitmask

RebootRequired

Bit

Meaning

0

Correct when using Baro height

1

Correct when using range finder height

2

Apply corrections to local position

True

EK3_VIS_VERR_MIN: Visual odometry minimum velocity error

Note: This parameter is for advanced users

This is the 1-STD odometry velocity observation error that will be assumed when maximum quality is reported by the sensor. When quality is between max and min, the error will be calculated using linear interpolation between VIS_VERR_MIN and VIS_VERR_MAX.

Increment

Range

Units

0.05

0.05 - 0.5

meters per second

EK3_VIS_VERR_MAX: Visual odometry maximum velocity error

Note: This parameter is for advanced users

This is the 1-STD odometry velocity observation error that will be assumed when minimum quality is reported by the sensor. When quality is between max and min, the error will be calculated using linear interpolation between VIS_VERR_MIN and VIS_VERR_MAX.

Increment

Range

Units

0.1

0.5 - 5.0

meters per second

EK3_WENC_VERR: Wheel odometry velocity error

Note: This parameter is for advanced users

This is the 1-STD odometry velocity observation error that will be assumed when wheel encoder data is being fused.

Increment

Range

Units

0.1

0.01 - 1.0

meters per second

EK3_FLOW_USE: Optical flow use bitmask

Note: This parameter is for advanced users

Controls if the optical flow data is fused into the 24-state navigation estimator OR the 1-state terrain height estimator.

RebootRequired

Values

True

Value

Meaning

0

None

1

Navigation

2

Terrain

EK3_HRT_FILT: Height rate filter crossover frequency

Specifies the crossover frequency of the complementary filter used to calculate the output predictor height rate derivative.

Range

RebootRequired

Units

0.1 - 30.0

False

hertz

EK3_MAG_EF_LIM: EarthField error limit

Note: This parameter is for advanced users

This limits the difference between the learned earth magnetic field and the earth field from the world magnetic model tables. A value of zero means to disable the use of the WMM tables.

Range

Units

0 - 500

milligauss

EK3_GSF_RUN_MASK: Bitmask of which EKF-GSF yaw estimators run

Note: This parameter is for advanced users

1 byte bitmap of which EKF3 instances run an independant EKF-GSF yaw estimator to provide a backup yaw estimate that doesn't rely on magnetometer data. This estimator uses IMU, GPS and, if available, airspeed data. EKF-GSF yaw estimator data for the primary EKF3 instance will be logged as GSF0 and GSF1 messages. Use of the yaw estimate generated by this algorithm is controlled by the EK3_GSF_USE, EK3_GSF_DELAY and EK3_GSF_MAXCOUNT parameters. To run the EKF-GSF yaw estimator in ride-along and logging only, set EK3_GSF_USE to 0.

Bitmask

RebootRequired

Bit

Meaning

0

FirstEKF

1

SecondEKF

2

ThirdEKF

3

FourthEKF

4

FifthEKF

5

SixthEKF

True

EK3_GSF_USE_MASK: Bitmask of which EKF-GSF yaw estimators are used

Note: This parameter is for advanced users

1 byte bitmap of which EKF3 instances will use the output from the EKF-GSF yaw estimator that has been turned on by the EK3_GSF_RUN parameter. If the inertial navigation calculation stops following the GPS, then the vehicle code can request EKF3 to attempt to resolve the issue, either by performing a yaw reset if enabled by this parameter by switching to another EKF3 instance. Additionally the EKF3 will initiate a reset internally if navigation is lost for more than EK3_GSF_DELAY milli seconds.

Bitmask

RebootRequired

Bit

Meaning

0

FirstEKF

1

SecondEKF

2

ThirdEKF

3

FourthEKF

4

FifthEKF

5

SixthEKF

True

EK3_GSF_RST_MAX: Maximum number of resets to the EKF-GSF yaw estimate allowed

Note: This parameter is for advanced users

Sets the maximum number of times the EKF3 will be allowed to reset it's yaw to the estimate from the EKF-GSF yaw estimator. No resets will be allowed unless the use of the EKF-GSF yaw estimate is enabled via the EK3_GSF_USE parameter.

Increment

Range

RebootRequired

1

1 - 10

True

EK3_ERR_THRESH: EKF3 Lane Relative Error Sensitivity Threshold

Note: This parameter is for advanced users

lanes have to be consistently better than the primary by at least this threshold to reduce their overall relativeCoreError, lowering this makes lane switching more sensitive to smaller error differences

Increment

Range

0.05

0.05 - 1

EK3_AFFINITY: EKF3 Sensor Affinity Options

Note: This parameter is for advanced users

These options control the affinity between sensor instances and EKF cores

Bitmask

RebootRequired

Bit

Meaning

0

EnableGPSAffinity

1

EnableBaroAffinity

2

EnableCompassAffinity

3

EnableAirspeedAffinity

True

EK3_DRAG_BCOEF_X: Ballistic coefficient for X axis drag

Note: This parameter is for advanced users

Ratio of mass to drag coefficient measured along the X body axis. This parameter enables estimation of wind drift for vehicles with bluff bodies and without propulsion forces in the X and Y direction (eg multicopters). The drag produced by this effect scales with speed squared. Set to a postive value > 1.0 to enable. A starting value is the mass in Kg divided by the frontal area. The predicted drag from the rotors is specified separately by the EK3_MCOEF parameter.

Range

Units

0.0 - 1000.0

kilograms per square meter

EK3_DRAG_BCOEF_Y: Ballistic coefficient for Y axis drag

Note: This parameter is for advanced users

Ratio of mass to drag coefficient measured along the Y body axis. This parameter enables estimation of wind drift for vehicles with bluff bodies and without propulsion forces in the X and Y direction (eg multicopters). The drag produced by this effect scales with speed squared. Set to a postive value > 1.0 to enable. A starting value is the mass in Kg divided by the side area. The predicted drag from the rotors is specified separately by the EK3_MCOEF parameter.

Range

Units

50.0 - 1000.0

kilograms per square meter

EK3_DRAG_M_NSE: Observation noise for drag acceleration

Note: This parameter is for advanced users

This sets the amount of noise used when fusing X and Y acceleration as an observation that enables esitmation of wind velocity for multi-rotor vehicles. This feature is enabled by the EK3_BCOEF_X and EK3_BCOEF_Y parameters

Increment

Range

Units

0.1

0.1 - 2.0

meters per square second

EK3_DRAG_MCOEF: Momentum coefficient for propeller drag

Note: This parameter is for advanced users

This parameter is used to predict the drag produced by the rotors when flying a multi-copter, enabling estimation of wind drift. The drag produced by this effect scales with speed not speed squared and is produced because some of the air velocity normal to the rotors axis of rotation is lost when passing through the rotor disc which changes the momentum of the airflow causing drag. For unducted rotors the effect is roughly proportional to the area of the propeller blades when viewed side on and changes with different propellers. It is higher for ducted rotors. For example if flying at 15 m/s at sea level conditions produces a rotor induced drag acceleration of 1.5 m/s/s, then EK3_MCOEF would be set to 0.1 = (1.5/15.0). Set EK3_MCOEF to a postive value to enable wind estimation using this drag effect. To account for the drag produced by the body which scales with speed squared, see documentation for the EK3_BCOEF_X and EK3_BCOEF_Y parameters.

Increment

Range

Units

0.01

0.0 - 1.0

per second

EK3_OGNM_TEST_SF: On ground not moving test scale factor

Note: This parameter is for advanced users

This parameter is adjust the sensitivity of the on ground not moving test which is used to assist with learning the yaw gyro bias and stopping yaw drift before flight when operating without a yaw sensor. Bigger values allow the detection of a not moving condition with noiser IMU data. Check the XKFM data logged when the vehicle is on ground not moving and adjust the value of OGNM_TEST_SF to be slightly higher than the maximum value of the XKFM.ADR, XKFM.ALR, XKFM.GDR and XKFM.GLR test levels.

Increment

Range

0.5

1.0 - 10.0

EK3_GND_EFF_DZ: Baro height ground effect dead zone

Note: This parameter is for advanced users

This parameter sets the size of the dead zone that is applied to negative baro height spikes that can occur when takeing off or landing when a vehicle with lift rotors is operating in ground effect ground effect. Set to about 0.5m less than the amount of negative offset in baro height that occurs just prior to takeoff when lift motors are spooling up. Set to 0 if no ground effect is present.

Increment

Range

0.5

0.0 - 10.0

EK3_PRIMARY: Primary core number

Note: This parameter is for advanced users

The core number (index in IMU mask) that will be used as the primary EKF core on startup. While disarmed the EKF will force the use of this core. A value of 0 corresponds to the first IMU in EK3_IMU_MASK.

Increment

Range

1

0 - 2

EK3_SRC Parameters

EK3_SRC1_POSXY: Position Horizontal Source (Primary)

Note: This parameter is for advanced users

Position Horizontal Source (Primary)

Values

Value

Meaning

0

None

3

GPS

4

Beacon

6

ExternalNav

EK3_SRC1_VELXY: Velocity Horizontal Source

Note: This parameter is for advanced users

Velocity Horizontal Source

Values

Value

Meaning

0

None

3

GPS

4

Beacon

5

OpticalFlow

6

ExternalNav

7

WheelEncoder

EK3_SRC1_POSZ: Position Vertical Source

Note: This parameter is for advanced users

Position Vertical Source

Values

Value

Meaning

0

None

1

Baro

2

RangeFinder

3

GPS

4

Beacon

6

ExternalNav

EK3_SRC1_VELZ: Velocity Vertical Source

Note: This parameter is for advanced users

Velocity Vertical Source

Values

Value

Meaning

0

None

3

GPS

4

Beacon

6

ExternalNav

EK3_SRC1_YAW: Yaw Source

Note: This parameter is for advanced users

Yaw Source

Values

Value

Meaning

0

None

1

Compass

2

GPS

3

GPS with Compass Fallback

6

ExternalNav

8

GSF

EK3_SRC2_POSXY: Position Horizontal Source (Secondary)

Note: This parameter is for advanced users

Position Horizontal Source (Secondary)

Values

Value

Meaning

0

None

3

GPS

4

Beacon

6

ExternalNav

EK3_SRC2_VELXY: Velocity Horizontal Source (Secondary)

Note: This parameter is for advanced users

Velocity Horizontal Source (Secondary)

Values

Value

Meaning

0

None

3

GPS

4

Beacon

5

OpticalFlow

6

ExternalNav

7

WheelEncoder

EK3_SRC2_POSZ: Position Vertical Source (Secondary)

Note: This parameter is for advanced users

Position Vertical Source (Secondary)

Values

Value

Meaning

0

None

1

Baro

2

RangeFinder

3

GPS

4

Beacon

6

ExternalNav

EK3_SRC2_VELZ: Velocity Vertical Source (Secondary)

Note: This parameter is for advanced users

Velocity Vertical Source (Secondary)

Values

Value

Meaning

0

None

3

GPS

4

Beacon

6

ExternalNav

EK3_SRC2_YAW: Yaw Source (Secondary)

Note: This parameter is for advanced users

Yaw Source (Secondary)

Values

Value

Meaning

0

None

1

Compass

2

GPS

3

GPS with Compass Fallback

6

ExternalNav

8

GSF

EK3_SRC3_POSXY: Position Horizontal Source (Tertiary)

Note: This parameter is for advanced users

Position Horizontal Source (Tertiary)

Values

Value

Meaning

0

None

3

GPS

4

Beacon

6

ExternalNav

EK3_SRC3_VELXY: Velocity Horizontal Source (Tertiary)

Note: This parameter is for advanced users

Velocity Horizontal Source (Tertiary)

Values

Value

Meaning

0

None

3

GPS

4

Beacon

5

OpticalFlow

6

ExternalNav

7

WheelEncoder

EK3_SRC3_POSZ: Position Vertical Source (Tertiary)

Note: This parameter is for advanced users

Position Vertical Source (Tertiary)

Values

Value

Meaning

0

None

1

Baro

2

RangeFinder

3

GPS

4

Beacon

6

ExternalNav

EK3_SRC3_VELZ: Velocity Vertical Source (Tertiary)

Note: This parameter is for advanced users

Velocity Vertical Source (Tertiary)

Values

Value

Meaning

0

None

3

GPS

4

Beacon

6

ExternalNav

EK3_SRC3_YAW: Yaw Source (Tertiary)

Note: This parameter is for advanced users

Yaw Source (Tertiary)

Values

Value

Meaning

0

None

1

Compass

2

GPS

3

GPS with Compass Fallback

6

ExternalNav

8

GSF

EK3_SRC_OPTIONS: EKF Source Options

Note: This parameter is for advanced users

EKF Source Options

Bitmask

Bit

Meaning

0

FuseAllVelocities

FENCE_ Parameters

FENCE_ENABLE: Fence enable/disable

Allows you to enable (1) or disable (0) the fence functionality

Values

Value

Meaning

0

Disabled

1

Enabled

FENCE_TYPE: Fence Type

Enabled fence types held as bitmask

Bitmask

Bit

Meaning

0

Max altitude

1

Circle

2

Polygon

3

Min altitude

FENCE_ACTION: Fence Action

What action should be taken when fence is breached

Values

Value

Meaning

0

Report Only

1

RTL

6

Guided

7

GuidedThrottlePass

FENCE_ALT_MAX: Fence Maximum Altitude

Maximum altitude allowed before geofence triggers

Increment

Range

Units

1

10 - 1000

meters

FENCE_RADIUS: Circular Fence Radius

Circle fence radius which when breached will cause an RTL

Range

Units

30 - 10000

meters

FENCE_MARGIN: Fence Margin

Distance that autopilot's should maintain from the fence to avoid a breach

Range

Units

1 - 10

meters

FENCE_TOTAL: Fence polygon point total

Number of polygon points saved in eeprom (do not update manually)

Range

1 - 20

FENCE_ALT_MIN: Fence Minimum Altitude

Minimum altitude allowed before geofence triggers

Increment

Range

Units

1

-100 - 100

meters

FENCE_RET_RALLY: Fence Return to Rally

Should the vehicle return to fence return point or rally point

Increment

Range

Values

1

0 - 1

Value

Meaning

0

Fence Return Point

1

Nearest Rally Point

FENCE_RET_ALT: Fence Return Altitude

Altitude the vehicle will transit to when a fence breach occurs

Increment

Range

Units

1

0 - 32767

meters

FENCE_AUTOENABLE: Fence Auto-Enable

Auto-enable of fence

Increment

Range

Values

1

0 - 3

Value

Meaning

0

AutoEnableOff

1

AutoEnableOnTakeoff

2

AutoEnableDisableFloorOnLanding

3

AutoEnableOnlyWhenArmed

FFT_ Parameters

FFT_ENABLE: Enable

Note: This parameter is for advanced users

Enable Gyro FFT analyser

RebootRequired

Values

True

Value

Meaning

0

Disabled

1

Enabled

FFT_MINHZ: Minimum Frequency

Note: This parameter is for advanced users

Lower bound of FFT frequency detection in Hz. On larger vehicles the minimum motor frequency is likely to be significantly lower than for smaller vehicles.

Range

Units

20 - 400

hertz

FFT_MAXHZ: Maximum Frequency

Note: This parameter is for advanced users

Upper bound of FFT frequency detection in Hz. On smaller vehicles the maximum motor frequency is likely to be significantly higher than for larger vehicles.

Range

Units

20 - 495

hertz

FFT_SAMPLE_MODE: Sample Mode

Note: This parameter is for advanced users

Sampling mode (and therefore rate). 0: Gyro rate sampling, 1: Fast loop rate sampling, 2: Fast loop rate / 2 sampling, 3: Fast loop rate / 3 sampling. Takes effect on reboot.

Range

RebootRequired

0 - 4

True

FFT_WINDOW_SIZE: FFT window size

Note: This parameter is for advanced users

Size of window to be used in FFT calculations. Takes effect on reboot. Must be a power of 2 and between 32 and 512. Larger windows give greater frequency resolution but poorer time resolution, consume more CPU time and may not be appropriate for all vehicles. Time and frequency resolution are given by the sample-rate / window-size. Windows of 256 are only really recommended for F7 class boards, windows of 512 or more H7 class.

Range

RebootRequired

32 - 1024

True

FFT_WINDOW_OLAP: FFT window overlap

Note: This parameter is for advanced users

Percentage of window to be overlapped before another frame is process. Takes effect on reboot. A good default is 50% overlap. Higher overlap results in more processed frames but not necessarily more temporal resolution. Lower overlap results in lost information at the frame edges.

Range

RebootRequired

0 - 0.9

True

FFT_FREQ_HOVER: FFT learned hover frequency

Note: This parameter is for advanced users

The learned hover noise frequency

Range

0 - 250

FFT_THR_REF: FFT learned thrust reference

Note: This parameter is for advanced users

FFT learned thrust reference for the hover frequency and FFT minimum frequency.

Range

0.01 - 0.9

FFT_SNR_REF: FFT SNR reference threshold

Note: This parameter is for advanced users

FFT SNR reference threshold in dB at which a signal is determined to be present.

Range

0.0 - 100.0

FFT_ATT_REF: FFT attenuation for bandwidth calculation

Note: This parameter is for advanced users

FFT attenuation level in dB for bandwidth calculation and peak detection. The bandwidth is calculated by comparing peak power output with the attenuated version. The default of 15 has shown to be a good compromise in both simulations and real flight.

Range

0 - 100

FFT_BW_HOVER: FFT learned bandwidth at hover

Note: This parameter is for advanced users

FFT learned bandwidth at hover for the attenuation frequencies.

Range

0 - 200

FFT_HMNC_FIT: FFT harmonic fit frequency threshold

Note: This parameter is for advanced users

FFT harmonic fit frequency threshold percentage at which a signal of the appropriate frequency is determined to be the harmonic of another. Signals that have a harmonic relationship that varies at most by this percentage are considered harmonics of each other for the purpose of selecting the harmonic notch frequency. If a match is found then the lower frequency harmonic is always used as the basis for the dynamic harmonic notch. A value of zero completely disables harmonic matching.

Range

RebootRequired

0 - 100

True

FFT_HMNC_PEAK: FFT harmonic peak target

Note: This parameter is for advanced users

The FFT harmonic peak target that should be returned by FTN1.PkAvg. The resulting value will be used by the harmonic notch if configured to track the FFT frequency. By default the appropriate peak is auto-detected based on the harmonic fit between peaks and the energy-weighted average frequency on roll on pitch is used. Setting this to 1 will always target the highest energy peak. Setting this to 2 will target the highest energy peak that is lower in frequency than the highest energy peak. Setting this to 3 will target the highest energy peak that is higher in frequency than the highest energy peak. Setting this to 4 will target the highest energy peak on the roll axis only and only the roll frequency will be used (some vehicles have a much more pronounced peak on roll). Setting this to 5 will target the highest energy peak on the pitch axis only and only the pitch frequency will be used (some vehicles have a much more pronounced peak on roll).

Values

Value

Meaning

0

Auto

1

Center Frequency

2

Lower-Shoulder Frequency

3

Upper-Shoulder Frequency

4

Roll-Axis

5

Pitch-Axis

FLOW Parameters

FLOW_TYPE: Optical flow sensor type

Optical flow sensor type

RebootRequired

Values

True

Value

Meaning

0

None

1

PX4Flow

2

Pixart

3

Bebop

4

CXOF

5

MAVLink

6

UAVCAN

7

MSP

8

UPFLOW

FLOW_FXSCALER: X axis optical flow scale factor correction

This sets the parts per thousand scale factor correction applied to the flow sensor X axis optical rate. It can be used to correct for variations in effective focal length. Each positive increment of 1 increases the scale factor applied to the X axis optical flow reading by 0.1%. Negative values reduce the scale factor.

Increment

Range

1

-200 - +200

FLOW_FYSCALER: Y axis optical flow scale factor correction

This sets the parts per thousand scale factor correction applied to the flow sensor Y axis optical rate. It can be used to correct for variations in effective focal length. Each positive increment of 1 increases the scale factor applied to the Y axis optical flow reading by 0.1%. Negative values reduce the scale factor.

Increment

Range

1

-200 - +200

FLOW_ORIENT_YAW: Flow sensor yaw alignment

Specifies the number of centi-degrees that the flow sensor is yawed relative to the vehicle. A sensor with its X-axis pointing to the right of the vehicle X axis has a positive yaw angle.

Increment

Range

Units

10

-17999 - +18000

centidegrees

FLOW_POS_X: X position offset

Note: This parameter is for advanced users

X position of the optical flow sensor focal point in body frame. Positive X is forward of the origin.

Increment

Range

Units

0.01

-5 - 5

meters

FLOW_POS_Y: Y position offset

Note: This parameter is for advanced users

Y position of the optical flow sensor focal point in body frame. Positive Y is to the right of the origin.

Increment

Range

Units

0.01

-5 - 5

meters

FLOW_POS_Z: Z position offset

Note: This parameter is for advanced users

Z position of the optical flow sensor focal point in body frame. Positive Z is down from the origin.

Increment

Range

Units

0.01

-5 - 5

meters

FLOW_ADDR: Address on the bus

Note: This parameter is for advanced users

This is used to select between multiple possible I2C addresses for some sensor types. For PX4Flow you can choose 0 to 7 for the 8 possible addresses on the I2C bus.

Range

0 - 127

FRSKY_ Parameters

GEN_ Parameters

GEN_TYPE: Generator type

Generator type

RebootRequired

Values

True

Value

Meaning

0

Disabled

1

IE 650w 800w Fuel Cell

2

IE 2.4kW Fuel Cell

3

Richenpower

GPS Parameters

GPS_TYPE: 1st GPS type

Note: This parameter is for advanced users

GPS type of 1st GPS

RebootRequired

Values

True

Value

Meaning

0

None

1

AUTO

2

uBlox

3

MTK

4

MTK19

5

NMEA

6

SiRF

7

HIL

8

SwiftNav

9

UAVCAN

10

SBF

11

GSOF

13

ERB

14

MAV

15

NOVA

16

HemisphereNMEA

17

uBlox-MovingBaseline-Base

18

uBlox-MovingBaseline-Rover

19

MSP

20

AllyStar

21

ExternalAHRS

GPS_TYPE2: 2nd GPS type

Note: This parameter is for advanced users

GPS type of 2nd GPS

RebootRequired

Values

True

Value

Meaning

0

None

1

AUTO

2

uBlox

3

MTK

4

MTK19

5

NMEA

6

SiRF

7

HIL

8

SwiftNav

9

UAVCAN

10

SBF

11

GSOF

13

ERB

14

MAV

15

NOVA

16

HemisphereNMEA

17

uBlox-MovingBaseline-Base

18

uBlox-MovingBaseline-Rover

19

MSP

20

AllyStar

21

ExternalAHRS

GPS_NAVFILTER: Navigation filter setting

Note: This parameter is for advanced users

Navigation filter engine setting

Values

Value

Meaning

0

Portable

2

Stationary

3

Pedestrian

4

Automotive

5

Sea

6

Airborne1G

7

Airborne2G

8

Airborne4G

GPS_AUTO_SWITCH: Automatic Switchover Setting

Note: This parameter is for advanced users

Automatic switchover to GPS reporting best lock, 1:UseBest selects the GPS with highest status, if both are equal the GPS with highest satellite count is used 4:Use primary if 3D fix or better, will revert to 'UseBest' behaviour if 3D fix is lost on primary

Values

Value

Meaning

0

Use primary

1

UseBest

2

Blend

4

Use primary if 3D fix or better

GPS_MIN_DGPS: Minimum Lock Type Accepted for DGPS

Note: This parameter is for advanced users

Sets the minimum type of differential GPS corrections required before allowing to switch into DGPS mode.

RebootRequired

Values

True

Value

Meaning

0

Any

50

FloatRTK

100

IntegerRTK

GPS_SBAS_MODE: SBAS Mode

Note: This parameter is for advanced users

This sets the SBAS (satellite based augmentation system) mode if available on this GPS. If set to 2 then the SBAS mode is not changed in the GPS. Otherwise the GPS will be reconfigured to enable/disable SBAS. Disabling SBAS may be worthwhile in some parts of the world where an SBAS signal is available but the baseline is too long to be useful.

Values

Value

Meaning

0

Disabled

1

Enabled

2

NoChange

GPS_MIN_ELEV: Minimum elevation

Note: This parameter is for advanced users

This sets the minimum elevation of satellites above the horizon for them to be used for navigation. Setting this to -100 leaves the minimum elevation set to the GPS modules default.

Range

Units

-100 - 90

degrees

GPS_SBP_LOGMASK: Swift Binary Protocol Logging Mask

Note: This parameter is for advanced users

Masked with the SBP msg_type field to determine whether SBR1/SBR2 data is logged

Values

Value

Meaning

0

None (0x0000)

-1

All (0xFFFF)

-256

External only (0xFF00)

GPS_RAW_DATA: Raw data logging

Note: This parameter is for advanced users

Handles logging raw data; on uBlox chips that support raw data this will log RXM messages into logger; on Septentrio this will log on the equipment's SD card and when set to 2, the autopilot will try to stop logging after disarming and restart after arming

RebootRequired

Values

True

Value

Meaning

0

Ignore

1

Always log

2

Stop logging when disarmed (SBF only)

5

Only log every five samples (uBlox only)

GPS_GNSS_MODE: GNSS system configuration

Note: This parameter is for advanced users

Bitmask for what GNSS system to use on the first GPS (all unchecked or zero to leave GPS as configured)

Bitmask

Bit

Meaning

0

GPS

1

SBAS

2

Galileo

3

Beidou

4

IMES

5

QZSS

6

GLONASS

GPS_SAVE_CFG: Save GPS configuration

Note: This parameter is for advanced users

Determines whether the configuration for this GPS should be written to non-volatile memory on the GPS. Currently working for UBlox 6 series and above.

Values

Value

Meaning

0

Do not save config

1

Save config

2

Save only when needed

GPS_GNSS_MODE2: GNSS system configuration

Note: This parameter is for advanced users

Bitmask for what GNSS system to use on the second GPS (all unchecked or zero to leave GPS as configured)

Bitmask

Bit

Meaning

0

GPS

1

SBAS

2

Galileo

3

Beidou

4

IMES

5

QZSS

6

GLONASS

GPS_AUTO_CONFIG: Automatic GPS configuration

Note: This parameter is for advanced users

Controls if the autopilot should automatically configure the GPS based on the parameters and default settings

Values

Value

Meaning

0

Disables automatic configuration

1

Enable automatic configuration

GPS_RATE_MS: GPS update rate in milliseconds

Note: This parameter is for advanced users

Controls how often the GPS should provide a position update. Lowering below 5Hz(default) is not allowed. Raising the rate above 5Hz usually provides little benefit and for some GPS (eg Ublox M9N) can severely impact performance.

Range

Units

Values

50 - 200

milliseconds

Value

Meaning

100

10Hz

125

8Hz

200

5Hz

GPS_RATE_MS2: GPS 2 update rate in milliseconds

Note: This parameter is for advanced users

Controls how often the GPS should provide a position update. Lowering below 5Hz(default) is not allowed. Raising the rate above 5Hz usually provides little benefit and for some GPS (eg Ublox M9N) can severely impact performance.

Range

Units

Values

50 - 200

milliseconds

Value

Meaning

100

10Hz

125

8Hz

200

5Hz

GPS_POS1_X: Antenna X position offset

Note: This parameter is for advanced users

X position of the first GPS antenna in body frame. Positive X is forward of the origin. Use antenna phase centroid location if provided by the manufacturer.

Increment

Range

Units

0.01

-5 - 5

meters

GPS_POS1_Y: Antenna Y position offset

Note: This parameter is for advanced users

Y position of the first GPS antenna in body frame. Positive Y is to the right of the origin. Use antenna phase centroid location if provided by the manufacturer.

Increment

Range

Units

0.01

-5 - 5

meters

GPS_POS1_Z: Antenna Z position offset

Note: This parameter is for advanced users

Z position of the first GPS antenna in body frame. Positive Z is down from the origin. Use antenna phase centroid location if provided by the manufacturer.

Increment

Range

Units

0.01

-5 - 5

meters

GPS_POS2_X: Antenna X position offset

Note: This parameter is for advanced users

X position of the second GPS antenna in body frame. Positive X is forward of the origin. Use antenna phase centroid location if provided by the manufacturer.

Increment

Range

Units

0.01

-5 - 5

meters

GPS_POS2_Y: Antenna Y position offset

Note: This parameter is for advanced users

Y position of the second GPS antenna in body frame. Positive Y is to the right of the origin. Use antenna phase centroid location if provided by the manufacturer.

Increment

Range

Units

0.01

-5 - 5

meters

GPS_POS2_Z: Antenna Z position offset

Note: This parameter is for advanced users

Z position of the second GPS antenna in body frame. Positive Z is down from the origin. Use antenna phase centroid location if provided by the manufacturer.

Increment

Range

Units

0.01

-5 - 5

meters

GPS_DELAY_MS: GPS delay in milliseconds

Note: This parameter is for advanced users

Controls the amount of GPS measurement delay that the autopilot compensates for. Set to zero to use the default delay for the detected GPS type.

Range

RebootRequired

Units

0 - 250

True

milliseconds

GPS_DELAY_MS2: GPS 2 delay in milliseconds

Note: This parameter is for advanced users

Controls the amount of GPS measurement delay that the autopilot compensates for. Set to zero to use the default delay for the detected GPS type.

Range

RebootRequired

Units

0 - 250

True

milliseconds

GPS_BLEND_MASK: Multi GPS Blending Mask

Note: This parameter is for advanced users

Determines which of the accuracy measures Horizontal position, Vertical Position and Speed are used to calculate the weighting on each GPS receiver when soft switching has been selected by setting GPS_AUTO_SWITCH to 2(Blend)

Bitmask

Bit

Meaning

0

Horiz Pos

1

Vert Pos

2

Speed

GPS_BLEND_TC: Blending time constant

Note: This parameter is for advanced users

Controls the slowest time constant applied to the calculation of GPS position and height offsets used to adjust different GPS receivers for steady state position differences.

Range

Units

5.0 - 30.0

seconds

GPS_DRV_OPTIONS: driver options

Note: This parameter is for advanced users

Additional backend specific options

Bitmask

Bit

Meaning

0

Use UART2 for moving baseline on ublox

1

Use base station for GPS yaw on SBF

2

Use baudrate 115200

GPS_COM_PORT: GPS physical COM port

Note: This parameter is for advanced users

The physical COM port on the connected device, currently only applies to SBF GPS

Increment

Range

RebootRequired

1

0 - 10

True

GPS_COM_PORT2: GPS physical COM port

Note: This parameter is for advanced users

The physical COM port on the connected device, currently only applies to SBF GPS

Increment

Range

RebootRequired

1

0 - 10

True

GPS_PRIMARY: Primary GPS

Note: This parameter is for advanced users

This GPS will be used when GPS_AUTO_SWITCH is 0 and used preferentially with GPS_AUTO_SWITCH = 4.

Increment

Values

1

Value

Meaning

0

FirstGPS

1

SecondGPS

GPS_CAN_NODEID1: GPS Node ID 1

Note: This parameter is for advanced users

GPS Node id for discovered first.

ReadOnly

True

GPS_CAN_NODEID2: GPS Node ID 2

Note: This parameter is for advanced users

GPS Node id for discovered second.

ReadOnly

True

GPS1_CAN_OVRIDE: First UAVCAN GPS NODE ID

Note: This parameter is for advanced users

GPS Node id for first GPS. If 0 the gps will be automatically selected on first come basis.

GPS2_CAN_OVRIDE: Second UAVCAN GPS NODE ID

Note: This parameter is for advanced users

GPS Node id for second GPS. If 0 the gps will be automatically selected on first come basis.

GPS_MB1_ Parameters

GPS_MB1_TYPE: Moving base type

Note: This parameter is for advanced users

Controls the type of moving base used if using moving base.

RebootRequired

Values

True

Value

Meaning

0

Relative to alternate GPS instance

1

RelativeToCustomBase

GPS_MB1_OFS_X: Base antenna X position offset

Note: This parameter is for advanced users

X position of the base GPS antenna in body frame. Positive X is forward of the origin. Use antenna phase centroid location if provided by the manufacturer.

Increment

Range

Units

0.01

-5 - 5

meters

GPS_MB1_OFS_Y: Base antenna Y position offset

Note: This parameter is for advanced users

Y position of the base GPS antenna in body frame. Positive Y is to the right of the origin. Use antenna phase centroid location if provided by the manufacturer.

Increment

Range

Units

0.01

-5 - 5

meters

GPS_MB1_OFS_Z: Base antenna Z position offset

Note: This parameter is for advanced users

Z position of the base GPS antenna in body frame. Positive Z is down from the origin. Use antenna phase centroid location if provided by the manufacturer.

Increment

Range

Units

0.01

-5 - 5

meters

GPS_MB2_ Parameters

GPS_MB2_TYPE: Moving base type

Note: This parameter is for advanced users

Controls the type of moving base used if using moving base.

RebootRequired

Values

True

Value

Meaning

0

Relative to alternate GPS instance

1

RelativeToCustomBase

GPS_MB2_OFS_X: Base antenna X position offset

Note: This parameter is for advanced users

X position of the base GPS antenna in body frame. Positive X is forward of the origin. Use antenna phase centroid location if provided by the manufacturer.

Increment

Range

Units

0.01

-5 - 5

meters

GPS_MB2_OFS_Y: Base antenna Y position offset

Note: This parameter is for advanced users

Y position of the base GPS antenna in body frame. Positive Y is to the right of the origin. Use antenna phase centroid location if provided by the manufacturer.

Increment

Range

Units

0.01

-5 - 5

meters

GPS_MB2_OFS_Z: Base antenna Z position offset

Note: This parameter is for advanced users

Z position of the base GPS antenna in body frame. Positive Z is down from the origin. Use antenna phase centroid location if provided by the manufacturer.

Increment

Range

Units

0.01

-5 - 5

meters

GRIP_ Parameters

GRIP_ENABLE: Gripper Enable/Disable

Gripper enable/disable

Values

Value

Meaning

0

Disabled

1

Enabled

GRIP_TYPE: Gripper Type

Gripper enable/disable

Values

Value

Meaning

0

None

1

Servo

2

EPM

GRIP_GRAB: Gripper Grab PWM

Note: This parameter is for advanced users

PWM value in microseconds sent to Gripper to initiate grabbing the cargo

Range

Units

1000 - 2000

PWM in microseconds

GRIP_RELEASE: Gripper Release PWM

Note: This parameter is for advanced users

PWM value in microseconds sent to Gripper to release the cargo

Range

Units

1000 - 2000

PWM in microseconds

GRIP_NEUTRAL: Neutral PWM

Note: This parameter is for advanced users

PWM value in microseconds sent to grabber when not grabbing or releasing

Range

Units

1000 - 2000

PWM in microseconds

GRIP_REGRAB: Gripper Regrab interval

Note: This parameter is for advanced users

Time in seconds that gripper will regrab the cargo to ensure grip has not weakened; 0 to disable

Range

Units

0 - 255

seconds

GRIP_UAVCAN_ID: EPM UAVCAN Hardpoint ID

Refer to https://docs.zubax.com/opengrab_epm_v3#UAVCAN_interface

Range

0 - 255

GUIDED_ Parameters

GUIDED_P: PID Proportional Gain

P Gain which produces an output value that is proportional to the current error value

GUIDED_I: PID Integral Gain

I Gain which produces an output that is proportional to both the magnitude and the duration of the error

GUIDED_D: PID Derivative Gain

D Gain which produces an output that is proportional to the rate of change of the error

GUIDED_FF: FF FeedForward Gain

FF Gain which produces an output value that is proportional to the demanded input

GUIDED_IMAX: PID Integral Maximum

The maximum/minimum value that the I term can output

GUIDED_FLTT: PID Target filter frequency in Hz

Target filter frequency in Hz

Units

hertz

GUIDED_FLTE: PID Error filter frequency in Hz

Error filter frequency in Hz

Units

hertz

GUIDED_FLTD: PID Derivative term filter frequency in Hz

Derivative filter frequency in Hz

Units

hertz

GUIDED_SMAX: Slew rate limit

Note: This parameter is for advanced users

Sets an upper limit on the slew rate produced by the combined P and D gains. If the amplitude of the control action produced by the rate feedback exceeds this value, then the D+P gain is reduced to respect the limit. This limits the amplitude of high frequency oscillations caused by an excessive gain. The limit should be set to no more than 25% of the actuators maximum slew rate to allow for load effects. Note: The gain will not be reduced to less than 10% of the nominal value. A value of zero will disable this feature.

Increment

Range

0.5

0 - 200

ICE_ Parameters

ICE_ENABLE: Enable ICEngine control

Note: This parameter is for advanced users

This enables internal combustion engine control

Values

Value

Meaning

0

Disabled

1

Enabled

ICE_START_CHAN: Input channel for engine start

This is an RC input channel for requesting engine start. Engine will try to start when channel is at or above 1700. Engine will stop when channel is at or below 1300. Between 1301 and 1699 the engine will not change state unless a MAVLink command or mission item commands a state change, or the vehicle is disamed. See ICE_STARTCHN_MIN parameter to change engine stop PWM value and/or to enable debouncing of the START_CH to avoid accidental engine kills due to noise on channel.

Values

Value

Meaning

0

None

1

Chan1

2

Chan2

3

Chan3

4

Chan4

5

Chan5

6

Chan6

7

Chan7

8

Chan8

9

Chan9

10

Chan10

11

Chan11

12

Chan12

13

Chan13

14

Chan14

15

Chan15

16

Chan16

ICE_STARTER_TIME: Time to run starter

This is the number of seconds to run the starter when trying to start the engine

Range

Units

0.1 - 5

seconds

ICE_START_DELAY: Time to wait between starts

Delay between start attempts

Range

Units

1 - 10

seconds

ICE_RPM_THRESH: RPM threshold

This is the measured RPM above which the engine is considered to be running

Range

100 - 100000

ICE_PWM_IGN_ON: PWM value for ignition on

This is the value sent to the ignition channel when on

Range

1000 - 2000

ICE_PWM_IGN_OFF: PWM value for ignition off

This is the value sent to the ignition channel when off

Range

1000 - 2000

ICE_PWM_STRT_ON: PWM value for starter on

This is the value sent to the starter channel when on

Range

1000 - 2000

ICE_PWM_STRT_OFF: PWM value for starter off

This is the value sent to the starter channel when off

Range

1000 - 2000

ICE_RPM_CHAN: RPM instance channel to use

This is which of the RPM instances to use for detecting the RPM of the engine

Values

Value

Meaning

0

None

1

RPM1

2

RPM2

ICE_START_PCT: Throttle percentage for engine start

This is the percentage throttle output for engine start

Range

0 - 100

ICE_IDLE_PCT: Throttle percentage for engine idle

This is the minimum percentage throttle output while running, this includes being disarmed, but not safe

Range

0 - 100

ICE_IDLE_RPM: RPM Setpoint for Idle Governor

Note: This parameter is for advanced users

This configures the RPM that will be commanded by the idle governor. Set to -1 to disable

ICE_IDLE_DB: Deadband for Idle Governor

This configures the deadband that is tolerated before adjusting the idle setpoint

ICE_IDLE_SLEW: Slew Rate for idle control

This configures the slewrate used to adjust the idle setpoint in percentage points per second

ICE_OPTIONS: ICE options

Options for ICE control

Bitmask

Bit

Meaning

0

DisableIgnitionRCFailsafe

ICE_STARTCHN_MIN: Input channel for engine start minimum PWM

This is a minimum PWM value for engine start channel for an engine stop to be commanded. Setting this value will avoid RC input glitches with low PWM values from causing an unwanted engine stop. A value of zero means any PWM below 1300 triggers an engine stop.

Range

0 - 1300

INS_ Parameters

INS_GYROFFS_X: Gyro offsets of X axis

Note: This parameter is for advanced users

Gyro sensor offsets of X axis. This is setup on each boot during gyro calibrations

Calibration

Units

1

radians per second

INS_GYROFFS_Y: Gyro offsets of Y axis

Note: This parameter is for advanced users

Gyro sensor offsets of Y axis. This is setup on each boot during gyro calibrations

Calibration

Units

1

radians per second

INS_GYROFFS_Z: Gyro offsets of Z axis

Note: This parameter is for advanced users

Gyro sensor offsets of Z axis. This is setup on each boot during gyro calibrations

Calibration

Units

1

radians per second

INS_GYR2OFFS_X: Gyro2 offsets of X axis

Note: This parameter is for advanced users

Gyro2 sensor offsets of X axis. This is setup on each boot during gyro calibrations

Calibration

Units

1

radians per second

INS_GYR2OFFS_Y: Gyro2 offsets of Y axis

Note: This parameter is for advanced users

Gyro2 sensor offsets of Y axis. This is setup on each boot during gyro calibrations

Calibration

Units

1

radians per second

INS_GYR2OFFS_Z: Gyro2 offsets of Z axis

Note: This parameter is for advanced users

Gyro2 sensor offsets of Z axis. This is setup on each boot during gyro calibrations

Calibration

Units

1

radians per second

INS_GYR3OFFS_X: Gyro3 offsets of X axis

Note: This parameter is for advanced users

Gyro3 sensor offsets of X axis. This is setup on each boot during gyro calibrations

Calibration

Units

1

radians per second

INS_GYR3OFFS_Y: Gyro3 offsets of Y axis

Note: This parameter is for advanced users

Gyro3 sensor offsets of Y axis. This is setup on each boot during gyro calibrations

Calibration

Units

1

radians per second

INS_GYR3OFFS_Z: Gyro3 offsets of Z axis

Note: This parameter is for advanced users

Gyro3 sensor offsets of Z axis. This is setup on each boot during gyro calibrations

Calibration

Units

1

radians per second

INS_ACCSCAL_X: Accelerometer scaling of X axis

Note: This parameter is for advanced users

Accelerometer scaling of X axis. Calculated during acceleration calibration routine

Calibration

Range

1

0.8 - 1.2

INS_ACCSCAL_Y: Accelerometer scaling of Y axis

Note: This parameter is for advanced users

Accelerometer scaling of Y axis Calculated during acceleration calibration routine

Calibration

Range

1

0.8 - 1.2

INS_ACCSCAL_Z: Accelerometer scaling of Z axis

Note: This parameter is for advanced users

Accelerometer scaling of Z axis Calculated during acceleration calibration routine

Calibration

Range

1

0.8 - 1.2

INS_ACCOFFS_X: Accelerometer offsets of X axis

Note: This parameter is for advanced users

Accelerometer offsets of X axis. This is setup using the acceleration calibration or level operations

Calibration

Range

Units

1

-3.5 - 3.5

meters per square second

INS_ACCOFFS_Y: Accelerometer offsets of Y axis

Note: This parameter is for advanced users

Accelerometer offsets of Y axis. This is setup using the acceleration calibration or level operations

Calibration

Range

Units

1

-3.5 - 3.5

meters per square second

INS_ACCOFFS_Z: Accelerometer offsets of Z axis

Note: This parameter is for advanced users

Accelerometer offsets of Z axis. This is setup using the acceleration calibration or level operations

Calibration

Range

Units

1

-3.5 - 3.5

meters per square second

INS_ACC2SCAL_X: Accelerometer2 scaling of X axis

Note: This parameter is for advanced users

Accelerometer2 scaling of X axis. Calculated during acceleration calibration routine

Calibration

Range

1

0.8 - 1.2

INS_ACC2SCAL_Y: Accelerometer2 scaling of Y axis

Note: This parameter is for advanced users

Accelerometer2 scaling of Y axis Calculated during acceleration calibration routine

Calibration

Range

1

0.8 - 1.2

INS_ACC2SCAL_Z: Accelerometer2 scaling of Z axis

Note: This parameter is for advanced users

Accelerometer2 scaling of Z axis Calculated during acceleration calibration routine

Calibration

Range

1

0.8 - 1.2

INS_ACC2OFFS_X: Accelerometer2 offsets of X axis

Note: This parameter is for advanced users

Accelerometer2 offsets of X axis. This is setup using the acceleration calibration or level operations

Calibration

Range

Units

1

-3.5 - 3.5

meters per square second

INS_ACC2OFFS_Y: Accelerometer2 offsets of Y axis

Note: This parameter is for advanced users

Accelerometer2 offsets of Y axis. This is setup using the acceleration calibration or level operations

Calibration

Range

Units

1

-3.5 - 3.5

meters per square second

INS_ACC2OFFS_Z: Accelerometer2 offsets of Z axis

Note: This parameter is for advanced users

Accelerometer2 offsets of Z axis. This is setup using the acceleration calibration or level operations

Calibration

Range

Units

1

-3.5 - 3.5

meters per square second

INS_ACC3SCAL_X: Accelerometer3 scaling of X axis

Note: This parameter is for advanced users

Accelerometer3 scaling of X axis. Calculated during acceleration calibration routine

Calibration

Range

1

0.8 - 1.2

INS_ACC3SCAL_Y: Accelerometer3 scaling of Y axis

Note: This parameter is for advanced users

Accelerometer3 scaling of Y axis Calculated during acceleration calibration routine

Calibration

Range

1

0.8 - 1.2

INS_ACC3SCAL_Z: Accelerometer3 scaling of Z axis

Note: This parameter is for advanced users

Accelerometer3 scaling of Z axis Calculated during acceleration calibration routine

Calibration

Range

1

0.8 - 1.2

INS_ACC3OFFS_X: Accelerometer3 offsets of X axis

Note: This parameter is for advanced users

Accelerometer3 offsets of X axis. This is setup using the acceleration calibration or level operations

Calibration

Range

Units

1

-3.5 - 3.5

meters per square second

INS_ACC3OFFS_Y: Accelerometer3 offsets of Y axis

Note: This parameter is for advanced users

Accelerometer3 offsets of Y axis. This is setup using the acceleration calibration or level operations

Calibration

Range

Units

1

-3.5 - 3.5

meters per square second

INS_ACC3OFFS_Z: Accelerometer3 offsets of Z axis

Note: This parameter is for advanced users

Accelerometer3 offsets of Z axis. This is setup using the acceleration calibration or level operations

Calibration

Range

Units

1

-3.5 - 3.5

meters per square second

INS_GYRO_FILTER: Gyro filter cutoff frequency

Note: This parameter is for advanced users

Filter cutoff frequency for gyroscopes. This can be set to a lower value to try to cope with very high vibration levels in aircraft. A value of zero means no filtering (not recommended!)

Range

Units

0 - 256

hertz

INS_ACCEL_FILTER: Accel filter cutoff frequency

Note: This parameter is for advanced users

Filter cutoff frequency for accelerometers. This can be set to a lower value to try to cope with very high vibration levels in aircraft. A value of zero means no filtering (not recommended!)

Range

Units

0 - 256

hertz

INS_USE: Use first IMU for attitude, velocity and position estimates

Note: This parameter is for advanced users

Use first IMU for attitude, velocity and position estimates

Values

Value

Meaning

0

Disabled

1

Enabled

INS_USE2: Use second IMU for attitude, velocity and position estimates

Note: This parameter is for advanced users

Use second IMU for attitude, velocity and position estimates

Values

Value

Meaning

0

Disabled

1

Enabled

INS_USE3: Use third IMU for attitude, velocity and position estimates

Note: This parameter is for advanced users

Use third IMU for attitude, velocity and position estimates

Values

Value

Meaning

0

Disabled

1

Enabled

INS_STILL_THRESH: Stillness threshold for detecting if we are moving

Note: This parameter is for advanced users

Threshold to tolerate vibration to determine if vehicle is motionless. This depends on the frame type and if there is a constant vibration due to motors before launch or after landing. Total motionless is about 0.05. Suggested values: Planes/rover use 0.1, multirotors use 1, tradHeli uses 5

Range

0.05 - 50

INS_GYR_CAL: Gyro Calibration scheme

Note: This parameter is for advanced users

Conrols when automatic gyro calibration is performed

Values

Value

Meaning

0

Never

1

Start-up only

INS_TRIM_OPTION: Accel cal trim option

Note: This parameter is for advanced users

Specifies how the accel cal routine determines the trims

Values

Value

Meaning

0

Don’t adjust the trims

1

Assume first orientation was level

2

Assume ACC_BODYFIX is perfectly aligned to the vehicle

INS_ACC_BODYFIX: Body-fixed accelerometer

Note: This parameter is for advanced users

The body-fixed accelerometer to be used for trim calculation

Values

Value

Meaning

1

IMU 1

2

IMU 2

3

IMU 3

INS_POS1_X: IMU accelerometer X position

Note: This parameter is for advanced users

X position of the first IMU Accelerometer in body frame. Positive X is forward of the origin. Attention: The IMU should be located as close to the vehicle c.g. as practical so that the value of this parameter is minimised. Failure to do so can result in noisy navigation velocity measurements due to vibration and IMU gyro noise. If the IMU cannot be moved and velocity noise is a problem, a location closer to the IMU can be used as the body frame origin.

Increment

Range

Units

0.01

-5 - 5

meters

INS_POS1_Y: IMU accelerometer Y position

Note: This parameter is for advanced users

Y position of the first IMU accelerometer in body frame. Positive Y is to the right of the origin. Attention: The IMU should be located as close to the vehicle c.g. as practical so that the value of this parameter is minimised. Failure to do so can result in noisy navigation velocity measurements due to vibration and IMU gyro noise. If the IMU cannot be moved and velocity noise is a problem, a location closer to the IMU can be used as the body frame origin.

Increment

Range

Units

0.01

-5 - 5

meters

INS_POS1_Z: IMU accelerometer Z position

Note: This parameter is for advanced users

Z position of the first IMU accelerometer in body frame. Positive Z is down from the origin. Attention: The IMU should be located as close to the vehicle c.g. as practical so that the value of this parameter is minimised. Failure to do so can result in noisy navigation velocity measurements due to vibration and IMU gyro noise. If the IMU cannot be moved and velocity noise is a problem, a location closer to the IMU can be used as the body frame origin.

Increment

Range

Units

0.01

-5 - 5

meters

INS_POS2_X: IMU accelerometer X position

Note: This parameter is for advanced users

X position of the second IMU accelerometer in body frame. Positive X is forward of the origin. Attention: The IMU should be located as close to the vehicle c.g. as practical so that the value of this parameter is minimised. Failure to do so can result in noisy navigation velocity measurements due to vibration and IMU gyro noise. If the IMU cannot be moved and velocity noise is a problem, a location closer to the IMU can be used as the body frame origin.

Increment

Range

Units

0.01

-5 - 5

meters

INS_POS2_Y: IMU accelerometer Y position

Note: This parameter is for advanced users

Y position of the second IMU accelerometer in body frame. Positive Y is to the right of the origin. Attention: The IMU should be located as close to the vehicle c.g. as practical so that the value of this parameter is minimised. Failure to do so can result in noisy navigation velocity measurements due to vibration and IMU gyro noise. If the IMU cannot be moved and velocity noise is a problem, a location closer to the IMU can be used as the body frame origin.

Increment

Range

Units

0.01

-5 - 5

meters

INS_POS2_Z: IMU accelerometer Z position

Note: This parameter is for advanced users

Z position of the second IMU accelerometer in body frame. Positive Z is down from the origin. Attention: The IMU should be located as close to the vehicle c.g. as practical so that the value of this parameter is minimised. Failure to do so can result in noisy navigation velocity measurements due to vibration and IMU gyro noise. If the IMU cannot be moved and velocity noise is a problem, a location closer to the IMU can be used as the body frame origin.

Increment

Range

Units

0.01

-5 - 5

meters

INS_POS3_X: IMU accelerometer X position

Note: This parameter is for advanced users

X position of the third IMU accelerometer in body frame. Positive X is forward of the origin. Attention: The IMU should be located as close to the vehicle c.g. as practical so that the value of this parameter is minimised. Failure to do so can result in noisy navigation velocity measurements due to vibration and IMU gyro noise. If the IMU cannot be moved and velocity noise is a problem, a location closer to the IMU can be used as the body frame origin.

Range

Units

-10 - 10

meters

INS_POS3_Y: IMU accelerometer Y position

Note: This parameter is for advanced users

Y position of the third IMU accelerometer in body frame. Positive Y is to the right of the origin. Attention: The IMU should be located as close to the vehicle c.g. as practical so that the value of this parameter is minimised. Failure to do so can result in noisy navigation velocity measurements due to vibration and IMU gyro noise. If the IMU cannot be moved and velocity noise is a problem, a location closer to the IMU can be used as the body frame origin.

Increment

Range

Units

0.01

-5 - 5

meters

INS_POS3_Z: IMU accelerometer Z position

Note: This parameter is for advanced users

Z position of the third IMU accelerometer in body frame. Positive Z is down from the origin. Attention: The IMU should be located as close to the vehicle c.g. as practical so that the value of this parameter is minimised. Failure to do so can result in noisy navigation velocity measurements due to vibration and IMU gyro noise. If the IMU cannot be moved and velocity noise is a problem, a location closer to the IMU can be used as the body frame origin.

Increment

Range

Units

0.01

-5 - 5

meters

INS_GYR_ID: Gyro ID

Note: This parameter is for advanced users

Gyro sensor ID, taking into account its type, bus and instance

ReadOnly

True

INS_GYR2_ID: Gyro2 ID

Note: This parameter is for advanced users

Gyro2 sensor ID, taking into account its type, bus and instance

ReadOnly

True

INS_GYR3_ID: Gyro3 ID

Note: This parameter is for advanced users

Gyro3 sensor ID, taking into account its type, bus and instance

ReadOnly

True

INS_ACC_ID: Accelerometer ID

Note: This parameter is for advanced users

Accelerometer sensor ID, taking into account its type, bus and instance

ReadOnly

True

INS_ACC2_ID: Accelerometer2 ID

Note: This parameter is for advanced users

Accelerometer2 sensor ID, taking into account its type, bus and instance

ReadOnly

True

INS_ACC3_ID: Accelerometer3 ID

Note: This parameter is for advanced users

Accelerometer3 sensor ID, taking into account its type, bus and instance

ReadOnly

True

INS_FAST_SAMPLE: Fast sampling mask

Note: This parameter is for advanced users

Mask of IMUs to enable fast sampling on, if available

Bitmask

Bit

Meaning

0

FirstIMU

1

SecondIMU

2

ThirdIMU

INS_ENABLE_MASK: IMU enable mask

Note: This parameter is for advanced users

Bitmask of IMUs to enable. It can be used to prevent startup of specific detected IMUs

Bitmask

Bit

Meaning

0

FirstIMU

1

SecondIMU

2

ThirdIMU

INS_GYRO_RATE: Gyro rate for IMUs with Fast Sampling enabled

Note: This parameter is for advanced users

Gyro rate for IMUs with fast sampling enabled. The gyro rate is the sample rate at which the IMU filters operate and needs to be at least double the maximum filter frequency. If the sensor does not support the selected rate the next highest supported rate will be used. For IMUs which do not support fast sampling this setting is ignored and the default gyro rate of 1Khz is used.

RebootRequired

Values

True

Value

Meaning

0

1kHz

1

2kHz

2

4kHz

3

8kHz

INS_ACC1_CALTEMP: Calibration temperature for 1st accelerometer

Note: This parameter is for advanced users

Temperature that the 1st accelerometer was calibrated at

Calibration

Units

1

degrees Celsius

INS_GYR1_CALTEMP: Calibration temperature for 1st gyroscope

Note: This parameter is for advanced users

Temperature that the 1st gyroscope was calibrated at

Calibration

Units

1

degrees Celsius

INS_ACC2_CALTEMP: Calibration temperature for 2nd accelerometer

Note: This parameter is for advanced users

Temperature that the 2nd accelerometer was calibrated at

Calibration

Units

1

degrees Celsius

INS_GYR2_CALTEMP: Calibration temperature for 2nd gyroscope

Note: This parameter is for advanced users

Temperature that the 2nd gyroscope was calibrated at

Calibration

Units

1

degrees Celsius

INS_ACC3_CALTEMP: Calibration temperature for 3rd accelerometer

Note: This parameter is for advanced users

Temperature that the 3rd accelerometer was calibrated at

Calibration

Units

1

degrees Celsius

INS_GYR3_CALTEMP: Calibration temperature for 3rd gyroscope

Note: This parameter is for advanced users

Temperature that the 3rd gyroscope was calibrated at

Calibration

Units

1

degrees Celsius

INS_TCAL_OPTIONS: Options for temperature calibration

Note: This parameter is for advanced users

This enables optional temperature calibration features. Setting PersistParams will save the accelerometer and temperature calibration parameters in the bootloader sector on the next update of the bootloader.

Bitmask

Bit

Meaning

0

PersistParams

INS_HNTCH_ Parameters

INS_HNTCH_ENABLE: Harmonic Notch Filter enable

Note: This parameter is for advanced users

Harmonic Notch Filter enable

Values

Value

Meaning

0

Disabled

1

Enabled

INS_HNTCH_FREQ: Harmonic Notch Filter base frequency

Note: This parameter is for advanced users

Harmonic Notch Filter base center frequency in Hz. This should be set at most half the backend gyro rate (which is typically 1Khz). For helicopters using RPM sensor to dynamically set the notch frequency, use this parameter to provide a lower limit to the dynamic notch filter. Recommend setting it to half the operating rotor speed in Hz.

Range

Units

10 - 495

hertz

INS_HNTCH_BW: Harmonic Notch Filter bandwidth

Note: This parameter is for advanced users

Harmonic Notch Filter bandwidth in Hz. This is typically set to half the base frequency. The ratio of base frequency to bandwidth determines the notch quality factor and is fixed across harmonics.

Range

Units

5 - 250

hertz

INS_HNTCH_ATT: Harmonic Notch Filter attenuation

Note: This parameter is for advanced users

Harmonic Notch Filter attenuation in dB. Values greater than 40dB will typically produce a hard notch rather than a modest attenuation of motor noise.

Range

Units

5 - 50

decibel

INS_HNTCH_HMNCS: Harmonic Notch Filter harmonics

Note: This parameter is for advanced users

Bitmask of harmonic frequencies to apply Harmonic Notch Filter to. This option takes effect on the next reboot. A maximum of 3 harmonics can be used at any one time.

Bitmask

RebootRequired

Bit

Meaning

0

1st harmonic

1

2nd harmonic

2

3rd harmonic

3

4th hamronic

4

5th harmonic

5

6th harmonic

6

7th harmonic

7

8th harmonic

True

INS_HNTCH_REF: Harmonic Notch Filter reference value

Note: This parameter is for advanced users

A reference value of zero disables dynamic updates on the Harmonic Notch Filter and a positive value enables dynamic updates on the Harmonic Notch Filter. For throttle-based scaling, this parameter is the reference value associated with the specified frequency to facilitate frequency scaling of the Harmonic Notch Filter. For RPM and ESC telemetry based tracking, this parameter is set to 1 to enable the Harmonic Notch Filter using the RPM sensor or ESC telemetry set to measure rotor speed. The sensor data is converted to Hz automatically for use in the Harmonic Notch Filter. This reference value may also be used to scale the sensor data, if required. For example, rpm sensor data is required to measure heli motor RPM. Therefore the reference value can be used to scale the RPM sensor to the rotor RPM.

Range

RebootRequired

0.0 - 1.0

True

INS_HNTCH_MODE: Harmonic Notch Filter dynamic frequency tracking mode

Note: This parameter is for advanced users

Harmonic Notch Filter dynamic frequency tracking mode. Dynamic updates can be throttle, RPM sensor, ESC telemetry or dynamic FFT based. Throttle-based updates should only be used with multicopters.

Range

Values

0 - 4

Value

Meaning

0

Disabled

1

Throttle

2

RPM Sensor

3

ESC Telemetry

4

Dynamic FFT

INS_HNTCH_OPTS: Harmonic Notch Filter options

Note: This parameter is for advanced users

Harmonic Notch Filter options. Double-notches can provide deeper attenuation across a wider bandwidth than single notches and are suitable for larger aircraft. Dynamic harmonics attaches a harmonic notch to each detected noise frequency instead of simply being multiples of the base frequency, in the case of FFT it will attach notches to each of three detected noise peaks, in the case of ESC it will attach notches to each of four motor RPM values. Loop rate update changes the notch center frequency at the scheduler loop rate rather than at the default of 200Hz.

Bitmask

RebootRequired

Bit

Meaning

0

Double notch

1

Dynamic harmonic

2

Update at loop rate

True

INS_LOG_ Parameters

INS_LOG_BAT_CNT: sample count per batch

Note: This parameter is for advanced users

Number of samples to take when logging streams of IMU sensor readings. Will be rounded down to a multiple of 32. This option takes effect on the next reboot.

Increment

RebootRequired

32

True

INS_LOG_BAT_MASK: Sensor Bitmask

Note: This parameter is for advanced users

Bitmap of which IMUs to log batch data for. This option takes effect on the next reboot.

Bitmask

RebootRequired

Bit

Meaning

0

IMU1

1

IMU2

2

IMU3

True

INS_LOG_BAT_OPT: Batch Logging Options Mask

Note: This parameter is for advanced users

Options for the BatchSampler. Post-filter and sensor-rate logging cannot be used at the same time.

Bitmask

Bit

Meaning

0

Sensor-Rate Logging (sample at full sensor rate seen by AP)

1

Sample post-filtering

INS_LOG_BAT_LGIN: logging interval

Interval between pushing samples to the AP_Logger log

Increment

Units

10

milliseconds

INS_LOG_BAT_LGCT: logging count

Number of samples to push to count every INS_LOG_BAT_LGIN

Increment

1

INS_NOTCH_ Parameters

INS_NOTCH_ENABLE: Enable

Note: This parameter is for advanced users

Enable notch filter

Values

Value

Meaning

0

Disabled

1

Enabled

INS_NOTCH_ATT: Attenuation

Note: This parameter is for advanced users

Notch attenuation in dB

Range

Units

5 - 30

decibel

INS_NOTCH_FREQ: Frequency

Note: This parameter is for advanced users

Notch center frequency in Hz

Range

Units

10 - 400

hertz

INS_NOTCH_BW: Bandwidth

Note: This parameter is for advanced users

Notch bandwidth in Hz

Range

Units

5 - 100

hertz

INS_TCAL1_ Parameters

INS_TCAL1_ENABLE: Enable temperature calibration

Note: This parameter is for advanced users

Enable the use of temperature calibration parameters for this IMU. For automatic learning set to 2 and also set the INS_TCALn_TMAX to the target temperature, then reboot

RebootRequired

Values

True

Value

Meaning

0

Disabled

1

Enabled

2

LearnCalibration

INS_TCAL1_TMIN: Temperature calibration min

Note: This parameter is for advanced users

The minimum temperature that the calibration is valid for

Calibration

Range

Units

1

-70 - 80

degrees Celsius

INS_TCAL1_TMAX: Temperature calibration max

Note: This parameter is for advanced users

The maximum temperature that the calibration is valid for. This must be at least 10 degrees above TMIN for calibration

Calibration

Range

Units

1

-70 - 80

degrees Celsius

INS_TCAL1_ACC1_X: Accelerometer 1st order temperature coefficient X axis

Note: This parameter is for advanced users

This is the 1st order temperature coefficient from a temperature calibration

Calibration

1

INS_TCAL1_ACC1_Y: Accelerometer 1st order temperature coefficient Y axis

Note: This parameter is for advanced users

This is the 1st order temperature coefficient from a temperature calibration

Calibration

1

INS_TCAL1_ACC1_Z: Accelerometer 1st order temperature coefficient Z axis

Note: This parameter is for advanced users

This is the 1st order temperature coefficient from a temperature calibration

Calibration

1

INS_TCAL1_ACC2_X: Accelerometer 2nd order temperature coefficient X axis

Note: This parameter is for advanced users

This is the 2nd order temperature coefficient from a temperature calibration

Calibration

1

INS_TCAL1_ACC2_Y: Accelerometer 2nd order temperature coefficient Y axis

Note: This parameter is for advanced users

This is the 2nd order temperature coefficient from a temperature calibration

Calibration

1

INS_TCAL1_ACC2_Z: Accelerometer 2nd order temperature coefficient Z axis

Note: This parameter is for advanced users

This is the 2nd order temperature coefficient from a temperature calibration

Calibration

1

INS_TCAL1_ACC3_X: Accelerometer 3rd order temperature coefficient X axis

Note: This parameter is for advanced users

This is the 3rd order temperature coefficient from a temperature calibration

Calibration

1

INS_TCAL1_ACC3_Y: Accelerometer 3rd order temperature coefficient Y axis

Note: This parameter is for advanced users

This is the 3rd order temperature coefficient from a temperature calibration

Calibration

1

INS_TCAL1_ACC3_Z: Accelerometer 3rd order temperature coefficient Z axis

Note: This parameter is for advanced users

This is the 3rd order temperature coefficient from a temperature calibration

Calibration

1

INS_TCAL1_GYR1_X: Gyroscope 1st order temperature coefficient X axis

Note: This parameter is for advanced users

This is the 1st order temperature coefficient from a temperature calibration

Calibration

1

INS_TCAL1_GYR1_Y: Gyroscope 1st order temperature coefficient Y axis

Note: This parameter is for advanced users

This is the 1st order temperature coefficient from a temperature calibration

Calibration

1

INS_TCAL1_GYR1_Z: Gyroscope 1st order temperature coefficient Z axis

Note: This parameter is for advanced users

This is the 1st order temperature coefficient from a temperature calibration

Calibration

1

INS_TCAL1_GYR2_X: Gyroscope 2nd order temperature coefficient X axis

Note: This parameter is for advanced users

This is the 2nd order temperature coefficient from a temperature calibration

Calibration

1

INS_TCAL1_GYR2_Y: Gyroscope 2nd order temperature coefficient Y axis

Note: This parameter is for advanced users

This is the 2nd order temperature coefficient from a temperature calibration

Calibration

1

INS_TCAL1_GYR2_Z: Gyroscope 2nd order temperature coefficient Z axis

Note: This parameter is for advanced users

This is the 2nd order temperature coefficient from a temperature calibration

Calibration

1

INS_TCAL1_GYR3_X: Gyroscope 3rd order temperature coefficient X axis

Note: This parameter is for advanced users

This is the 3rd order temperature coefficient from a temperature calibration

Calibration

1

INS_TCAL1_GYR3_Y: Gyroscope 3rd order temperature coefficient Y axis

Note: This parameter is for advanced users

This is the 3rd order temperature coefficient from a temperature calibration

Calibration

1

INS_TCAL1_GYR3_Z: Gyroscope 3rd order temperature coefficient Z axis

Note: This parameter is for advanced users

This is the 3rd order temperature coefficient from a temperature calibration

Calibration

1

INS_TCAL2_ Parameters

INS_TCAL2_ENABLE: Enable temperature calibration

Note: This parameter is for advanced users

Enable the use of temperature calibration parameters for this IMU. For automatic learning set to 2 and also set the INS_TCALn_TMAX to the target temperature, then reboot

RebootRequired

Values

True

Value

Meaning

0

Disabled

1

Enabled

2

LearnCalibration

INS_TCAL2_TMIN: Temperature calibration min

Note: This parameter is for advanced users

The minimum temperature that the calibration is valid for

Calibration

Range

Units

1

-70 - 80

degrees Celsius

INS_TCAL2_TMAX: Temperature calibration max

Note: This parameter is for advanced users

The maximum temperature that the calibration is valid for. This must be at least 10 degrees above TMIN for calibration

Calibration

Range

Units

1

-70 - 80

degrees Celsius

INS_TCAL2_ACC1_X: Accelerometer 1st order temperature coefficient X axis

Note: This parameter is for advanced users

This is the 1st order temperature coefficient from a temperature calibration

Calibration

1

INS_TCAL2_ACC1_Y: Accelerometer 1st order temperature coefficient Y axis

Note: This parameter is for advanced users

This is the 1st order temperature coefficient from a temperature calibration

Calibration

1

INS_TCAL2_ACC1_Z: Accelerometer 1st order temperature coefficient Z axis

Note: This parameter is for advanced users

This is the 1st order temperature coefficient from a temperature calibration

Calibration

1

INS_TCAL2_ACC2_X: Accelerometer 2nd order temperature coefficient X axis

Note: This parameter is for advanced users

This is the 2nd order temperature coefficient from a temperature calibration

Calibration

1

INS_TCAL2_ACC2_Y: Accelerometer 2nd order temperature coefficient Y axis

Note: This parameter is for advanced users

This is the 2nd order temperature coefficient from a temperature calibration

Calibration

1

INS_TCAL2_ACC2_Z: Accelerometer 2nd order temperature coefficient Z axis

Note: This parameter is for advanced users

This is the 2nd order temperature coefficient from a temperature calibration

Calibration

1

INS_TCAL2_ACC3_X: Accelerometer 3rd order temperature coefficient X axis

Note: This parameter is for advanced users

This is the 3rd order temperature coefficient from a temperature calibration

Calibration

1

INS_TCAL2_ACC3_Y: Accelerometer 3rd order temperature coefficient Y axis

Note: This parameter is for advanced users

This is the 3rd order temperature coefficient from a temperature calibration

Calibration

1

INS_TCAL2_ACC3_Z: Accelerometer 3rd order temperature coefficient Z axis

Note: This parameter is for advanced users

This is the 3rd order temperature coefficient from a temperature calibration

Calibration

1

INS_TCAL2_GYR1_X: Gyroscope 1st order temperature coefficient X axis

Note: This parameter is for advanced users

This is the 1st order temperature coefficient from a temperature calibration

Calibration

1

INS_TCAL2_GYR1_Y: Gyroscope 1st order temperature coefficient Y axis

Note: This parameter is for advanced users

This is the 1st order temperature coefficient from a temperature calibration

Calibration

1

INS_TCAL2_GYR1_Z: Gyroscope 1st order temperature coefficient Z axis

Note: This parameter is for advanced users

This is the 1st order temperature coefficient from a temperature calibration

Calibration

1

INS_TCAL2_GYR2_X: Gyroscope 2nd order temperature coefficient X axis

Note: This parameter is for advanced users

This is the 2nd order temperature coefficient from a temperature calibration

Calibration

1

INS_TCAL2_GYR2_Y: Gyroscope 2nd order temperature coefficient Y axis

Note: This parameter is for advanced users

This is the 2nd order temperature coefficient from a temperature calibration

Calibration

1

INS_TCAL2_GYR2_Z: Gyroscope 2nd order temperature coefficient Z axis

Note: This parameter is for advanced users

This is the 2nd order temperature coefficient from a temperature calibration

Calibration

1

INS_TCAL2_GYR3_X: Gyroscope 3rd order temperature coefficient X axis

Note: This parameter is for advanced users

This is the 3rd order temperature coefficient from a temperature calibration

Calibration

1

INS_TCAL2_GYR3_Y: Gyroscope 3rd order temperature coefficient Y axis

Note: This parameter is for advanced users

This is the 3rd order temperature coefficient from a temperature calibration

Calibration

1

INS_TCAL2_GYR3_Z: Gyroscope 3rd order temperature coefficient Z axis

Note: This parameter is for advanced users

This is the 3rd order temperature coefficient from a temperature calibration

Calibration

1

INS_TCAL3_ Parameters

INS_TCAL3_ENABLE: Enable temperature calibration

Note: This parameter is for advanced users

Enable the use of temperature calibration parameters for this IMU. For automatic learning set to 2 and also set the INS_TCALn_TMAX to the target temperature, then reboot

RebootRequired

Values

True

Value

Meaning

0

Disabled

1

Enabled

2

LearnCalibration

INS_TCAL3_TMIN: Temperature calibration min

Note: This parameter is for advanced users

The minimum temperature that the calibration is valid for

Calibration

Range

Units

1

-70 - 80

degrees Celsius

INS_TCAL3_TMAX: Temperature calibration max

Note: This parameter is for advanced users

The maximum temperature that the calibration is valid for. This must be at least 10 degrees above TMIN for calibration

Calibration

Range

Units

1

-70 - 80

degrees Celsius

INS_TCAL3_ACC1_X: Accelerometer 1st order temperature coefficient X axis

Note: This parameter is for advanced users

This is the 1st order temperature coefficient from a temperature calibration

Calibration

1

INS_TCAL3_ACC1_Y: Accelerometer 1st order temperature coefficient Y axis

Note: This parameter is for advanced users

This is the 1st order temperature coefficient from a temperature calibration

Calibration

1

INS_TCAL3_ACC1_Z: Accelerometer 1st order temperature coefficient Z axis

Note: This parameter is for advanced users

This is the 1st order temperature coefficient from a temperature calibration

Calibration

1

INS_TCAL3_ACC2_X: Accelerometer 2nd order temperature coefficient X axis

Note: This parameter is for advanced users

This is the 2nd order temperature coefficient from a temperature calibration

Calibration

1

INS_TCAL3_ACC2_Y: Accelerometer 2nd order temperature coefficient Y axis

Note: This parameter is for advanced users

This is the 2nd order temperature coefficient from a temperature calibration

Calibration

1

INS_TCAL3_ACC2_Z: Accelerometer 2nd order temperature coefficient Z axis

Note: This parameter is for advanced users

This is the 2nd order temperature coefficient from a temperature calibration

Calibration

1

INS_TCAL3_ACC3_X: Accelerometer 3rd order temperature coefficient X axis

Note: This parameter is for advanced users

This is the 3rd order temperature coefficient from a temperature calibration

Calibration

1

INS_TCAL3_ACC3_Y: Accelerometer 3rd order temperature coefficient Y axis

Note: This parameter is for advanced users

This is the 3rd order temperature coefficient from a temperature calibration

Calibration

1

INS_TCAL3_ACC3_Z: Accelerometer 3rd order temperature coefficient Z axis

Note: This parameter is for advanced users

This is the 3rd order temperature coefficient from a temperature calibration

Calibration

1

INS_TCAL3_GYR1_X: Gyroscope 1st order temperature coefficient X axis

Note: This parameter is for advanced users

This is the 1st order temperature coefficient from a temperature calibration

Calibration

1

INS_TCAL3_GYR1_Y: Gyroscope 1st order temperature coefficient Y axis

Note: This parameter is for advanced users

This is the 1st order temperature coefficient from a temperature calibration

Calibration

1

INS_TCAL3_GYR1_Z: Gyroscope 1st order temperature coefficient Z axis

Note: This parameter is for advanced users

This is the 1st order temperature coefficient from a temperature calibration

Calibration

1

INS_TCAL3_GYR2_X: Gyroscope 2nd order temperature coefficient X axis

Note: This parameter is for advanced users

This is the 2nd order temperature coefficient from a temperature calibration

Calibration

1

INS_TCAL3_GYR2_Y: Gyroscope 2nd order temperature coefficient Y axis

Note: This parameter is for advanced users

This is the 2nd order temperature coefficient from a temperature calibration

Calibration

1

INS_TCAL3_GYR2_Z: Gyroscope 2nd order temperature coefficient Z axis

Note: This parameter is for advanced users

This is the 2nd order temperature coefficient from a temperature calibration

Calibration

1

INS_TCAL3_GYR3_X: Gyroscope 3rd order temperature coefficient X axis

Note: This parameter is for advanced users

This is the 3rd order temperature coefficient from a temperature calibration

Calibration

1

INS_TCAL3_GYR3_Y: Gyroscope 3rd order temperature coefficient Y axis

Note: This parameter is for advanced users

This is the 3rd order temperature coefficient from a temperature calibration

Calibration

1

INS_TCAL3_GYR3_Z: Gyroscope 3rd order temperature coefficient Z axis

Note: This parameter is for advanced users

This is the 3rd order temperature coefficient from a temperature calibration

Calibration

1

LAND_ Parameters

LAND_SLOPE_RCALC: Landing slope re-calc threshold

Note: This parameter is for advanced users

This parameter is used when using a rangefinder during landing for altitude correction from baro drift (RNGFND_LANDING=1) and the altitude correction indicates your altitude is lower than the intended slope path. This value is the threshold of the correction to re-calculate the landing approach slope. Set to zero to keep the original slope all the way down and any detected baro drift will be corrected by pitching/throttling up to snap back to resume the original slope path. Otherwise, when a rangefinder altitude correction exceeds this threshold it will trigger a slope re-calculate to give a shallower slope. This also smoothes out the approach when flying over objects such as trees. Recommend a value of 2m.

Increment

Range

Units

0.5

0 - 5

meters

LAND_ABORT_DEG: Landing auto-abort slope threshold

Note: This parameter is for advanced users

This parameter is used when using a rangefinder during landing for altitude correction from baro drift (RNGFND_LANDING=1) and the altitude correction indicates your actual altitude is higher than the intended slope path. Normally it would pitch down steeply but that can result in a crash with high airspeed so this allows remembering the baro offset and self-abort the landing and come around for another landing with the correct baro offset applied for a perfect slope. An auto-abort go-around will only happen once, next attempt will not auto-abort again. This operation happens entirely automatically in AUTO mode. This value is the delta degrees threshold to trigger the go-around compared to the original slope. Example: if set to 5 deg and the mission planned slope is 15 deg then if the new slope is 21 then it will go-around. Set to 0 to disable. Requires LAND_SLOPE_RCALC > 0.

Increment

Range

Units

0.1

0 - 90

degrees

LAND_PITCH_CD: Landing Pitch

Note: This parameter is for advanced users

Used in autoland to give the minimum pitch in the final stage of landing (after the flare). This parameter can be used to ensure that the final landing attitude is appropriate for the type of undercarriage on the aircraft. Note that it is a minimum pitch only - the landing code will control pitch above this value to try to achieve the configured landing sink rate.

Increment

Range

Units

10

-2000 - 2000

centidegrees

LAND_FLARE_ALT: Landing flare altitude

Note: This parameter is for advanced users

Altitude in autoland at which to lock heading and flare to the LAND_PITCH_CD pitch. Note that this option is secondary to LAND_FLARE_SEC. For a good landing it preferable that the flare is triggered by LAND_FLARE_SEC.

Increment

Range

Units

0.1

0 - 30

meters

LAND_FLARE_SEC: Landing flare time

Note: This parameter is for advanced users

Vertical time before landing point at which to lock heading and flare with the motor stopped. This is vertical time, and is calculated based solely on the current height above the ground and the current descent rate. Set to 0 if you only wish to flare based on altitude (see LAND_FLARE_ALT).

Increment

Range

Units

0.1

0 - 10

seconds

LAND_PF_ALT: Landing pre-flare altitude

Note: This parameter is for advanced users

Altitude to trigger pre-flare flight stage where LAND_PF_ARSPD controls airspeed. The pre-flare flight stage trigger works just like LAND_FLARE_ALT but higher. Disabled when LAND_PF_ARSPD is 0.

Increment

Range

Units

0.1

0 - 30

meters

LAND_PF_SEC: Landing pre-flare time

Note: This parameter is for advanced users

Vertical time to ground to trigger pre-flare flight stage where LAND_PF_ARSPD controls airspeed. This pre-flare flight stage trigger works just like LAND_FLARE_SEC but earlier. Disabled when LAND_PF_ARSPD is 0.

Increment

Range

Units

0.1

0 - 10

seconds

LAND_PF_ARSPD: Landing pre-flare airspeed

Note: This parameter is for advanced users

Desired airspeed during pre-flare flight stage. This is useful to reduce airspeed just before the flare. Use 0 to disable.

Increment

Range

Units

0.1

0 - 30

meters per second

LAND_THR_SLEW: Landing throttle slew rate

This parameter sets the slew rate for the throttle during auto landing. When this is zero the THR_SLEWRATE parameter is used during landing. The value is a percentage throttle change per second, so a value of 20 means to advance the throttle over 5 seconds on landing. Values below 50 are not recommended as it may cause a stall when airspeed is low and you can not throttle up fast enough.

Increment

Range

Units

1

0 - 127

percent

LAND_DISARMDELAY: Landing disarm delay

Note: This parameter is for advanced users

After a landing has completed using a LAND waypoint, automatically disarm after this many seconds have passed. Use 0 to not disarm.

Increment

Range

Units

1

0 - 127

seconds

LAND_THEN_NEUTRL: Set servos to neutral after landing

Note: This parameter is for advanced users

When enabled, after an autoland and auto-disarm via LAND_DISARMDELAY happens then set all servos to neutral. This is helpful when an aircraft has a rough landing upside down or a crazy angle causing the servos to strain.

Values

Value

Meaning

0

Disabled

1

Servos to Neutral

2

Servos to Zero PWM

LAND_ABORT_THR: Landing abort using throttle

Note: This parameter is for advanced users

Allow a landing abort to trigger with a throttle > 95%

Values

Value

Meaning

0

Disabled

1

Enabled

LAND_FLAP_PERCNT: Landing flap percentage

Note: This parameter is for advanced users

The amount of flaps (as a percentage) to apply in the landing approach and flare of an automatic landing

Increment

Range

Units

1

0 - 100

percent

LAND_TYPE: Auto-landing type

Specifies the auto-landing type to use

Values

Value

Meaning

0

Standard Glide Slope

1

Deepstall

LAND_OPTIONS: Landing options bitmask

Note: This parameter is for advanced users

Bitmask of options to use with landing.

Bitmask

0: honor min throttle during landing flare

LAND_DS_ Parameters

LAND_DS_V_FWD: Deepstall forward velocity

Note: This parameter is for advanced users

The forward velocity of the aircraft while stalled

Range

Units

0 - 20

meters per second

LAND_DS_SLOPE_A: Deepstall slope a

Note: This parameter is for advanced users

The a component of distance = a*wind + b

LAND_DS_SLOPE_B: Deepstall slope b

Note: This parameter is for advanced users

The a component of distance = a*wind + b

LAND_DS_APP_EXT: Deepstall approach extension

Note: This parameter is for advanced users

The horizontal distance from which the aircraft will approach before the stall

Range

Units

10 - 200

meters

LAND_DS_V_DWN: Deepstall velocity down

Note: This parameter is for advanced users

The downward velocity of the aircraft while stalled

Range

Units

0 - 20

meters per second

LAND_DS_SLEW_SPD: Deepstall slew speed

Note: This parameter is for advanced users

The speed at which the elevator slews to deepstall

Range

Units

0 - 2

seconds

LAND_DS_ELEV_PWM: Deepstall elevator PWM

Note: This parameter is for advanced users

The PWM value in microseconds for the elevator at full deflection in deepstall

Range

Units

900 - 2100

PWM in microseconds

LAND_DS_ARSP_MAX: Deepstall enabled airspeed

Note: This parameter is for advanced users

The maximum aispeed where the deepstall steering controller is allowed to have control

Range

Units

5 - 20

meters per second

LAND_DS_ARSP_MIN: Deepstall minimum derating airspeed

Note: This parameter is for advanced users

Deepstall lowest airspeed where the deepstall controller isn't allowed full control

Range

Units

5 - 20

meters per second

LAND_DS_L1: Deepstall L1 period

Note: This parameter is for advanced users

Deepstall L1 navigational controller period

Range

Units

5 - 50

seconds

LAND_DS_L1_I: Deepstall L1 I gain

Note: This parameter is for advanced users

Deepstall L1 integratior gain

Range

0 - 1

LAND_DS_YAW_LIM: Deepstall yaw rate limit

Note: This parameter is for advanced users

The yaw rate limit while navigating in deepstall

Range

Units

0 - 90

degrees per second

LAND_DS_L1_TCON: Deepstall L1 time constant

Note: This parameter is for advanced users

Time constant for deepstall L1 control

Range

Units

0 - 1

seconds

LAND_DS_P: P gain

P gain

LAND_DS_I: I gain

I gain

LAND_DS_D: D gain

D gain

LAND_DS_IMAX: IMax

Maximum integrator value

LAND_DS_ABORTALT: Deepstall minimum abort altitude

Note: This parameter is for advanced users

The minimum altitude which the aircraft must be above to abort a deepstall landing

Range

Units

0 - 50

meters

LAND_DS_AIL_SCL: Aileron landing gain scalaing

Note: This parameter is for advanced users

A scalar to reduce or increase the aileron control

Range

0 - 2.0

LGR_ Parameters

LGR_STARTUP: Landing Gear Startup position

Landing Gear Startup behaviour control

Values

Value

Meaning

0

WaitForPilotInput

1

Retract

2

Deploy

LGR_DEPLOY_PIN: Chassis deployment feedback pin

Pin number to use for detection of gear deployment. If set to -1 feedback is disabled.

RebootRequired

Values

True

Value

Meaning

-1

Disabled

50

AUX1

51

AUX2

52

AUX3

53

AUX4

54

AUX5

55

AUX6

LGR_DEPLOY_POL: Chassis deployment feedback pin polarity

Polarity for feedback pin. If this is 1 then the pin should be high when gear are deployed. If set to 0 then then deployed gear level is low.

Values

Value

Meaning

0

Low

1

High

LGR_WOW_PIN: Weight on wheels feedback pin

Pin number to use for feedback of weight on wheels condition. If set to -1 feedback is disabled.

RebootRequired

Values

True

Value

Meaning

-1

Disabled

50

AUX1

51

AUX2

52

AUX3

53

AUX4

54

AUX5

55

AUX6

LGR_WOW_POL: Weight on wheels feedback pin polarity

Polarity for feedback pin. If this is 1 then the pin should be high when there is weight on wheels. If set to 0 then then weight on wheels level is low.

Values

Value

Meaning

0

Low

1

High

LGR_DEPLOY_ALT: Landing gear deployment altitude

Altitude where the landing gear will be deployed. This should be lower than the RETRACT_ALT. If zero then altitude is not used for deploying landing gear. Only applies when vehicle is armed.

Increment

Range

Units

1

0 - 1000

meters

LGR_RETRACT_ALT: Landing gear retract altitude

Altitude where the landing gear will be retracted. This should be higher than the DEPLOY_ALT. If zero then altitude is not used for retracting landing gear. Only applies when vehicle is armed.

Increment

Range

Units

1

0 - 1000

meters

LGR_OPTIONS: Landing gear auto retract/deploy options

Options to retract or deploy landing gear in Auto or Guided mode

Bitmask

Bit

Meaning

0

Retract after Takeoff

1

Deploy during Land

LOG Parameters

LOG_BACKEND_TYPE: AP_Logger Backend Storage type

Bitmap of what Logger backend types to enable. Block-based logging is available on SITL and boards with dataflash chips. Multiple backends can be selected.

Bitmask

Bit

Meaning

0

File

1

MAVLink

2

Block

LOG_FILE_BUFSIZE: Maximum AP_Logger File and Block Backend buffer size (in kilobytes)

The File and Block backends use a buffer to store data before writing to the block device. Raising this value may reduce "gaps" in your SD card logging. This buffer size may be reduced depending on available memory. PixHawk requires at least 4 kilobytes. Maximum value available here is 64 kilobytes.

LOG_DISARMED: Enable logging while disarmed

If LOG_DISARMED is set to 1 then logging will be enabled while disarmed. This can make for very large logfiles but can help a lot when tracking down startup issues

Values

Value

Meaning

0

Disabled

1

Enabled

LOG_REPLAY: Enable logging of information needed for Replay

If LOG_REPLAY is set to 1 then the EKF2 state estimator will log detailed information needed for diagnosing problems with the Kalman filter. It is suggested that you also raise LOG_FILE_BUFSIZE to give more buffer space for logging and use a high quality microSD card to ensure no sensor data is lost

Values

Value

Meaning

0

Disabled

1

Enabled

LOG_FILE_DSRMROT: Stop logging to current file on disarm

When set, the current log file is closed when the vehicle is disarmed. If LOG_DISARMED is set then a fresh log will be opened. Applies to the File and Block logging backends.

Values

Value

Meaning

0

Disabled

1

Enabled

LOG_FILE_TIMEOUT: Timeout before giving up on file writes

This controls the amount of time before failing writes to a log file cause the file to be closed and logging stopped.

Units

seconds

LOG_FILE_MB_FREE: Old logs on the SD card will be deleted to maintain this amount of free space

Set this such that the free space is larger than your largest typical flight log

Range

Units

10 - 1000

megabyte

MIS_ Parameters

MIS_TOTAL: Total mission commands

Note: This parameter is for advanced users

The number of mission mission items that has been loaded by the ground station. Do not change this manually.

Increment

Range

ReadOnly

1

0 - 32766

True

MIS_RESTART: Mission Restart when entering Auto mode

Note: This parameter is for advanced users

Controls mission starting point when entering Auto mode (either restart from beginning of mission or resume from last command run)

Values

Value

Meaning

0

Resume Mission

1

Restart Mission

MIS_OPTIONS: Mission options bitmask

Note: This parameter is for advanced users

Bitmask of what options to use in missions.

Bitmask

Bit

Meaning

0

Clear Mission on reboot

1

Use distance to land calc on battery failsafe

2

ContinueAfterLand

MNT Parameters

MNT_TYPE: Mount Type

Mount Type (None, Servo or MAVLink)

RebootRequired

Values

True

Value

Meaning

0

None

1

Servo

2

3DR Solo

3

Alexmos Serial

4

SToRM32 MAVLink

5

SToRM32 Serial

MNT_DEFLT_MODE: Mount default operating mode

Mount default operating mode on startup and after control is returned from autopilot

Values

Value

Meaning

0

Retracted

1

Neutral

2

MavLink Targeting

3

RC Targeting

4

GPS Point

MNT_RETRACT_X: Mount roll angle when in retracted position

Mount roll angle when in retracted position

Increment

Range

Units

1

-180.00 - 179.99

degrees

MNT_RETRACT_Y: Mount tilt/pitch angle when in retracted position

Mount tilt/pitch angle when in retracted position

Increment

Range

Units

1

-180.00 - 179.99

degrees

MNT_RETRACT_Z: Mount yaw/pan angle when in retracted position

Mount yaw/pan angle when in retracted position

Increment

Range

Units

1

-180.00 - 179.99

degrees

MNT_NEUTRAL_X: Mount roll angle when in neutral position

Mount roll angle when in neutral position

Increment

Range

Units

1

-180.00 - 179.99

degrees

MNT_NEUTRAL_Y: Mount tilt/pitch angle when in neutral position

Mount tilt/pitch angle when in neutral position

Increment

Range

Units

1

-180.00 - 179.99

degrees

MNT_NEUTRAL_Z: Mount pan/yaw angle when in neutral position

Mount pan/yaw angle when in neutral position

Increment

Range

Units

1

-180.00 - 179.99

degrees

MNT_STAB_ROLL: Stabilize mount's roll angle

enable roll stabilisation relative to Earth

Values

Value

Meaning

0

Disabled

1

Enabled

MNT_STAB_TILT: Stabilize mount's pitch/tilt angle

enable tilt/pitch stabilisation relative to Earth

Values

Value

Meaning

0

Disabled

1

Enabled

MNT_STAB_PAN: Stabilize mount pan/yaw angle

enable pan/yaw stabilisation relative to Earth

Values

Value

Meaning

0

Disabled

1

Enabled

MNT_RC_IN_ROLL: roll RC input channel

0 for none, any other for the RC channel to be used to control roll movements

Values

Value

Meaning

0

Disabled

5

RC5

6

RC6

7

RC7

8

RC8

9

RC9

10

RC10

11

RC11

12

RC12

MNT_ANGMIN_ROL: Minimum roll angle

Minimum physical roll angular position of mount.

Increment

Range

Units

10

-18000 - 17999

centidegrees

MNT_ANGMAX_ROL: Maximum roll angle

Maximum physical roll angular position of the mount

Increment

Range

Units

10

-18000 - 17999

centidegrees

MNT_RC_IN_TILT: tilt (pitch) RC input channel

0 for none, any other for the RC channel to be used to control tilt (pitch) movements

Values

Value

Meaning

0

Disabled

5

RC5

6

RC6

7

RC7

8

RC8

9

RC9

10

RC10

11

RC11

12

RC12

MNT_ANGMIN_TIL: Minimum tilt angle

Minimum physical tilt (pitch) angular position of mount.

Increment

Range

Units

10

-18000 - 17999

centidegrees

MNT_ANGMAX_TIL: Maximum tilt angle

Maximum physical tilt (pitch) angular position of the mount

Increment

Range

Units

10

-18000 - 17999

centidegrees

MNT_RC_IN_PAN: pan (yaw) RC input channel

0 for none, any other for the RC channel to be used to control pan (yaw) movements

Values

Value

Meaning

0

Disabled

5

RC5

6

RC6

7

RC7

8

RC8

9

RC9

10

RC10

11

RC11

12

RC12

MNT_ANGMIN_PAN: Minimum pan angle

Minimum physical pan (yaw) angular position of mount.

Increment

Range

Units

10

-18000 - 17999

centidegrees

MNT_ANGMAX_PAN: Maximum pan angle

Maximum physical pan (yaw) angular position of the mount

Increment

Range

Units

10

-18000 - 17999

centidegrees

MNT_JSTICK_SPD: mount joystick speed

0 for position control, small for low speeds, 100 for max speed. A good general value is 10 which gives a movement speed of 3 degrees per second.

Increment

Range

1

0 - 100

MNT_LEAD_RLL: Roll stabilization lead time

Causes the servo angle output to lead the current angle of the vehicle by some amount of time based on current angular rate, compensating for servo delay. Increase until the servo is responsive but doesn't overshoot. Does nothing with pan stabilization enabled.

Increment

Range

Units

.005

0.0 - 0.2

seconds

MNT_LEAD_PTCH: Pitch stabilization lead time

Causes the servo angle output to lead the current angle of the vehicle by some amount of time based on current angular rate. Increase until the servo is responsive but doesn't overshoot. Does nothing with pan stabilization enabled.

Increment

Range

Units

.005

0.0 - 0.2

seconds

MNT2_DEFLT_MODE: Mount default operating mode

Mount default operating mode on startup and after control is returned from autopilot

Values

Value

Meaning

0

Retracted

1

Neutral

2

MavLink Targeting

3

RC Targeting

4

GPS Point

MNT2_RETRACT_X: Mount2 roll angle when in retracted position

Mount2 roll angle when in retracted position

Increment

Range

Units

1

-180.00 - 179.99

degrees

MNT2_RETRACT_Y: Mount2 tilt/pitch angle when in retracted position

Mount2 tilt/pitch angle when in retracted position

Increment

Range

Units

1

-180.00 - 179.99

degrees

MNT2_RETRACT_Z: Mount2 yaw/pan angle when in retracted position

Mount2 yaw/pan angle when in retracted position

Increment

Range

Units

1

-180.00 - 179.99

degrees

MNT2_NEUTRAL_X: Mount2 roll angle when in neutral position

Mount2 roll angle when in neutral position

Increment

Range

Units

1

-180.00 - 179.99

degrees

MNT2_NEUTRAL_Y: Mount2 tilt/pitch angle when in neutral position

Mount2 tilt/pitch angle when in neutral position

Increment

Range

Units

1

-180.00 - 179.99

degrees

MNT2_NEUTRAL_Z: Mount2 pan/yaw angle when in neutral position

Mount2 pan/yaw angle when in neutral position

Increment

Range

Units

1

-180.00 - 179.99

degrees

MNT2_STAB_ROLL: Stabilize Mount2's roll angle

enable roll stabilisation relative to Earth

Values

Value

Meaning

0

Disabled

1

Enabled

MNT2_STAB_TILT: Stabilize Mount2's pitch/tilt angle

enable tilt/pitch stabilisation relative to Earth

Values

Value

Meaning

0

Disabled

1

Enabled

MNT2_STAB_PAN: Stabilize mount2 pan/yaw angle

enable pan/yaw stabilisation relative to Earth

Values

Value

Meaning

0

Disabled

1

Enabled

MNT2_RC_IN_ROLL: Mount2's roll RC input channel

0 for none, any other for the RC channel to be used to control roll movements

Values

Value

Meaning

0

Disabled

5

RC5

6

RC6

7

RC7

8

RC8

9

RC9

10

RC10

11

RC11

12

RC12

MNT2_ANGMIN_ROL: Mount2's minimum roll angle

Mount2's minimum physical roll angular position

Increment

Range

Units

10

-18000 - 17999

centidegrees

MNT2_ANGMAX_ROL: Mount2's maximum roll angle

Mount2's maximum physical roll angular position

Increment

Range

Units

10

-18000 - 17999

centidegrees

MNT2_RC_IN_TILT: Mount2's tilt (pitch) RC input channel

0 for none, any other for the RC channel to be used to control tilt (pitch) movements

Values

Value

Meaning

0

Disabled

5

RC5

6

RC6

7

RC7

8

RC8

9

RC9

10

RC10

11

RC11

12

RC12

MNT2_ANGMIN_TIL: Mount2's minimum tilt angle

Mount2's minimum physical tilt (pitch) angular position

Increment

Range

Units

10

-18000 - 17999

centidegrees

MNT2_ANGMAX_TIL: Mount2's maximum tilt angle

Mount2's maximum physical tilt (pitch) angular position

Increment

Range

Units

10

-18000 - 17999

centidegrees

MNT2_RC_IN_PAN: Mount2's pan (yaw) RC input channel

0 for none, any other for the RC channel to be used to control pan (yaw) movements

Values

Value

Meaning

0

Disabled

5

RC5

6

RC6

7

RC7

8

RC8

9

RC9

10

RC10

11

RC11

12

RC12

MNT2_ANGMIN_PAN: Mount2's minimum pan angle

Mount2's minimum physical pan (yaw) angular position

Increment

Range

Units

10

-18000 - 17999

centidegrees

MNT2_ANGMAX_PAN: Mount2's maximum pan angle

MOunt2's maximum physical pan (yaw) angular position

Increment

Range

Units

10

-18000 - 17999

centidegrees

MNT2_LEAD_RLL: Mount2's Roll stabilization lead time

Causes the servo angle output to lead the current angle of the vehicle by some amount of time based on current angular rate, compensating for servo delay. Increase until the servo is responsive but doesn't overshoot. Does nothing with pan stabilization enabled.

Increment

Range

Units

.005

0.0 - 0.2

seconds

MNT2_LEAD_PTCH: Mount2's Pitch stabilization lead time

Causes the servo angle output to lead the current angle of the vehicle by some amount of time based on current angular rate. Increase until the servo is responsive but doesn't overshoot. Does nothing with pan stabilization enabled.

Increment

Range

Units

.005

0.0 - 0.2

seconds

MNT2_TYPE: Mount2 Type

Mount Type (None, Servo or MAVLink)

Values

Value

Meaning

0

None

1

Servo

2

3DR Solo

3

Alexmos Serial

4

SToRM32 MAVLink

5

SToRM32 Serial

MSP Parameters

MSP_OSD_NCELLS: Cell count override

Used for average cell voltage calculation

Values

Value

Meaning

0

Auto

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12

13

13

14

14

MSP_OPTIONS: MSP OSD Options

A bitmask to set some MSP specific options

Bitmask

Bit

Meaning

0

EnableTelemetryMode

NTF_ Parameters

NTF_LED_BRIGHT: LED Brightness

Note: This parameter is for advanced users

Select the RGB LED brightness level. When USB is connected brightness will never be higher than low regardless of the setting.

Values

Value

Meaning

0

Off

1

Low

2

Medium

3

High

NTF_BUZZ_TYPES: Buzzer Driver Types

Note: This parameter is for advanced users

Controls what types of Buzzer will be enabled

Bitmask

Bit

Meaning

0

Built-in buzzer

1

DShot

2

UAVCAN

NTF_LED_OVERRIDE: Specifies colour source for the RGBLed

Note: This parameter is for advanced users

Specifies the source for the colours and brightness for the LED. OutbackChallenge conforms to the MedicalExpress (https://uavchallenge.org/medical-express/) rules, essentially "Green" is disarmed (safe-to-approach), "Red" is armed (not safe-to-approach). Traffic light is a simplified color set, red when armed, yellow when the safety switch is not surpressing outputs (but disarmed), and green when outputs are surpressed and disarmed, the LED will blink faster if disarmed and failing arming checks.

Values

Value

Meaning

0

Standard

1

MAVLink/Scripting/AP_Periph

2

OutbackChallenge

3

TrafficLight

NTF_DISPLAY_TYPE: Type of on-board I2C display

Note: This parameter is for advanced users

This sets up the type of on-board I2C display. Disabled by default.

Values

Value

Meaning

0

Disable

1

ssd1306

2

sh1106

10

SITL

NTF_OREO_THEME: OreoLED Theme

Note: This parameter is for advanced users

Enable/Disable Solo Oreo LED driver, 0 to disable, 1 for Aircraft theme, 2 for Rover theme

Values

Value

Meaning

0

Disabled

1

Aircraft

2

Rover

NTF_BUZZ_PIN: Buzzer pin

Note: This parameter is for advanced users

Enables to connect active buzzer to arbitrary pin. Requires 3-pin buzzer or additional MOSFET!

Values

Value

Meaning

0

Disabled

NTF_LED_TYPES: LED Driver Types

Note: This parameter is for advanced users

Controls what types of LEDs will be enabled

Bitmask

Bit

Meaning

0

Built-in LED

1

Internal ToshibaLED

2

External ToshibaLED

3

External PCA9685

4

Oreo LED

5

UAVCAN

6

NCP5623 External

7

NCP5623 Internal

8

NeoPixel

9

ProfiLED

10

Scripting

11

DShot

NTF_BUZZ_ON_LVL: Buzzer-on pin logic level

Note: This parameter is for advanced users

Specifies pin level that indicates buzzer should play

Values

Value

Meaning

0

LowIsOn

1

HighIsOn

NTF_BUZZ_VOLUME: Buzzer volume

Control the volume of the buzzer

Range

Units

0 - 100

percent

NTF_LED_LEN: Serial LED String Length

Note: This parameter is for advanced users

The number of Serial LED's to use for notifications (NeoPixel's and ProfiLED)

Range

RebootRequired

1 - 32

True

OSD Parameters

OSD_TYPE: OSD type

OSD type. TXONLY makes the OSD parameter selection available to other modules even if there is no native OSD support on the board, for instance CRSF.

RebootRequired

Values

True

Value

Meaning

0

None

1

MAX7456

2

SITL

3

MSP

4

TXONLY

OSD_CHAN: Screen switch transmitter channel

This sets the channel used to switch different OSD screens.

Values

Value

Meaning

0

Disable

5

Chan5

6

Chan6

7

Chan7

8

Chan8

9

Chan9

10

Chan10

11

Chan11

12

Chan12

13

Chan13

14

Chan14

15

Chan15

16

Chan16

OSD_SW_METHOD: Screen switch method

This sets the method used to switch different OSD screens.

Values

Value

Meaning

0

switch to next screen if channel value was changed

1

select screen based on pwm ranges specified for each screen

2

switch to next screen after low to high transition and every 1s while channel value is high

OSD_OPTIONS: OSD Options

This sets options that change the display

Bitmask

Bit

Meaning

0

UseDecimalPack

1

InvertedWindPointer

2

InvertedAHRoll

OSD_FONT: OSD Font

This sets which OSD font to use. It is an integer from 0 to the number of fonts available

RebootRequired

True

OSD_V_OFFSET: OSD vertical offset

Sets vertical offset of the osd inside image

Range

RebootRequired

0 - 31

True

OSD_H_OFFSET: OSD horizontal offset

Sets horizontal offset of the osd inside image

Range

RebootRequired

0 - 63

True

OSD_W_RSSI: RSSI warn level (in %)

Set level at which RSSI item will flash

Range

0 - 99

OSD_W_NSAT: NSAT warn level

Set level at which NSAT item will flash

Range

1 - 30

OSD_W_BATVOLT: BAT_VOLT warn level

Set level at which BAT_VOLT item will flash

Range

0 - 100

OSD_UNITS: Display Units

Sets the units to use in displaying items

Values

Value

Meaning

0

Metric

1

Imperial

2

SI

3

Aviation

OSD_MSG_TIME: Message display duration in seconds

Sets message duration seconds

Range

1 - 20

OSD_ARM_SCR: Arm screen

Screen to be shown on Arm event. Zero to disable the feature.

Range

0 - 4

OSD_DSARM_SCR: Disarm screen

Screen to be shown on disarm event. Zero to disable the feature.

Range

0 - 4

OSD_FS_SCR: Failsafe screen

Screen to be shown on failsafe event. Zero to disable the feature.

Range

0 - 4

OSD_BTN_DELAY: Button delay

Note: This parameter is for advanced users

Debounce time in ms for stick commanded parameter navigation.

Range

0 - 3000

OSD_W_TERR: Terrain warn level

Set level below which TER_HGT item will flash. -1 disables.

Range

Units

-1 - 3000

meters

OSD_W_AVGCELLV: AVGCELLV warn level

Set level at which AVGCELLV item will flash

Range

0 - 100

OSD_CELL_COUNT: Battery cell count

Note: This parameter is for advanced users

Used for average cell voltage display. -1 disables, 0 uses cell count autodetection for well charged LIPO/LIION batteries at connection, other values manually select cell count used.

Increment

1

OSD_W_RESTVOLT: RESTVOLT warn level

Set level at which RESTVOLT item will flash

Range

0 - 100

OSD1_ Parameters

OSD1_ENABLE: Enable screen

Enable this screen

Values

Value

Meaning

0

Disabled

1

Enabled

OSD1_CHAN_MIN: Transmitter switch screen minimum pwm

This sets the PWM lower limit for this screen

Range

900 - 2100

OSD1_CHAN_MAX: Transmitter switch screen maximum pwm

This sets the PWM upper limit for this screen

Range

900 - 2100

OSD1_ALTITUDE_EN: ALTITUDE_EN

Enables display of altitude AGL

Values

Value

Meaning

0

Disabled

1

Enabled

OSD1_ALTITUDE_X: ALTITUDE_X

Horizontal position on screen

Range

0 - 29

OSD1_ALTITUDE_Y: ALTITUDE_Y

Vertical position on screen

Range

0 - 15

OSD1_BAT_VOLT_EN: BATVOLT_EN

Displays main battery voltage

Values

Value

Meaning

0

Disabled

1

Enabled

OSD1_BAT_VOLT_X: BATVOLT_X

Horizontal position on screen

Range

0 - 29

OSD1_BAT_VOLT_Y: BATVOLT_Y

Vertical position on screen

Range

0 - 15

OSD1_RSSI_EN: RSSI_EN

Displays RC signal strength

Values

Value

Meaning

0

Disabled

1

Enabled

OSD1_RSSI_X: RSSI_X

Horizontal position on screen

Range

0 - 29

OSD1_RSSI_Y: RSSI_Y

Vertical position on screen

Range

0 - 15

OSD1_CURRENT_EN: CURRENT_EN

Displays main battery current

Values

Value

Meaning

0

Disabled

1

Enabled

OSD1_CURRENT_X: CURRENT_X

Horizontal position on screen

Range

0 - 29

OSD1_CURRENT_Y: CURRENT_Y

Vertical position on screen

Range

0 - 15

OSD1_BATUSED_EN: BATUSED_EN

Displays primary battery mAh consumed

Values

Value

Meaning

0

Disabled

1

Enabled

OSD1_BATUSED_X: BATUSED_X

Horizontal position on screen

Range

0 - 29

OSD1_BATUSED_Y: BATUSED_Y

Vertical position on screen

Range

0 - 15

OSD1_SATS_EN: SATS_EN

Displays number of acquired satellites

Values

Value

Meaning

0

Disabled

1

Enabled

OSD1_SATS_X: SATS_X

Horizontal position on screen

Range

0 - 29

OSD1_SATS_Y: SATS_Y

Vertical position on screen

Range

0 - 15

OSD1_FLTMODE_EN: FLTMODE_EN

Displays flight mode

Values

Value

Meaning

0

Disabled

1

Enabled

OSD1_FLTMODE_X: FLTMODE_X

Horizontal position on screen

Range

0 - 29

OSD1_FLTMODE_Y: FLTMODE_Y

Vertical position on screen

Range

0 - 15

OSD1_MESSAGE_EN: MESSAGE_EN

Displays Mavlink messages

Values

Value

Meaning

0

Disabled

1

Enabled

OSD1_MESSAGE_X: MESSAGE_X

Horizontal position on screen

Range

0 - 29

OSD1_MESSAGE_Y: MESSAGE_Y

Vertical position on screen

Range

0 - 15

OSD1_GSPEED_EN: GSPEED_EN

Displays GPS ground speed

Values

Value

Meaning

0

Disabled

1

Enabled

OSD1_GSPEED_X: GSPEED_X

Horizontal position on screen

Range

0 - 29

OSD1_GSPEED_Y: GSPEED_Y

Vertical position on screen

Range

0 - 15

OSD1_HORIZON_EN: HORIZON_EN

Displays artificial horizon

Values

Value

Meaning

0

Disabled

1

Enabled

OSD1_HORIZON_X: HORIZON_X

Horizontal position on screen

Range

0 - 29

OSD1_HORIZON_Y: HORIZON_Y

Vertical position on screen

Range

0 - 15

OSD1_HOME_EN: HOME_EN

Displays distance and relative direction to HOME

Values

Value

Meaning

0

Disabled

1

Enabled

OSD1_HOME_X: HOME_X

Horizontal position on screen

Range

0 - 29

OSD1_HOME_Y: HOME_Y

Vertical position on screen

Range

0 - 15

OSD1_HEADING_EN: HEADING_EN

Displays heading

Values

Value

Meaning

0

Disabled

1

Enabled

OSD1_HEADING_X: HEADING_X

Horizontal position on screen

Range

0 - 29

OSD1_HEADING_Y: HEADING_Y

Vertical position on screen

Range

0 - 15

OSD1_THROTTLE_EN: THROTTLE_EN

Displays actual throttle percentage being sent to motor(s)

Values

Value

Meaning

0

Disabled

1

Enabled

OSD1_THROTTLE_X: THROTTLE_X

Horizontal position on screen

Range

0 - 29

OSD1_THROTTLE_Y: THROTTLE_Y

Vertical position on screen

Range

0 - 15

OSD1_COMPASS_EN: COMPASS_EN

Enables display of compass rose

Values

Value

Meaning

0

Disabled

1

Enabled

OSD1_COMPASS_X: COMPASS_X

Horizontal position on screen

Range

0 - 29

OSD1_COMPASS_Y: COMPASS_Y

Vertical position on screen

Range

0 - 15

OSD1_WIND_EN: WIND_EN

Displays wind speed and relative direction, on Rover this is the apparent wind speed and direction from the windvane, if fitted

Values

Value

Meaning

0

Disabled

1

Enabled

OSD1_WIND_X: WIND_X

Horizontal position on screen

Range

0 - 29

OSD1_WIND_Y: WIND_Y

Vertical position on screen

Range

0 - 15

OSD1_ASPEED_EN: ASPEED_EN

Displays airspeed value being used by TECS (fused value)

Values

Value

Meaning

0

Disabled

1

Enabled

OSD1_ASPEED_X: ASPEED_X

Horizontal position on screen

Range

0 - 29

OSD1_ASPEED_Y: ASPEED_Y

Vertical position on screen

Range

0 - 15

OSD1_VSPEED_EN: VSPEED_EN

Displays climb rate

Values

Value

Meaning

0

Disabled

1

Enabled

OSD1_VSPEED_X: VSPEED_X

Horizontal position on screen

Range

0 - 29

OSD1_VSPEED_Y: VSPEED_Y

Vertical position on screen

Range

0 - 15

OSD1_BLHTEMP_EN: BLHTEMP_EN

Displays first esc's temp

Values

Value

Meaning

0

Disabled

1

Enabled

OSD1_BLHTEMP_X: BLHTEMP_X

Horizontal position on screen

Range

0 - 29

OSD1_BLHTEMP_Y: BLHTEMP_Y

Vertical position on screen

Range

0 - 15

OSD1_BLHRPM_EN: BLHRPM_EN

Displays first esc's rpm

Values

Value

Meaning

0

Disabled

1

Enabled

OSD1_BLHRPM_X: BLHRPM_X

Horizontal position on screen

Range

0 - 29

OSD1_BLHRPM_Y: BLHRPM_Y

Vertical position on screen

Range

0 - 15

OSD1_BLHAMPS_EN: BLHAMPS_EN

Displays first esc's current

Values

Value

Meaning

0

Disabled

1

Enabled

OSD1_BLHAMPS_X: BLHAMPS_X

Horizontal position on screen

Range

0 - 29

OSD1_BLHAMPS_Y: BLHAMPS_Y

Vertical position on screen

Range

0 - 15

OSD1_GPSLAT_EN: GPSLAT_EN

Displays GPS latitude

Values

Value

Meaning

0

Disabled

1

Enabled

OSD1_GPSLAT_X: GPSLAT_X

Horizontal position on screen

Range

0 - 29

OSD1_GPSLAT_Y: GPSLAT_Y

Vertical position on screen

Range

0 - 15

OSD1_GPSLONG_EN: GPSLONG_EN

Displays GPS longitude

Values

Value

Meaning

0

Disabled

1

Enabled

OSD1_GPSLONG_X: GPSLONG_X

Horizontal position on screen

Range

0 - 29

OSD1_GPSLONG_Y: GPSLONG_Y

Vertical position on screen

Range

0 - 15

OSD1_ROLL_EN: ROLL_EN

Displays degrees of roll from level

Values

Value

Meaning

0

Disabled

1

Enabled

OSD1_ROLL_X: ROLL_X

Horizontal position on screen

Range

0 - 29

OSD1_ROLL_Y: ROLL_Y

Vertical position on screen

Range

0 - 15

OSD1_PITCH_EN: PITCH_EN

Displays degrees of pitch from level

Values

Value

Meaning

0

Disabled

1

Enabled

OSD1_PITCH_X: PITCH_X

Horizontal position on screen

Range

0 - 29

OSD1_PITCH_Y: PITCH_Y

Vertical position on screen

Range

0 - 15

OSD1_TEMP_EN: TEMP_EN

Displays temperature reported by primary barometer

Values

Value

Meaning

0

Disabled

1

Enabled

OSD1_TEMP_X: TEMP_X

Horizontal position on screen

Range

0 - 29

OSD1_TEMP_Y: TEMP_Y

Vertical position on screen

Range

0 - 15

OSD1_HDOP_EN: HDOP_EN

Displays Horizontal Dilution Of Position

Values

Value

Meaning

0

Disabled

1

Enabled

OSD1_HDOP_X: HDOP_X

Horizontal position on screen

Range

0 - 29

OSD1_HDOP_Y: HDOP_Y

Vertical position on screen

Range

0 - 15

OSD1_WAYPOINT_EN: WAYPOINT_EN

Displays bearing and distance to next waypoint

Values

Value

Meaning

0

Disabled

1

Enabled

OSD1_WAYPOINT_X: WAYPOINT_X

Horizontal position on screen

Range

0 - 29

OSD1_WAYPOINT_Y: WAYPOINT_Y

Vertical position on screen

Range

0 - 15

OSD1_XTRACK_EN: XTRACK_EN

Displays crosstrack error

Values

Value

Meaning

0

Disabled

1

Enabled

OSD1_XTRACK_X: XTRACK_X

Horizontal position on screen

Range

0 - 29

OSD1_XTRACK_Y: XTRACK_Y

Vertical position on screen

Range

0 - 15

OSD1_DIST_EN: DIST_EN

Displays total distance flown

Values

Value

Meaning

0

Disabled

1

Enabled

OSD1_DIST_X: DIST_X

Horizontal position on screen

Range

0 - 29

OSD1_DIST_Y: DIST_Y

Vertical position on screen

Range

0 - 15

OSD1_STATS_EN: STATS_EN

Displays flight stats

Values

Value

Meaning

0

Disabled

1

Enabled

OSD1_STATS_X: STATS_X

Horizontal position on screen

Range

0 - 29

OSD1_STATS_Y: STATS_Y

Vertical position on screen

Range

0 - 15

OSD1_FLTIME_EN: FLTIME_EN

Displays total flight time

Values

Value

Meaning

0

Disabled

1

Enabled

OSD1_FLTIME_X: FLTIME_X

Horizontal position on screen

Range

0 - 29

OSD1_FLTIME_Y: FLTIME_Y

Vertical position on screen

Range

0 - 15

OSD1_CLIMBEFF_EN: CLIMBEFF_EN

Displays climb efficiency (climb rate/current)

Values

Value

Meaning

0

Disabled

1

Enabled

OSD1_CLIMBEFF_X: CLIMBEFF_X

Horizontal position on screen

Range

0 - 29

OSD1_CLIMBEFF_Y: CLIMBEFF_Y

Vertical position on screen

Range

0 - 15

OSD1_EFF_EN: EFF_EN

Displays flight efficiency (mAh/km or /mi)

Values

Value

Meaning

0

Disabled

1

Enabled

OSD1_EFF_X: EFF_X

Horizontal position on screen

Range

0 - 29

OSD1_EFF_Y: EFF_Y

Vertical position on screen

Range

0 - 15

OSD1_BTEMP_EN: BTEMP_EN

Displays temperature reported by secondary barometer

Values

Value

Meaning

0

Disabled

1

Enabled

OSD1_BTEMP_X: BTEMP_X

Horizontal position on screen

Range

0 - 29

OSD1_BTEMP_Y: BTEMP_Y

Vertical position on screen

Range

0 - 15

OSD1_ATEMP_EN: ATEMP_EN

Displays temperature reported by primary airspeed sensor

Values

Value

Meaning

0

Disabled

1

Enabled

OSD1_ATEMP_X: ATEMP_X

Horizontal position on screen

Range

0 - 29

OSD1_ATEMP_Y: ATEMP_Y

Vertical position on screen

Range

0 - 15

OSD1_BAT2_VLT_EN: BAT2VLT_EN

Displays battery2 voltage

Values

Value

Meaning

0

Disabled

1

Enabled

OSD1_BAT2_VLT_X: BAT2VLT_X

Horizontal position on screen

Range

0 - 29

OSD1_BAT2_VLT_Y: BAT2VLT_Y

Vertical position on screen

Range

0 - 15

OSD1_BAT2USED_EN: BAT2USED_EN

Displays secondary battery mAh consumed

Values

Value

Meaning

0

Disabled

1

Enabled

OSD1_BAT2USED_X: BAT2USED_X

Horizontal position on screen

Range

0 - 29

OSD1_BAT2USED_Y: BAT2USED_Y

Vertical position on screen

Range

0 - 15

OSD1_ASPD2_EN: ASPD2_EN

Displays airspeed reported directly from secondary airspeed sensor

Values

Value

Meaning

0

Disabled

1

Enabled

OSD1_ASPD2_X: ASPD2_X

Horizontal position on screen

Range

0 - 29

OSD1_ASPD2_Y: ASPD2_Y

Vertical position on screen

Range

0 - 15

OSD1_ASPD1_EN: ASPD1_EN

Displays airspeed reported directly from primary airspeed sensor

Values

Value

Meaning

0

Disabled

1

Enabled

OSD1_ASPD1_X: ASPD1_X

Horizontal position on screen

Range

0 - 29

OSD1_ASPD1_Y: ASPD1_Y

Vertical position on screen

Range

0 - 15

OSD1_CLK_EN: CLK_EN

Displays a clock panel based on AP_RTC local time

Values

Value

Meaning

0

Disabled

1

Enabled

OSD1_CLK_X: CLK_X

Horizontal position on screen

Range

0 - 29

OSD1_CLK_Y: CLK_Y

Vertical position on screen

Range

0 - 15

OSD1_SIDEBARS_EN: SIDEBARS_EN

Displays artificial horizon side bars (MSP OSD only)

Values

Value

Meaning

0

Disabled

1

Enabled

OSD1_SIDEBARS_X: SIDEBARS_X

Horizontal position on screen (MSP OSD only)

Range

0 - 29

OSD1_SIDEBARS_Y: SIDEBARS_Y

Vertical position on screen (MSP OSD only)

Range

0 - 15

OSD1_CRSSHAIR_EN: CRSSHAIR_EN

Displays artificial horizon crosshair (MSP OSD only)

Values

Value

Meaning

0

Disabled

1

Enabled

OSD1_CRSSHAIR_X: CRSSHAIR_X

Horizontal position on screen (MSP OSD only)

Range

0 - 29

OSD1_CRSSHAIR_Y: CRSSHAIR_Y

Vertical position on screen (MSP OSD only)

Range

0 - 15

OSD1_HOMEDIST_EN: HOMEDIST_EN

Displays distance from HOME (MSP OSD only)

Values

Value

Meaning

0

Disabled

1

Enabled

OSD1_HOMEDIST_X: HOMEDIST_X

Horizontal position on screen (MSP OSD only)

Range

0 - 29

OSD1_HOMEDIST_Y: HOMEDIST_Y

Vertical position on screen (MSP OSD only)

Range

0 - 15

OSD1_HOMEDIR_EN: HOMEDIR_EN

Displays relative direction to HOME (MSP OSD only)

Values

Value

Meaning

0

Disabled

1

Enabled

OSD1_HOMEDIR_X: HOMEDIR_X

Horizontal position on screen

Range

0 - 29

OSD1_HOMEDIR_Y: HOMEDIR_Y

Vertical position on screen

Range

0 - 15

OSD1_POWER_EN: POWER_EN

Displays power (MSP OSD only)

Values

Value

Meaning

0

Disabled

1

Enabled

OSD1_POWER_X: POWER_X

Horizontal position on screen

Range

0 - 29

OSD1_POWER_Y: POWER_Y

Vertical position on screen

Range

0 - 15

OSD1_CELLVOLT_EN: CELL_VOLT_EN

Displays average cell voltage (MSP OSD only)

Values

Value

Meaning

0

Disabled

1

Enabled

OSD1_CELLVOLT_X: CELL_VOLT_X

Horizontal position on screen

Range

0 - 29

OSD1_CELLVOLT_Y: CELL_VOLT_Y

Vertical position on screen

Range

0 - 15

OSD1_BATTBAR_EN: BATT_BAR_EN

Displays battery usage bar (MSP OSD only)

Values

Value

Meaning

0

Disabled

1

Enabled

OSD1_BATTBAR_X: BATT_BAR_X

Horizontal position on screen

Range

0 - 29

OSD1_BATTBAR_Y: BATT_BAR_Y

Vertical position on screen

Range

0 - 15

OSD1_ARMING_EN: ARMING_EN

Displays arming status (MSP OSD only)

Values

Value

Meaning

0

Disabled

1

Enabled

OSD1_ARMING_X: ARMING_X

Horizontal position on screen

Range

0 - 29

OSD1_ARMING_Y: ARMING_Y

Vertical position on screen

Range

0 - 15

OSD1_PLUSCODE_EN: PLUSCODE_EN

Displays pluscode (OLC) element

Values

Value

Meaning

0

Disabled

1

Enabled

OSD1_PLUSCODE_X: PLUSCODE_X

Horizontal position on screen

Range

0 - 29

OSD1_PLUSCODE_Y: PLUSCODE_Y

Vertical position on screen

Range

0 - 15

OSD1_CALLSIGN_EN: CALLSIGN_EN

Displays callsign from callsign.txt on microSD card

Values

Value

Meaning

0

Disabled

1

Enabled

OSD1_CALLSIGN_X: CALLSIGN_X

Horizontal position on screen

Range

0 - 29

OSD1_CALLSIGN_Y: CALLSIGN_Y

Vertical position on screen

Range

0 - 15

OSD1_CURRENT2_EN: CURRENT2_EN

Displays 2nd battery current

Values

Value

Meaning

0

Disabled

1

Enabled

OSD1_CURRENT2_X: CURRENT2_X

Horizontal position on screen

Range

0 - 29

OSD1_CURRENT2_Y: CURRENT2_Y

Vertical position on screen

Range

0 - 15

OSD1_VTX_PWR_EN: VTX_PWR_EN

Displays VTX Power

Values

Value

Meaning

0

Disabled

1

Enabled

OSD1_VTX_PWR_X: VTX_PWR_X

Horizontal position on screen

Range

0 - 29

OSD1_VTX_PWR_Y: VTX_PWR_Y

Vertical position on screen

Range

0 - 15

OSD1_TER_HGT_EN: TER_HGT_EN

Displays Height above terrain

Values

Value

Meaning

0

Disabled

1

Enabled

OSD1_TER_HGT_X: TER_HGT_X

Horizontal position on screen

Range

0 - 29

OSD1_TER_HGT_Y: TER_HGT_Y

Vertical position on screen

Range

0 - 15

OSD1_AVGCELLV_EN: AVGCELLV_EN

Displays average cell voltage. WARNING: this can be inaccurate if the cell count is not detected or set properly. If the the battery is far from fully charged the detected cell count might not be accurate if auto cell count detection is used (OSD_CELL_COUNT=0).

Values

Value

Meaning

0

Disabled

1

Enabled

OSD1_AVGCELLV_X: AVGCELLV_X

Horizontal position on screen

Range

0 - 29

OSD1_AVGCELLV_Y: AVGCELLV_Y

Vertical position on screen

Range

0 - 15

OSD1_RESTVOLT_EN: RESTVOLT_EN

Displays main battery resting voltage

Values

Value

Meaning

0

Disabled

1

Enabled

OSD1_RESTVOLT_X: RESTVOLT_X

Horizontal position on screen

Range

0 - 29

OSD1_RESTVOLT_Y: RESTVOLT_Y

Vertical position on screen

Range

0 - 15

OSD1_FENCE_EN: FENCE_EN

Displays indication of fence enable and breach

Values

Value

Meaning

0

Disabled

1

Enabled

OSD1_FENCE_X: FENCE_X

Horizontal position on screen

Range

0 - 29

OSD1_FENCE_Y: FENCE_Y

Vertical position on screen

Range

0 - 15

OSD1_RNGF_EN: RNGF_EN

Displays a rangefinder's distance in cm

Values

Value

Meaning

0

Disabled

1

Enabled

OSD1_RNGF_X: RNGF_X

Horizontal position on screen

Range

0 - 29

OSD1_RNGF_Y: RNGF_Y

Vertical position on screen

Range

0 - 15

OSD2_ Parameters

OSD2_ENABLE: Enable screen

Enable this screen

Values

Value

Meaning

0

Disabled

1

Enabled

OSD2_CHAN_MIN: Transmitter switch screen minimum pwm

This sets the PWM lower limit for this screen

Range

900 - 2100

OSD2_CHAN_MAX: Transmitter switch screen maximum pwm

This sets the PWM upper limit for this screen

Range

900 - 2100

OSD2_ALTITUDE_EN: ALTITUDE_EN

Enables display of altitude AGL

Values

Value

Meaning

0

Disabled

1

Enabled

OSD2_ALTITUDE_X: ALTITUDE_X

Horizontal position on screen

Range

0 - 29

OSD2_ALTITUDE_Y: ALTITUDE_Y

Vertical position on screen

Range

0 - 15

OSD2_BAT_VOLT_EN: BATVOLT_EN

Displays main battery voltage

Values

Value

Meaning

0

Disabled

1

Enabled

OSD2_BAT_VOLT_X: BATVOLT_X

Horizontal position on screen

Range

0 - 29

OSD2_BAT_VOLT_Y: BATVOLT_Y

Vertical position on screen

Range

0 - 15

OSD2_RSSI_EN: RSSI_EN

Displays RC signal strength

Values

Value

Meaning

0

Disabled

1

Enabled

OSD2_RSSI_X: RSSI_X

Horizontal position on screen

Range

0 - 29

OSD2_RSSI_Y: RSSI_Y

Vertical position on screen

Range

0 - 15

OSD2_CURRENT_EN: CURRENT_EN

Displays main battery current

Values

Value

Meaning

0

Disabled

1

Enabled

OSD2_CURRENT_X: CURRENT_X

Horizontal position on screen

Range

0 - 29

OSD2_CURRENT_Y: CURRENT_Y

Vertical position on screen

Range

0 - 15

OSD2_BATUSED_EN: BATUSED_EN

Displays primary battery mAh consumed

Values

Value

Meaning

0

Disabled

1

Enabled

OSD2_BATUSED_X: BATUSED_X

Horizontal position on screen

Range

0 - 29

OSD2_BATUSED_Y: BATUSED_Y

Vertical position on screen

Range

0 - 15

OSD2_SATS_EN: SATS_EN

Displays number of acquired satellites

Values

Value

Meaning

0

Disabled

1

Enabled

OSD2_SATS_X: SATS_X

Horizontal position on screen

Range

0 - 29

OSD2_SATS_Y: SATS_Y

Vertical position on screen

Range

0 - 15

OSD2_FLTMODE_EN: FLTMODE_EN

Displays flight mode

Values

Value

Meaning

0

Disabled

1

Enabled

OSD2_FLTMODE_X: FLTMODE_X

Horizontal position on screen

Range

0 - 29

OSD2_FLTMODE_Y: FLTMODE_Y

Vertical position on screen

Range

0 - 15

OSD2_MESSAGE_EN: MESSAGE_EN

Displays Mavlink messages

Values

Value

Meaning

0

Disabled

1

Enabled

OSD2_MESSAGE_X: MESSAGE_X

Horizontal position on screen

Range

0 - 29

OSD2_MESSAGE_Y: MESSAGE_Y

Vertical position on screen

Range

0 - 15

OSD2_GSPEED_EN: GSPEED_EN

Displays GPS ground speed

Values

Value

Meaning

0

Disabled

1

Enabled

OSD2_GSPEED_X: GSPEED_X

Horizontal position on screen

Range

0 - 29

OSD2_GSPEED_Y: GSPEED_Y

Vertical position on screen

Range

0 - 15

OSD2_HORIZON_EN: HORIZON_EN

Displays artificial horizon

Values

Value

Meaning

0

Disabled

1

Enabled

OSD2_HORIZON_X: HORIZON_X

Horizontal position on screen

Range

0 - 29

OSD2_HORIZON_Y: HORIZON_Y

Vertical position on screen

Range

0 - 15

OSD2_HOME_EN: HOME_EN

Displays distance and relative direction to HOME

Values

Value

Meaning

0

Disabled

1

Enabled

OSD2_HOME_X: HOME_X

Horizontal position on screen

Range

0 - 29

OSD2_HOME_Y: HOME_Y

Vertical position on screen

Range

0 - 15

OSD2_HEADING_EN: HEADING_EN

Displays heading

Values

Value

Meaning

0

Disabled

1

Enabled

OSD2_HEADING_X: HEADING_X

Horizontal position on screen

Range

0 - 29

OSD2_HEADING_Y: HEADING_Y

Vertical position on screen

Range

0 - 15

OSD2_THROTTLE_EN: THROTTLE_EN

Displays actual throttle percentage being sent to motor(s)

Values

Value

Meaning

0

Disabled

1

Enabled

OSD2_THROTTLE_X: THROTTLE_X

Horizontal position on screen

Range

0 - 29

OSD2_THROTTLE_Y: THROTTLE_Y

Vertical position on screen

Range

0 - 15

OSD2_COMPASS_EN: COMPASS_EN

Enables display of compass rose

Values

Value

Meaning

0

Disabled

1

Enabled

OSD2_COMPASS_X: COMPASS_X

Horizontal position on screen

Range

0 - 29

OSD2_COMPASS_Y: COMPASS_Y

Vertical position on screen

Range

0 - 15

OSD2_WIND_EN: WIND_EN

Displays wind speed and relative direction, on Rover this is the apparent wind speed and direction from the windvane, if fitted

Values

Value

Meaning

0

Disabled

1

Enabled

OSD2_WIND_X: WIND_X

Horizontal position on screen

Range

0 - 29

OSD2_WIND_Y: WIND_Y

Vertical position on screen

Range

0 - 15

OSD2_ASPEED_EN: ASPEED_EN

Displays airspeed value being used by TECS (fused value)

Values

Value

Meaning

0

Disabled

1

Enabled

OSD2_ASPEED_X: ASPEED_X

Horizontal position on screen

Range

0 - 29

OSD2_ASPEED_Y: ASPEED_Y

Vertical position on screen

Range

0 - 15

OSD2_VSPEED_EN: VSPEED_EN

Displays climb rate

Values

Value

Meaning

0

Disabled

1

Enabled

OSD2_VSPEED_X: VSPEED_X

Horizontal position on screen

Range

0 - 29

OSD2_VSPEED_Y: VSPEED_Y

Vertical position on screen

Range

0 - 15

OSD2_BLHTEMP_EN: BLHTEMP_EN

Displays first esc's temp

Values

Value

Meaning

0

Disabled

1

Enabled

OSD2_BLHTEMP_X: BLHTEMP_X

Horizontal position on screen

Range

0 - 29

OSD2_BLHTEMP_Y: BLHTEMP_Y

Vertical position on screen

Range

0 - 15

OSD2_BLHRPM_EN: BLHRPM_EN

Displays first esc's rpm

Values

Value

Meaning

0

Disabled

1

Enabled

OSD2_BLHRPM_X: BLHRPM_X

Horizontal position on screen

Range

0 - 29

OSD2_BLHRPM_Y: BLHRPM_Y

Vertical position on screen

Range

0 - 15

OSD2_BLHAMPS_EN: BLHAMPS_EN

Displays first esc's current

Values

Value

Meaning

0

Disabled

1

Enabled

OSD2_BLHAMPS_X: BLHAMPS_X

Horizontal position on screen

Range

0 - 29

OSD2_BLHAMPS_Y: BLHAMPS_Y

Vertical position on screen

Range

0 - 15

OSD2_GPSLAT_EN: GPSLAT_EN

Displays GPS latitude

Values

Value

Meaning

0

Disabled

1

Enabled

OSD2_GPSLAT_X: GPSLAT_X

Horizontal position on screen

Range

0 - 29

OSD2_GPSLAT_Y: GPSLAT_Y

Vertical position on screen

Range

0 - 15

OSD2_GPSLONG_EN: GPSLONG_EN

Displays GPS longitude

Values

Value

Meaning

0

Disabled

1

Enabled

OSD2_GPSLONG_X: GPSLONG_X

Horizontal position on screen

Range

0 - 29

OSD2_GPSLONG_Y: GPSLONG_Y

Vertical position on screen

Range

0 - 15

OSD2_ROLL_EN: ROLL_EN

Displays degrees of roll from level

Values

Value

Meaning

0

Disabled

1

Enabled

OSD2_ROLL_X: ROLL_X

Horizontal position on screen

Range

0 - 29

OSD2_ROLL_Y: ROLL_Y

Vertical position on screen

Range

0 - 15

OSD2_PITCH_EN: PITCH_EN

Displays degrees of pitch from level

Values

Value

Meaning

0

Disabled

1

Enabled

OSD2_PITCH_X: PITCH_X

Horizontal position on screen

Range

0 - 29

OSD2_PITCH_Y: PITCH_Y

Vertical position on screen

Range

0 - 15

OSD2_TEMP_EN: TEMP_EN

Displays temperature reported by primary barometer

Values

Value

Meaning

0

Disabled

1

Enabled

OSD2_TEMP_X: TEMP_X

Horizontal position on screen

Range

0 - 29

OSD2_TEMP_Y: TEMP_Y

Vertical position on screen

Range

0 - 15

OSD2_HDOP_EN: HDOP_EN

Displays Horizontal Dilution Of Position

Values

Value

Meaning

0

Disabled

1

Enabled

OSD2_HDOP_X: HDOP_X

Horizontal position on screen

Range

0 - 29

OSD2_HDOP_Y: HDOP_Y

Vertical position on screen

Range

0 - 15

OSD2_WAYPOINT_EN: WAYPOINT_EN

Displays bearing and distance to next waypoint

Values

Value

Meaning

0

Disabled

1

Enabled

OSD2_WAYPOINT_X: WAYPOINT_X

Horizontal position on screen

Range

0 - 29

OSD2_WAYPOINT_Y: WAYPOINT_Y

Vertical position on screen

Range

0 - 15

OSD2_XTRACK_EN: XTRACK_EN

Displays crosstrack error

Values

Value

Meaning

0

Disabled

1

Enabled

OSD2_XTRACK_X: XTRACK_X

Horizontal position on screen

Range

0 - 29

OSD2_XTRACK_Y: XTRACK_Y

Vertical position on screen

Range

0 - 15

OSD2_DIST_EN: DIST_EN

Displays total distance flown

Values

Value

Meaning

0

Disabled

1

Enabled

OSD2_DIST_X: DIST_X

Horizontal position on screen

Range

0 - 29

OSD2_DIST_Y: DIST_Y

Vertical position on screen

Range

0 - 15

OSD2_STATS_EN: STATS_EN

Displays flight stats

Values

Value

Meaning

0

Disabled

1

Enabled

OSD2_STATS_X: STATS_X

Horizontal position on screen

Range

0 - 29

OSD2_STATS_Y: STATS_Y

Vertical position on screen

Range

0 - 15

OSD2_FLTIME_EN: FLTIME_EN

Displays total flight time

Values

Value

Meaning

0

Disabled

1

Enabled

OSD2_FLTIME_X: FLTIME_X

Horizontal position on screen

Range

0 - 29

OSD2_FLTIME_Y: FLTIME_Y

Vertical position on screen

Range

0 - 15

OSD2_CLIMBEFF_EN: CLIMBEFF_EN

Displays climb efficiency (climb rate/current)

Values

Value

Meaning

0

Disabled

1

Enabled

OSD2_CLIMBEFF_X: CLIMBEFF_X

Horizontal position on screen

Range

0 - 29

OSD2_CLIMBEFF_Y: CLIMBEFF_Y

Vertical position on screen

Range

0 - 15

OSD2_EFF_EN: EFF_EN

Displays flight efficiency (mAh/km or /mi)

Values

Value

Meaning

0

Disabled

1

Enabled

OSD2_EFF_X: EFF_X

Horizontal position on screen

Range

0 - 29

OSD2_EFF_Y: EFF_Y

Vertical position on screen

Range

0 - 15

OSD2_BTEMP_EN: BTEMP_EN

Displays temperature reported by secondary barometer

Values

Value

Meaning

0

Disabled

1

Enabled

OSD2_BTEMP_X: BTEMP_X

Horizontal position on screen

Range

0 - 29

OSD2_BTEMP_Y: BTEMP_Y

Vertical position on screen

Range

0 - 15

OSD2_ATEMP_EN: ATEMP_EN

Displays temperature reported by primary airspeed sensor

Values

Value

Meaning

0

Disabled

1

Enabled

OSD2_ATEMP_X: ATEMP_X

Horizontal position on screen

Range

0 - 29

OSD2_ATEMP_Y: ATEMP_Y

Vertical position on screen

Range

0 - 15

OSD2_BAT2_VLT_EN: BAT2VLT_EN

Displays battery2 voltage

Values

Value

Meaning

0

Disabled

1

Enabled

OSD2_BAT2_VLT_X: BAT2VLT_X

Horizontal position on screen

Range

0 - 29

OSD2_BAT2_VLT_Y: BAT2VLT_Y

Vertical position on screen

Range

0 - 15

OSD2_BAT2USED_EN: BAT2USED_EN

Displays secondary battery mAh consumed

Values

Value

Meaning

0

Disabled

1

Enabled

OSD2_BAT2USED_X: BAT2USED_X

Horizontal position on screen

Range

0 - 29

OSD2_BAT2USED_Y: BAT2USED_Y

Vertical position on screen

Range

0 - 15

OSD2_ASPD2_EN: ASPD2_EN

Displays airspeed reported directly from secondary airspeed sensor

Values

Value

Meaning

0

Disabled

1

Enabled

OSD2_ASPD2_X: ASPD2_X

Horizontal position on screen

Range

0 - 29

OSD2_ASPD2_Y: ASPD2_Y

Vertical position on screen

Range

0 - 15

OSD2_ASPD1_EN: ASPD1_EN

Displays airspeed reported directly from primary airspeed sensor

Values

Value

Meaning

0

Disabled

1

Enabled

OSD2_ASPD1_X: ASPD1_X

Horizontal position on screen

Range

0 - 29

OSD2_ASPD1_Y: ASPD1_Y

Vertical position on screen

Range

0 - 15

OSD2_CLK_EN: CLK_EN

Displays a clock panel based on AP_RTC local time

Values

Value

Meaning

0

Disabled

1

Enabled

OSD2_CLK_X: CLK_X

Horizontal position on screen

Range

0 - 29

OSD2_CLK_Y: CLK_Y

Vertical position on screen

Range

0 - 15

OSD2_SIDEBARS_EN: SIDEBARS_EN

Displays artificial horizon side bars (MSP OSD only)

Values

Value

Meaning

0

Disabled

1

Enabled

OSD2_SIDEBARS_X: SIDEBARS_X

Horizontal position on screen (MSP OSD only)

Range

0 - 29

OSD2_SIDEBARS_Y: SIDEBARS_Y

Vertical position on screen (MSP OSD only)

Range

0 - 15

OSD2_CRSSHAIR_EN: CRSSHAIR_EN

Displays artificial horizon crosshair (MSP OSD only)

Values

Value

Meaning

0

Disabled

1

Enabled

OSD2_CRSSHAIR_X: CRSSHAIR_X

Horizontal position on screen (MSP OSD only)

Range

0 - 29

OSD2_CRSSHAIR_Y: CRSSHAIR_Y

Vertical position on screen (MSP OSD only)

Range

0 - 15

OSD2_HOMEDIST_EN: HOMEDIST_EN

Displays distance from HOME (MSP OSD only)

Values

Value

Meaning

0

Disabled

1

Enabled

OSD2_HOMEDIST_X: HOMEDIST_X

Horizontal position on screen (MSP OSD only)

Range

0 - 29

OSD2_HOMEDIST_Y: HOMEDIST_Y

Vertical position on screen (MSP OSD only)

Range

0 - 15

OSD2_HOMEDIR_EN: HOMEDIR_EN

Displays relative direction to HOME (MSP OSD only)

Values

Value

Meaning

0

Disabled

1

Enabled

OSD2_HOMEDIR_X: HOMEDIR_X

Horizontal position on screen

Range

0 - 29

OSD2_HOMEDIR_Y: HOMEDIR_Y

Vertical position on screen

Range

0 - 15

OSD2_POWER_EN: POWER_EN

Displays power (MSP OSD only)

Values

Value

Meaning

0

Disabled

1

Enabled

OSD2_POWER_X: POWER_X

Horizontal position on screen

Range

0 - 29

OSD2_POWER_Y: POWER_Y

Vertical position on screen

Range

0 - 15

OSD2_CELLVOLT_EN: CELL_VOLT_EN

Displays average cell voltage (MSP OSD only)

Values

Value

Meaning

0

Disabled

1

Enabled

OSD2_CELLVOLT_X: CELL_VOLT_X

Horizontal position on screen

Range

0 - 29

OSD2_CELLVOLT_Y: CELL_VOLT_Y

Vertical position on screen

Range

0 - 15

OSD2_BATTBAR_EN: BATT_BAR_EN

Displays battery usage bar (MSP OSD only)

Values

Value

Meaning

0

Disabled

1

Enabled

OSD2_BATTBAR_X: BATT_BAR_X

Horizontal position on screen

Range

0 - 29

OSD2_BATTBAR_Y: BATT_BAR_Y

Vertical position on screen

Range

0 - 15

OSD2_ARMING_EN: ARMING_EN

Displays arming status (MSP OSD only)

Values

Value

Meaning

0

Disabled

1

Enabled

OSD2_ARMING_X: ARMING_X

Horizontal position on screen

Range

0 - 29

OSD2_ARMING_Y: ARMING_Y

Vertical position on screen

Range

0 - 15

OSD2_PLUSCODE_EN: PLUSCODE_EN

Displays pluscode (OLC) element

Values

Value

Meaning

0

Disabled

1

Enabled

OSD2_PLUSCODE_X: PLUSCODE_X

Horizontal position on screen

Range

0 - 29

OSD2_PLUSCODE_Y: PLUSCODE_Y

Vertical position on screen

Range

0 - 15

OSD2_CALLSIGN_EN: CALLSIGN_EN

Displays callsign from callsign.txt on microSD card

Values

Value

Meaning

0

Disabled

1

Enabled

OSD2_CALLSIGN_X: CALLSIGN_X

Horizontal position on screen

Range

0 - 29

OSD2_CALLSIGN_Y: CALLSIGN_Y

Vertical position on screen

Range

0 - 15

OSD2_CURRENT2_EN: CURRENT2_EN

Displays 2nd battery current

Values

Value

Meaning

0

Disabled

1

Enabled

OSD2_CURRENT2_X: CURRENT2_X

Horizontal position on screen

Range

0 - 29

OSD2_CURRENT2_Y: CURRENT2_Y

Vertical position on screen

Range

0 - 15

OSD2_VTX_PWR_EN: VTX_PWR_EN

Displays VTX Power

Values

Value

Meaning

0

Disabled

1

Enabled

OSD2_VTX_PWR_X: VTX_PWR_X

Horizontal position on screen

Range

0 - 29

OSD2_VTX_PWR_Y: VTX_PWR_Y

Vertical position on screen

Range

0 - 15

OSD2_TER_HGT_EN: TER_HGT_EN

Displays Height above terrain

Values

Value

Meaning

0

Disabled

1

Enabled

OSD2_TER_HGT_X: TER_HGT_X

Horizontal position on screen

Range

0 - 29

OSD2_TER_HGT_Y: TER_HGT_Y

Vertical position on screen

Range

0 - 15

OSD2_AVGCELLV_EN: AVGCELLV_EN

Displays average cell voltage. WARNING: this can be inaccurate if the cell count is not detected or set properly. If the the battery is far from fully charged the detected cell count might not be accurate if auto cell count detection is used (OSD_CELL_COUNT=0).

Values

Value

Meaning

0

Disabled

1

Enabled

OSD2_AVGCELLV_X: AVGCELLV_X

Horizontal position on screen

Range

0 - 29

OSD2_AVGCELLV_Y: AVGCELLV_Y

Vertical position on screen

Range

0 - 15

OSD2_RESTVOLT_EN: RESTVOLT_EN

Displays main battery resting voltage

Values

Value

Meaning

0

Disabled

1

Enabled

OSD2_RESTVOLT_X: RESTVOLT_X

Horizontal position on screen

Range

0 - 29

OSD2_RESTVOLT_Y: RESTVOLT_Y

Vertical position on screen

Range

0 - 15

OSD2_FENCE_EN: FENCE_EN

Displays indication of fence enable and breach

Values

Value

Meaning

0

Disabled

1

Enabled

OSD2_FENCE_X: FENCE_X

Horizontal position on screen

Range

0 - 29

OSD2_FENCE_Y: FENCE_Y

Vertical position on screen

Range

0 - 15

OSD2_RNGF_EN: RNGF_EN

Displays a rangefinder's distance in cm

Values

Value

Meaning

0

Disabled

1

Enabled

OSD2_RNGF_X: RNGF_X

Horizontal position on screen

Range

0 - 29

OSD2_RNGF_Y: RNGF_Y

Vertical position on screen

Range

0 - 15

OSD3_ Parameters

OSD3_ENABLE: Enable screen

Enable this screen

Values

Value

Meaning

0

Disabled

1

Enabled

OSD3_CHAN_MIN: Transmitter switch screen minimum pwm

This sets the PWM lower limit for this screen

Range

900 - 2100

OSD3_CHAN_MAX: Transmitter switch screen maximum pwm

This sets the PWM upper limit for this screen

Range

900 - 2100

OSD3_ALTITUDE_EN: ALTITUDE_EN

Enables display of altitude AGL

Values

Value

Meaning

0

Disabled

1

Enabled

OSD3_ALTITUDE_X: ALTITUDE_X

Horizontal position on screen

Range

0 - 29

OSD3_ALTITUDE_Y: ALTITUDE_Y

Vertical position on screen

Range

0 - 15

OSD3_BAT_VOLT_EN: BATVOLT_EN

Displays main battery voltage

Values

Value

Meaning

0

Disabled

1

Enabled

OSD3_BAT_VOLT_X: BATVOLT_X

Horizontal position on screen

Range

0 - 29

OSD3_BAT_VOLT_Y: BATVOLT_Y

Vertical position on screen

Range

0 - 15

OSD3_RSSI_EN: RSSI_EN

Displays RC signal strength

Values

Value

Meaning

0

Disabled

1

Enabled

OSD3_RSSI_X: RSSI_X

Horizontal position on screen

Range

0 - 29

OSD3_RSSI_Y: RSSI_Y

Vertical position on screen

Range

0 - 15

OSD3_CURRENT_EN: CURRENT_EN

Displays main battery current

Values

Value

Meaning

0

Disabled

1

Enabled

OSD3_CURRENT_X: CURRENT_X

Horizontal position on screen

Range

0 - 29

OSD3_CURRENT_Y: CURRENT_Y

Vertical position on screen

Range

0 - 15

OSD3_BATUSED_EN: BATUSED_EN

Displays primary battery mAh consumed

Values

Value

Meaning

0

Disabled

1

Enabled

OSD3_BATUSED_X: BATUSED_X

Horizontal position on screen

Range

0 - 29

OSD3_BATUSED_Y: BATUSED_Y

Vertical position on screen

Range

0 - 15

OSD3_SATS_EN: SATS_EN

Displays number of acquired satellites

Values

Value

Meaning

0

Disabled

1

Enabled

OSD3_SATS_X: SATS_X

Horizontal position on screen

Range

0 - 29

OSD3_SATS_Y: SATS_Y

Vertical position on screen

Range

0 - 15

OSD3_FLTMODE_EN: FLTMODE_EN

Displays flight mode

Values

Value

Meaning

0

Disabled

1

Enabled

OSD3_FLTMODE_X: FLTMODE_X

Horizontal position on screen

Range

0 - 29

OSD3_FLTMODE_Y: FLTMODE_Y

Vertical position on screen

Range

0 - 15

OSD3_MESSAGE_EN: MESSAGE_EN

Displays Mavlink messages

Values

Value

Meaning

0

Disabled

1

Enabled

OSD3_MESSAGE_X: MESSAGE_X

Horizontal position on screen

Range

0 - 29

OSD3_MESSAGE_Y: MESSAGE_Y

Vertical position on screen

Range

0 - 15

OSD3_GSPEED_EN: GSPEED_EN

Displays GPS ground speed

Values

Value

Meaning

0

Disabled

1

Enabled

OSD3_GSPEED_X: GSPEED_X

Horizontal position on screen

Range

0 - 29

OSD3_GSPEED_Y: GSPEED_Y

Vertical position on screen

Range

0 - 15

OSD3_HORIZON_EN: HORIZON_EN

Displays artificial horizon

Values

Value

Meaning

0

Disabled

1

Enabled

OSD3_HORIZON_X: HORIZON_X

Horizontal position on screen

Range

0 - 29

OSD3_HORIZON_Y: HORIZON_Y

Vertical position on screen

Range

0 - 15

OSD3_HOME_EN: HOME_EN

Displays distance and relative direction to HOME

Values

Value

Meaning

0

Disabled

1

Enabled

OSD3_HOME_X: HOME_X

Horizontal position on screen

Range

0 - 29

OSD3_HOME_Y: HOME_Y

Vertical position on screen

Range

0 - 15

OSD3_HEADING_EN: HEADING_EN

Displays heading

Values

Value

Meaning

0

Disabled

1

Enabled

OSD3_HEADING_X: HEADING_X

Horizontal position on screen

Range

0 - 29

OSD3_HEADING_Y: HEADING_Y

Vertical position on screen

Range

0 - 15

OSD3_THROTTLE_EN: THROTTLE_EN

Displays actual throttle percentage being sent to motor(s)

Values

Value

Meaning

0

Disabled

1

Enabled

OSD3_THROTTLE_X: THROTTLE_X

Horizontal position on screen

Range

0 - 29

OSD3_THROTTLE_Y: THROTTLE_Y

Vertical position on screen

Range

0 - 15

OSD3_COMPASS_EN: COMPASS_EN

Enables display of compass rose

Values

Value

Meaning

0

Disabled

1

Enabled

OSD3_COMPASS_X: COMPASS_X

Horizontal position on screen

Range

0 - 29

OSD3_COMPASS_Y: COMPASS_Y

Vertical position on screen

Range

0 - 15

OSD3_WIND_EN: WIND_EN

Displays wind speed and relative direction, on Rover this is the apparent wind speed and direction from the windvane, if fitted

Values

Value

Meaning

0

Disabled

1

Enabled

OSD3_WIND_X: WIND_X

Horizontal position on screen

Range

0 - 29

OSD3_WIND_Y: WIND_Y

Vertical position on screen

Range

0 - 15

OSD3_ASPEED_EN: ASPEED_EN

Displays airspeed value being used by TECS (fused value)

Values

Value

Meaning

0

Disabled

1

Enabled

OSD3_ASPEED_X: ASPEED_X

Horizontal position on screen

Range

0 - 29

OSD3_ASPEED_Y: ASPEED_Y

Vertical position on screen

Range

0 - 15

OSD3_VSPEED_EN: VSPEED_EN

Displays climb rate

Values

Value

Meaning

0

Disabled

1

Enabled

OSD3_VSPEED_X: VSPEED_X

Horizontal position on screen

Range

0 - 29

OSD3_VSPEED_Y: VSPEED_Y

Vertical position on screen

Range

0 - 15

OSD3_BLHTEMP_EN: BLHTEMP_EN

Displays first esc's temp

Values

Value

Meaning

0

Disabled

1

Enabled

OSD3_BLHTEMP_X: BLHTEMP_X

Horizontal position on screen

Range

0 - 29

OSD3_BLHTEMP_Y: BLHTEMP_Y

Vertical position on screen

Range

0 - 15

OSD3_BLHRPM_EN: BLHRPM_EN

Displays first esc's rpm

Values

Value

Meaning

0

Disabled

1

Enabled

OSD3_BLHRPM_X: BLHRPM_X

Horizontal position on screen

Range

0 - 29

OSD3_BLHRPM_Y: BLHRPM_Y

Vertical position on screen

Range

0 - 15

OSD3_BLHAMPS_EN: BLHAMPS_EN

Displays first esc's current

Values

Value

Meaning

0

Disabled

1

Enabled

OSD3_BLHAMPS_X: BLHAMPS_X

Horizontal position on screen

Range

0 - 29

OSD3_BLHAMPS_Y: BLHAMPS_Y

Vertical position on screen

Range

0 - 15

OSD3_GPSLAT_EN: GPSLAT_EN

Displays GPS latitude

Values

Value

Meaning

0

Disabled

1

Enabled

OSD3_GPSLAT_X: GPSLAT_X

Horizontal position on screen

Range

0 - 29

OSD3_GPSLAT_Y: GPSLAT_Y

Vertical position on screen

Range

0 - 15

OSD3_GPSLONG_EN: GPSLONG_EN

Displays GPS longitude

Values

Value

Meaning

0

Disabled

1

Enabled

OSD3_GPSLONG_X: GPSLONG_X

Horizontal position on screen

Range

0 - 29

OSD3_GPSLONG_Y: GPSLONG_Y

Vertical position on screen

Range

0 - 15

OSD3_ROLL_EN: ROLL_EN

Displays degrees of roll from level

Values

Value

Meaning

0

Disabled

1

Enabled

OSD3_ROLL_X: ROLL_X

Horizontal position on screen

Range

0 - 29

OSD3_ROLL_Y: ROLL_Y

Vertical position on screen

Range

0 - 15

OSD3_PITCH_EN: PITCH_EN

Displays degrees of pitch from level

Values

Value

Meaning

0

Disabled

1

Enabled

OSD3_PITCH_X: PITCH_X

Horizontal position on screen

Range

0 - 29

OSD3_PITCH_Y: PITCH_Y

Vertical position on screen

Range

0 - 15

OSD3_TEMP_EN: TEMP_EN

Displays temperature reported by primary barometer

Values

Value

Meaning

0

Disabled

1

Enabled

OSD3_TEMP_X: TEMP_X

Horizontal position on screen

Range

0 - 29

OSD3_TEMP_Y: TEMP_Y

Vertical position on screen

Range

0 - 15

OSD3_HDOP_EN: HDOP_EN

Displays Horizontal Dilution Of Position

Values

Value

Meaning

0

Disabled

1

Enabled

OSD3_HDOP_X: HDOP_X

Horizontal position on screen

Range

0 - 29

OSD3_HDOP_Y: HDOP_Y

Vertical position on screen

Range

0 - 15

OSD3_WAYPOINT_EN: WAYPOINT_EN

Displays bearing and distance to next waypoint

Values

Value

Meaning

0

Disabled

1

Enabled

OSD3_WAYPOINT_X: WAYPOINT_X

Horizontal position on screen

Range

0 - 29

OSD3_WAYPOINT_Y: WAYPOINT_Y

Vertical position on screen

Range

0 - 15

OSD3_XTRACK_EN: XTRACK_EN

Displays crosstrack error

Values

Value

Meaning

0

Disabled

1

Enabled

OSD3_XTRACK_X: XTRACK_X

Horizontal position on screen

Range

0 - 29

OSD3_XTRACK_Y: XTRACK_Y

Vertical position on screen

Range

0 - 15

OSD3_DIST_EN: DIST_EN

Displays total distance flown

Values

Value

Meaning

0

Disabled

1

Enabled

OSD3_DIST_X: DIST_X

Horizontal position on screen

Range

0 - 29

OSD3_DIST_Y: DIST_Y

Vertical position on screen

Range

0 - 15

OSD3_STATS_EN: STATS_EN

Displays flight stats

Values

Value

Meaning

0

Disabled

1

Enabled

OSD3_STATS_X: STATS_X

Horizontal position on screen

Range

0 - 29

OSD3_STATS_Y: STATS_Y

Vertical position on screen

Range

0 - 15

OSD3_FLTIME_EN: FLTIME_EN

Displays total flight time

Values

Value

Meaning

0

Disabled

1

Enabled

OSD3_FLTIME_X: FLTIME_X

Horizontal position on screen

Range

0 - 29

OSD3_FLTIME_Y: FLTIME_Y

Vertical position on screen

Range

0 - 15

OSD3_CLIMBEFF_EN: CLIMBEFF_EN

Displays climb efficiency (climb rate/current)

Values

Value

Meaning

0

Disabled

1

Enabled

OSD3_CLIMBEFF_X: CLIMBEFF_X

Horizontal position on screen

Range

0 - 29

OSD3_CLIMBEFF_Y: CLIMBEFF_Y

Vertical position on screen

Range

0 - 15

OSD3_EFF_EN: EFF_EN

Displays flight efficiency (mAh/km or /mi)

Values

Value

Meaning

0

Disabled

1

Enabled

OSD3_EFF_X: EFF_X

Horizontal position on screen

Range

0 - 29

OSD3_EFF_Y: EFF_Y

Vertical position on screen

Range

0 - 15

OSD3_BTEMP_EN: BTEMP_EN

Displays temperature reported by secondary barometer

Values

Value

Meaning

0

Disabled

1

Enabled

OSD3_BTEMP_X: BTEMP_X

Horizontal position on screen

Range

0 - 29

OSD3_BTEMP_Y: BTEMP_Y

Vertical position on screen

Range

0 - 15

OSD3_ATEMP_EN: ATEMP_EN

Displays temperature reported by primary airspeed sensor

Values

Value

Meaning

0

Disabled

1

Enabled

OSD3_ATEMP_X: ATEMP_X

Horizontal position on screen

Range

0 - 29

OSD3_ATEMP_Y: ATEMP_Y

Vertical position on screen

Range

0 - 15

OSD3_BAT2_VLT_EN: BAT2VLT_EN

Displays battery2 voltage

Values

Value

Meaning

0

Disabled

1

Enabled

OSD3_BAT2_VLT_X: BAT2VLT_X

Horizontal position on screen

Range

0 - 29

OSD3_BAT2_VLT_Y: BAT2VLT_Y

Vertical position on screen

Range

0 - 15

OSD3_BAT2USED_EN: BAT2USED_EN

Displays secondary battery mAh consumed

Values

Value

Meaning

0

Disabled

1

Enabled

OSD3_BAT2USED_X: BAT2USED_X

Horizontal position on screen

Range

0 - 29

OSD3_BAT2USED_Y: BAT2USED_Y

Vertical position on screen

Range

0 - 15

OSD3_ASPD2_EN: ASPD2_EN

Displays airspeed reported directly from secondary airspeed sensor

Values

Value

Meaning

0

Disabled

1

Enabled

OSD3_ASPD2_X: ASPD2_X

Horizontal position on screen

Range

0 - 29

OSD3_ASPD2_Y: ASPD2_Y

Vertical position on screen

Range

0 - 15

OSD3_ASPD1_EN: ASPD1_EN

Displays airspeed reported directly from primary airspeed sensor

Values

Value

Meaning

0

Disabled

1

Enabled

OSD3_ASPD1_X: ASPD1_X

Horizontal position on screen

Range

0 - 29

OSD3_ASPD1_Y: ASPD1_Y

Vertical position on screen

Range

0 - 15

OSD3_CLK_EN: CLK_EN

Displays a clock panel based on AP_RTC local time

Values

Value

Meaning

0

Disabled

1

Enabled

OSD3_CLK_X: CLK_X

Horizontal position on screen

Range

0 - 29

OSD3_CLK_Y: CLK_Y

Vertical position on screen

Range

0 - 15

OSD3_SIDEBARS_EN: SIDEBARS_EN

Displays artificial horizon side bars (MSP OSD only)

Values

Value

Meaning

0

Disabled

1

Enabled

OSD3_SIDEBARS_X: SIDEBARS_X

Horizontal position on screen (MSP OSD only)

Range

0 - 29

OSD3_SIDEBARS_Y: SIDEBARS_Y

Vertical position on screen (MSP OSD only)

Range

0 - 15

OSD3_CRSSHAIR_EN: CRSSHAIR_EN

Displays artificial horizon crosshair (MSP OSD only)

Values

Value

Meaning

0

Disabled

1

Enabled

OSD3_CRSSHAIR_X: CRSSHAIR_X

Horizontal position on screen (MSP OSD only)

Range

0 - 29

OSD3_CRSSHAIR_Y: CRSSHAIR_Y

Vertical position on screen (MSP OSD only)

Range

0 - 15

OSD3_HOMEDIST_EN: HOMEDIST_EN

Displays distance from HOME (MSP OSD only)

Values

Value

Meaning

0

Disabled

1

Enabled

OSD3_HOMEDIST_X: HOMEDIST_X

Horizontal position on screen (MSP OSD only)

Range

0 - 29

OSD3_HOMEDIST_Y: HOMEDIST_Y

Vertical position on screen (MSP OSD only)

Range

0 - 15

OSD3_HOMEDIR_EN: HOMEDIR_EN

Displays relative direction to HOME (MSP OSD only)

Values

Value

Meaning

0

Disabled

1

Enabled

OSD3_HOMEDIR_X: HOMEDIR_X

Horizontal position on screen

Range

0 - 29

OSD3_HOMEDIR_Y: HOMEDIR_Y

Vertical position on screen

Range

0 - 15

OSD3_POWER_EN: POWER_EN

Displays power (MSP OSD only)

Values

Value

Meaning

0

Disabled

1

Enabled

OSD3_POWER_X: POWER_X

Horizontal position on screen

Range

0 - 29

OSD3_POWER_Y: POWER_Y

Vertical position on screen

Range

0 - 15

OSD3_CELLVOLT_EN: CELL_VOLT_EN

Displays average cell voltage (MSP OSD only)

Values

Value

Meaning

0

Disabled

1

Enabled

OSD3_CELLVOLT_X: CELL_VOLT_X

Horizontal position on screen

Range

0 - 29

OSD3_CELLVOLT_Y: CELL_VOLT_Y

Vertical position on screen

Range

0 - 15

OSD3_BATTBAR_EN: BATT_BAR_EN

Displays battery usage bar (MSP OSD only)

Values

Value

Meaning

0

Disabled

1

Enabled

OSD3_BATTBAR_X: BATT_BAR_X

Horizontal position on screen

Range

0 - 29

OSD3_BATTBAR_Y: BATT_BAR_Y

Vertical position on screen

Range

0 - 15

OSD3_ARMING_EN: ARMING_EN

Displays arming status (MSP OSD only)

Values

Value

Meaning

0

Disabled

1

Enabled

OSD3_ARMING_X: ARMING_X

Horizontal position on screen

Range

0 - 29

OSD3_ARMING_Y: ARMING_Y

Vertical position on screen

Range

0 - 15

OSD3_PLUSCODE_EN: PLUSCODE_EN

Displays pluscode (OLC) element

Values

Value

Meaning

0

Disabled

1

Enabled

OSD3_PLUSCODE_X: PLUSCODE_X

Horizontal position on screen

Range

0 - 29

OSD3_PLUSCODE_Y: PLUSCODE_Y

Vertical position on screen

Range

0 - 15

OSD3_CALLSIGN_EN: CALLSIGN_EN

Displays callsign from callsign.txt on microSD card

Values

Value

Meaning

0

Disabled

1

Enabled

OSD3_CALLSIGN_X: CALLSIGN_X

Horizontal position on screen

Range

0 - 29

OSD3_CALLSIGN_Y: CALLSIGN_Y

Vertical position on screen

Range

0 - 15

OSD3_CURRENT2_EN: CURRENT2_EN

Displays 2nd battery current

Values

Value

Meaning

0

Disabled

1

Enabled

OSD3_CURRENT2_X: CURRENT2_X

Horizontal position on screen

Range

0 - 29

OSD3_CURRENT2_Y: CURRENT2_Y

Vertical position on screen

Range

0 - 15

OSD3_VTX_PWR_EN: VTX_PWR_EN

Displays VTX Power

Values

Value

Meaning

0

Disabled

1

Enabled

OSD3_VTX_PWR_X: VTX_PWR_X

Horizontal position on screen

Range

0 - 29

OSD3_VTX_PWR_Y: VTX_PWR_Y

Vertical position on screen

Range

0 - 15

OSD3_TER_HGT_EN: TER_HGT_EN

Displays Height above terrain

Values

Value

Meaning

0

Disabled

1

Enabled

OSD3_TER_HGT_X: TER_HGT_X

Horizontal position on screen

Range

0 - 29

OSD3_TER_HGT_Y: TER_HGT_Y

Vertical position on screen

Range

0 - 15

OSD3_AVGCELLV_EN: AVGCELLV_EN

Displays average cell voltage. WARNING: this can be inaccurate if the cell count is not detected or set properly. If the the battery is far from fully charged the detected cell count might not be accurate if auto cell count detection is used (OSD_CELL_COUNT=0).

Values

Value

Meaning

0

Disabled

1

Enabled

OSD3_AVGCELLV_X: AVGCELLV_X

Horizontal position on screen

Range

0 - 29

OSD3_AVGCELLV_Y: AVGCELLV_Y

Vertical position on screen

Range

0 - 15

OSD3_RESTVOLT_EN: RESTVOLT_EN

Displays main battery resting voltage

Values

Value

Meaning

0

Disabled

1

Enabled

OSD3_RESTVOLT_X: RESTVOLT_X

Horizontal position on screen

Range

0 - 29

OSD3_RESTVOLT_Y: RESTVOLT_Y

Vertical position on screen

Range

0 - 15

OSD3_FENCE_EN: FENCE_EN

Displays indication of fence enable and breach

Values

Value

Meaning

0

Disabled

1

Enabled

OSD3_FENCE_X: FENCE_X

Horizontal position on screen

Range

0 - 29

OSD3_FENCE_Y: FENCE_Y

Vertical position on screen

Range

0 - 15

OSD3_RNGF_EN: RNGF_EN

Displays a rangefinder's distance in cm

Values

Value

Meaning

0

Disabled

1

Enabled

OSD3_RNGF_X: RNGF_X

Horizontal position on screen

Range

0 - 29

OSD3_RNGF_Y: RNGF_Y

Vertical position on screen

Range

0 - 15

OSD4_ Parameters

OSD4_ENABLE: Enable screen

Enable this screen

Values

Value

Meaning

0

Disabled

1

Enabled

OSD4_CHAN_MIN: Transmitter switch screen minimum pwm

This sets the PWM lower limit for this screen

Range

900 - 2100

OSD4_CHAN_MAX: Transmitter switch screen maximum pwm

This sets the PWM upper limit for this screen

Range

900 - 2100

OSD4_ALTITUDE_EN: ALTITUDE_EN

Enables display of altitude AGL

Values

Value

Meaning

0

Disabled

1

Enabled

OSD4_ALTITUDE_X: ALTITUDE_X

Horizontal position on screen

Range

0 - 29

OSD4_ALTITUDE_Y: ALTITUDE_Y

Vertical position on screen

Range

0 - 15

OSD4_BAT_VOLT_EN: BATVOLT_EN

Displays main battery voltage

Values

Value

Meaning

0

Disabled

1

Enabled

OSD4_BAT_VOLT_X: BATVOLT_X

Horizontal position on screen

Range

0 - 29

OSD4_BAT_VOLT_Y: BATVOLT_Y

Vertical position on screen

Range

0 - 15

OSD4_RSSI_EN: RSSI_EN

Displays RC signal strength

Values

Value

Meaning

0

Disabled

1

Enabled

OSD4_RSSI_X: RSSI_X

Horizontal position on screen

Range

0 - 29

OSD4_RSSI_Y: RSSI_Y

Vertical position on screen

Range

0 - 15

OSD4_CURRENT_EN: CURRENT_EN

Displays main battery current

Values

Value

Meaning

0

Disabled

1

Enabled

OSD4_CURRENT_X: CURRENT_X

Horizontal position on screen

Range

0 - 29

OSD4_CURRENT_Y: CURRENT_Y

Vertical position on screen

Range

0 - 15

OSD4_BATUSED_EN: BATUSED_EN

Displays primary battery mAh consumed

Values

Value

Meaning

0

Disabled

1

Enabled

OSD4_BATUSED_X: BATUSED_X

Horizontal position on screen

Range

0 - 29

OSD4_BATUSED_Y: BATUSED_Y

Vertical position on screen

Range

0 - 15

OSD4_SATS_EN: SATS_EN

Displays number of acquired satellites

Values

Value

Meaning

0

Disabled

1

Enabled

OSD4_SATS_X: SATS_X

Horizontal position on screen

Range

0 - 29

OSD4_SATS_Y: SATS_Y

Vertical position on screen

Range

0 - 15

OSD4_FLTMODE_EN: FLTMODE_EN

Displays flight mode

Values

Value

Meaning

0

Disabled

1

Enabled

OSD4_FLTMODE_X: FLTMODE_X

Horizontal position on screen

Range

0 - 29

OSD4_FLTMODE_Y: FLTMODE_Y

Vertical position on screen

Range

0 - 15

OSD4_MESSAGE_EN: MESSAGE_EN

Displays Mavlink messages

Values

Value

Meaning

0

Disabled

1

Enabled

OSD4_MESSAGE_X: MESSAGE_X

Horizontal position on screen

Range

0 - 29

OSD4_MESSAGE_Y: MESSAGE_Y

Vertical position on screen

Range

0 - 15

OSD4_GSPEED_EN: GSPEED_EN

Displays GPS ground speed

Values

Value

Meaning

0

Disabled

1

Enabled

OSD4_GSPEED_X: GSPEED_X

Horizontal position on screen

Range

0 - 29

OSD4_GSPEED_Y: GSPEED_Y

Vertical position on screen

Range

0 - 15

OSD4_HORIZON_EN: HORIZON_EN

Displays artificial horizon

Values

Value

Meaning

0

Disabled

1

Enabled

OSD4_HORIZON_X: HORIZON_X

Horizontal position on screen

Range

0 - 29

OSD4_HORIZON_Y: HORIZON_Y

Vertical position on screen

Range

0 - 15

OSD4_HOME_EN: HOME_EN

Displays distance and relative direction to HOME

Values

Value

Meaning

0

Disabled

1

Enabled

OSD4_HOME_X: HOME_X

Horizontal position on screen

Range

0 - 29

OSD4_HOME_Y: HOME_Y

Vertical position on screen

Range

0 - 15

OSD4_HEADING_EN: HEADING_EN

Displays heading

Values

Value

Meaning

0

Disabled

1

Enabled

OSD4_HEADING_X: HEADING_X

Horizontal position on screen

Range

0 - 29

OSD4_HEADING_Y: HEADING_Y

Vertical position on screen

Range

0 - 15

OSD4_THROTTLE_EN: THROTTLE_EN

Displays actual throttle percentage being sent to motor(s)

Values

Value

Meaning

0

Disabled

1

Enabled

OSD4_THROTTLE_X: THROTTLE_X

Horizontal position on screen

Range

0 - 29

OSD4_THROTTLE_Y: THROTTLE_Y

Vertical position on screen

Range

0 - 15

OSD4_COMPASS_EN: COMPASS_EN

Enables display of compass rose

Values

Value

Meaning

0

Disabled

1

Enabled

OSD4_COMPASS_X: COMPASS_X

Horizontal position on screen

Range

0 - 29

OSD4_COMPASS_Y: COMPASS_Y

Vertical position on screen

Range

0 - 15

OSD4_WIND_EN: WIND_EN

Displays wind speed and relative direction, on Rover this is the apparent wind speed and direction from the windvane, if fitted

Values

Value

Meaning

0

Disabled

1

Enabled

OSD4_WIND_X: WIND_X

Horizontal position on screen

Range

0 - 29

OSD4_WIND_Y: WIND_Y

Vertical position on screen

Range

0 - 15

OSD4_ASPEED_EN: ASPEED_EN

Displays airspeed value being used by TECS (fused value)

Values

Value

Meaning

0

Disabled

1

Enabled

OSD4_ASPEED_X: ASPEED_X

Horizontal position on screen

Range

0 - 29

OSD4_ASPEED_Y: ASPEED_Y

Vertical position on screen

Range

0 - 15

OSD4_VSPEED_EN: VSPEED_EN

Displays climb rate

Values

Value

Meaning

0

Disabled

1

Enabled

OSD4_VSPEED_X: VSPEED_X

Horizontal position on screen

Range

0 - 29

OSD4_VSPEED_Y: VSPEED_Y

Vertical position on screen

Range

0 - 15

OSD4_BLHTEMP_EN: BLHTEMP_EN

Displays first esc's temp

Values

Value

Meaning

0

Disabled

1

Enabled

OSD4_BLHTEMP_X: BLHTEMP_X

Horizontal position on screen

Range

0 - 29

OSD4_BLHTEMP_Y: BLHTEMP_Y

Vertical position on screen

Range

0 - 15

OSD4_BLHRPM_EN: BLHRPM_EN

Displays first esc's rpm

Values

Value

Meaning

0

Disabled

1

Enabled

OSD4_BLHRPM_X: BLHRPM_X

Horizontal position on screen

Range

0 - 29

OSD4_BLHRPM_Y: BLHRPM_Y

Vertical position on screen

Range

0 - 15

OSD4_BLHAMPS_EN: BLHAMPS_EN

Displays first esc's current

Values

Value

Meaning

0

Disabled

1

Enabled

OSD4_BLHAMPS_X: BLHAMPS_X

Horizontal position on screen

Range

0 - 29

OSD4_BLHAMPS_Y: BLHAMPS_Y

Vertical position on screen

Range

0 - 15

OSD4_GPSLAT_EN: GPSLAT_EN

Displays GPS latitude

Values

Value

Meaning

0

Disabled

1

Enabled

OSD4_GPSLAT_X: GPSLAT_X

Horizontal position on screen

Range

0 - 29

OSD4_GPSLAT_Y: GPSLAT_Y

Vertical position on screen

Range

0 - 15

OSD4_GPSLONG_EN: GPSLONG_EN

Displays GPS longitude

Values

Value

Meaning

0

Disabled

1

Enabled

OSD4_GPSLONG_X: GPSLONG_X

Horizontal position on screen

Range

0 - 29

OSD4_GPSLONG_Y: GPSLONG_Y

Vertical position on screen

Range

0 - 15

OSD4_ROLL_EN: ROLL_EN

Displays degrees of roll from level

Values

Value

Meaning

0

Disabled

1

Enabled

OSD4_ROLL_X: ROLL_X

Horizontal position on screen

Range

0 - 29

OSD4_ROLL_Y: ROLL_Y

Vertical position on screen

Range

0 - 15

OSD4_PITCH_EN: PITCH_EN

Displays degrees of pitch from level

Values

Value

Meaning

0

Disabled

1

Enabled

OSD4_PITCH_X: PITCH_X

Horizontal position on screen

Range

0 - 29

OSD4_PITCH_Y: PITCH_Y

Vertical position on screen

Range

0 - 15

OSD4_TEMP_EN: TEMP_EN

Displays temperature reported by primary barometer

Values

Value

Meaning

0

Disabled

1

Enabled

OSD4_TEMP_X: TEMP_X

Horizontal position on screen

Range

0 - 29

OSD4_TEMP_Y: TEMP_Y

Vertical position on screen

Range

0 - 15

OSD4_HDOP_EN: HDOP_EN

Displays Horizontal Dilution Of Position

Values

Value

Meaning

0

Disabled

1

Enabled

OSD4_HDOP_X: HDOP_X

Horizontal position on screen

Range

0 - 29

OSD4_HDOP_Y: HDOP_Y

Vertical position on screen

Range

0 - 15

OSD4_WAYPOINT_EN: WAYPOINT_EN

Displays bearing and distance to next waypoint

Values

Value

Meaning

0

Disabled

1

Enabled

OSD4_WAYPOINT_X: WAYPOINT_X

Horizontal position on screen

Range

0 - 29

OSD4_WAYPOINT_Y: WAYPOINT_Y

Vertical position on screen

Range

0 - 15

OSD4_XTRACK_EN: XTRACK_EN

Displays crosstrack error

Values

Value

Meaning

0

Disabled

1

Enabled

OSD4_XTRACK_X: XTRACK_X

Horizontal position on screen

Range

0 - 29

OSD4_XTRACK_Y: XTRACK_Y

Vertical position on screen

Range

0 - 15

OSD4_DIST_EN: DIST_EN

Displays total distance flown

Values

Value

Meaning

0

Disabled

1

Enabled

OSD4_DIST_X: DIST_X

Horizontal position on screen

Range

0 - 29

OSD4_DIST_Y: DIST_Y

Vertical position on screen

Range

0 - 15

OSD4_STATS_EN: STATS_EN

Displays flight stats

Values

Value

Meaning

0

Disabled

1

Enabled

OSD4_STATS_X: STATS_X

Horizontal position on screen

Range

0 - 29

OSD4_STATS_Y: STATS_Y

Vertical position on screen

Range

0 - 15

OSD4_FLTIME_EN: FLTIME_EN

Displays total flight time

Values

Value

Meaning

0

Disabled

1

Enabled

OSD4_FLTIME_X: FLTIME_X

Horizontal position on screen

Range

0 - 29

OSD4_FLTIME_Y: FLTIME_Y

Vertical position on screen

Range

0 - 15

OSD4_CLIMBEFF_EN: CLIMBEFF_EN

Displays climb efficiency (climb rate/current)

Values

Value

Meaning

0

Disabled

1

Enabled

OSD4_CLIMBEFF_X: CLIMBEFF_X

Horizontal position on screen

Range

0 - 29

OSD4_CLIMBEFF_Y: CLIMBEFF_Y

Vertical position on screen

Range

0 - 15

OSD4_EFF_EN: EFF_EN

Displays flight efficiency (mAh/km or /mi)

Values

Value

Meaning

0

Disabled

1

Enabled

OSD4_EFF_X: EFF_X

Horizontal position on screen

Range

0 - 29

OSD4_EFF_Y: EFF_Y

Vertical position on screen

Range

0 - 15

OSD4_BTEMP_EN: BTEMP_EN

Displays temperature reported by secondary barometer

Values

Value

Meaning

0

Disabled

1

Enabled

OSD4_BTEMP_X: BTEMP_X

Horizontal position on screen

Range

0 - 29

OSD4_BTEMP_Y: BTEMP_Y

Vertical position on screen

Range

0 - 15

OSD4_ATEMP_EN: ATEMP_EN

Displays temperature reported by primary airspeed sensor

Values

Value

Meaning

0

Disabled

1

Enabled

OSD4_ATEMP_X: ATEMP_X

Horizontal position on screen

Range

0 - 29

OSD4_ATEMP_Y: ATEMP_Y

Vertical position on screen

Range

0 - 15

OSD4_BAT2_VLT_EN: BAT2VLT_EN

Displays battery2 voltage

Values

Value

Meaning

0

Disabled

1

Enabled

OSD4_BAT2_VLT_X: BAT2VLT_X

Horizontal position on screen

Range

0 - 29

OSD4_BAT2_VLT_Y: BAT2VLT_Y

Vertical position on screen

Range

0 - 15

OSD4_BAT2USED_EN: BAT2USED_EN

Displays secondary battery mAh consumed

Values

Value

Meaning

0

Disabled

1

Enabled

OSD4_BAT2USED_X: BAT2USED_X

Horizontal position on screen

Range

0 - 29

OSD4_BAT2USED_Y: BAT2USED_Y

Vertical position on screen

Range

0 - 15

OSD4_ASPD2_EN: ASPD2_EN

Displays airspeed reported directly from secondary airspeed sensor

Values

Value

Meaning

0

Disabled

1

Enabled

OSD4_ASPD2_X: ASPD2_X

Horizontal position on screen

Range

0 - 29

OSD4_ASPD2_Y: ASPD2_Y

Vertical position on screen

Range

0 - 15

OSD4_ASPD1_EN: ASPD1_EN

Displays airspeed reported directly from primary airspeed sensor

Values

Value

Meaning

0

Disabled

1

Enabled

OSD4_ASPD1_X: ASPD1_X

Horizontal position on screen

Range

0 - 29

OSD4_ASPD1_Y: ASPD1_Y

Vertical position on screen

Range

0 - 15

OSD4_CLK_EN: CLK_EN

Displays a clock panel based on AP_RTC local time

Values

Value

Meaning

0

Disabled

1

Enabled

OSD4_CLK_X: CLK_X

Horizontal position on screen

Range

0 - 29

OSD4_CLK_Y: CLK_Y

Vertical position on screen

Range

0 - 15

OSD4_SIDEBARS_EN: SIDEBARS_EN

Displays artificial horizon side bars (MSP OSD only)

Values

Value

Meaning

0

Disabled

1

Enabled

OSD4_SIDEBARS_X: SIDEBARS_X

Horizontal position on screen (MSP OSD only)

Range

0 - 29

OSD4_SIDEBARS_Y: SIDEBARS_Y

Vertical position on screen (MSP OSD only)

Range

0 - 15

OSD4_CRSSHAIR_EN: CRSSHAIR_EN

Displays artificial horizon crosshair (MSP OSD only)

Values

Value

Meaning

0

Disabled

1

Enabled

OSD4_CRSSHAIR_X: CRSSHAIR_X

Horizontal position on screen (MSP OSD only)

Range

0 - 29

OSD4_CRSSHAIR_Y: CRSSHAIR_Y

Vertical position on screen (MSP OSD only)

Range

0 - 15

OSD4_HOMEDIST_EN: HOMEDIST_EN

Displays distance from HOME (MSP OSD only)

Values

Value

Meaning

0

Disabled

1

Enabled

OSD4_HOMEDIST_X: HOMEDIST_X

Horizontal position on screen (MSP OSD only)

Range

0 - 29

OSD4_HOMEDIST_Y: HOMEDIST_Y

Vertical position on screen (MSP OSD only)

Range

0 - 15

OSD4_HOMEDIR_EN: HOMEDIR_EN

Displays relative direction to HOME (MSP OSD only)

Values

Value

Meaning

0

Disabled

1

Enabled

OSD4_HOMEDIR_X: HOMEDIR_X

Horizontal position on screen

Range

0 - 29

OSD4_HOMEDIR_Y: HOMEDIR_Y

Vertical position on screen

Range

0 - 15

OSD4_POWER_EN: POWER_EN

Displays power (MSP OSD only)

Values

Value

Meaning

0

Disabled

1

Enabled

OSD4_POWER_X: POWER_X

Horizontal position on screen

Range

0 - 29

OSD4_POWER_Y: POWER_Y

Vertical position on screen

Range

0 - 15

OSD4_CELLVOLT_EN: CELL_VOLT_EN

Displays average cell voltage (MSP OSD only)

Values

Value

Meaning

0

Disabled

1

Enabled

OSD4_CELLVOLT_X: CELL_VOLT_X

Horizontal position on screen

Range

0 - 29

OSD4_CELLVOLT_Y: CELL_VOLT_Y

Vertical position on screen

Range

0 - 15

OSD4_BATTBAR_EN: BATT_BAR_EN

Displays battery usage bar (MSP OSD only)

Values

Value

Meaning

0

Disabled

1

Enabled

OSD4_BATTBAR_X: BATT_BAR_X

Horizontal position on screen

Range

0 - 29

OSD4_BATTBAR_Y: BATT_BAR_Y

Vertical position on screen

Range

0 - 15

OSD4_ARMING_EN: ARMING_EN

Displays arming status (MSP OSD only)

Values

Value

Meaning

0

Disabled

1

Enabled

OSD4_ARMING_X: ARMING_X

Horizontal position on screen

Range

0 - 29

OSD4_ARMING_Y: ARMING_Y

Vertical position on screen

Range

0 - 15

OSD4_PLUSCODE_EN: PLUSCODE_EN

Displays pluscode (OLC) element

Values

Value

Meaning

0

Disabled

1

Enabled

OSD4_PLUSCODE_X: PLUSCODE_X

Horizontal position on screen

Range

0 - 29

OSD4_PLUSCODE_Y: PLUSCODE_Y

Vertical position on screen

Range

0 - 15

OSD4_CALLSIGN_EN: CALLSIGN_EN

Displays callsign from callsign.txt on microSD card

Values

Value

Meaning

0

Disabled

1

Enabled

OSD4_CALLSIGN_X: CALLSIGN_X

Horizontal position on screen

Range

0 - 29

OSD4_CALLSIGN_Y: CALLSIGN_Y

Vertical position on screen

Range

0 - 15

OSD4_CURRENT2_EN: CURRENT2_EN

Displays 2nd battery current

Values

Value

Meaning

0

Disabled

1

Enabled

OSD4_CURRENT2_X: CURRENT2_X

Horizontal position on screen

Range

0 - 29

OSD4_CURRENT2_Y: CURRENT2_Y

Vertical position on screen

Range

0 - 15

OSD4_VTX_PWR_EN: VTX_PWR_EN

Displays VTX Power

Values

Value

Meaning

0

Disabled

1

Enabled

OSD4_VTX_PWR_X: VTX_PWR_X

Horizontal position on screen

Range

0 - 29

OSD4_VTX_PWR_Y: VTX_PWR_Y

Vertical position on screen

Range

0 - 15

OSD4_TER_HGT_EN: TER_HGT_EN

Displays Height above terrain

Values

Value

Meaning

0

Disabled

1

Enabled

OSD4_TER_HGT_X: TER_HGT_X

Horizontal position on screen

Range

0 - 29

OSD4_TER_HGT_Y: TER_HGT_Y

Vertical position on screen

Range

0 - 15

OSD4_AVGCELLV_EN: AVGCELLV_EN

Displays average cell voltage. WARNING: this can be inaccurate if the cell count is not detected or set properly. If the the battery is far from fully charged the detected cell count might not be accurate if auto cell count detection is used (OSD_CELL_COUNT=0).

Values

Value

Meaning

0

Disabled

1

Enabled

OSD4_AVGCELLV_X: AVGCELLV_X

Horizontal position on screen

Range

0 - 29

OSD4_AVGCELLV_Y: AVGCELLV_Y

Vertical position on screen

Range

0 - 15

OSD4_RESTVOLT_EN: RESTVOLT_EN

Displays main battery resting voltage

Values

Value

Meaning

0

Disabled

1

Enabled

OSD4_RESTVOLT_X: RESTVOLT_X

Horizontal position on screen

Range

0 - 29

OSD4_RESTVOLT_Y: RESTVOLT_Y

Vertical position on screen

Range

0 - 15

OSD4_FENCE_EN: FENCE_EN

Displays indication of fence enable and breach

Values

Value

Meaning

0

Disabled

1

Enabled

OSD4_FENCE_X: FENCE_X

Horizontal position on screen

Range

0 - 29

OSD4_FENCE_Y: FENCE_Y

Vertical position on screen

Range

0 - 15

OSD4_RNGF_EN: RNGF_EN

Displays a rangefinder's distance in cm

Values

Value

Meaning

0

Disabled

1

Enabled

OSD4_RNGF_X: RNGF_X

Horizontal position on screen

Range

0 - 29

OSD4_RNGF_Y: RNGF_Y

Vertical position on screen

Range

0 - 15

OSD5_ Parameters

OSD5_ENABLE: Enable screen

Enable this screen

Values

Value

Meaning

0

Disabled

1

Enabled

OSD5_CHAN_MIN: Transmitter switch screen minimum pwm

This sets the PWM lower limit for this screen

Range

900 - 2100

OSD5_CHAN_MAX: Transmitter switch screen maximum pwm

This sets the PWM upper limit for this screen

Range

900 - 2100

OSD5_SAVE_X: SAVE_X

Note: This parameter is for advanced users

Horizontal position of Save button on screen

Range

0 - 25

OSD5_SAVE_Y: SAVE_Y

Note: This parameter is for advanced users

Vertical position of Save button on screen

Range

0 - 15

OSD5_PARAM1 Parameters

OSD5_PARAM1_EN: Enable

Enable setting

Values

Value

Meaning

0

Disabled

1

Enabled

OSD5_PARAM1_X: X position

Horizontal position on screen

Range

0 - 29

OSD5_PARAM1_Y: Y position

Vertical position on screen

Range

0 - 15

OSD5_PARAM1_KEY: Parameter key

Key of the parameter to be displayed and modified

OSD5_PARAM1_IDX: Parameter index

Index of the parameter to be displayed and modified

OSD5_PARAM1_GRP: Parameter group

Group of the parameter to be displayed and modified

OSD5_PARAM1_MIN: Parameter minimum

Minimum value of the parameter to be displayed and modified

OSD5_PARAM1_MAX: Parameter maximum

Maximum of the parameter to be displayed and modified

OSD5_PARAM1_INCR: Parameter increment

Increment of the parameter to be displayed and modified

OSD5_PARAM1_TYPE: Parameter type

Type of the parameter to be displayed and modified

OSD5_PARAM2 Parameters

OSD5_PARAM2_EN: Enable

Enable setting

Values

Value

Meaning

0

Disabled

1

Enabled

OSD5_PARAM2_X: X position

Horizontal position on screen

Range

0 - 29

OSD5_PARAM2_Y: Y position

Vertical position on screen

Range

0 - 15

OSD5_PARAM2_KEY: Parameter key

Key of the parameter to be displayed and modified

OSD5_PARAM2_IDX: Parameter index

Index of the parameter to be displayed and modified

OSD5_PARAM2_GRP: Parameter group

Group of the parameter to be displayed and modified

OSD5_PARAM2_MIN: Parameter minimum

Minimum value of the parameter to be displayed and modified

OSD5_PARAM2_MAX: Parameter maximum

Maximum of the parameter to be displayed and modified

OSD5_PARAM2_INCR: Parameter increment

Increment of the parameter to be displayed and modified

OSD5_PARAM2_TYPE: Parameter type

Type of the parameter to be displayed and modified

OSD5_PARAM3 Parameters

OSD5_PARAM3_EN: Enable

Enable setting

Values

Value

Meaning

0

Disabled

1

Enabled

OSD5_PARAM3_X: X position

Horizontal position on screen

Range

0 - 29

OSD5_PARAM3_Y: Y position

Vertical position on screen

Range

0 - 15

OSD5_PARAM3_KEY: Parameter key

Key of the parameter to be displayed and modified

OSD5_PARAM3_IDX: Parameter index

Index of the parameter to be displayed and modified

OSD5_PARAM3_GRP: Parameter group

Group of the parameter to be displayed and modified

OSD5_PARAM3_MIN: Parameter minimum

Minimum value of the parameter to be displayed and modified

OSD5_PARAM3_MAX: Parameter maximum

Maximum of the parameter to be displayed and modified

OSD5_PARAM3_INCR: Parameter increment

Increment of the parameter to be displayed and modified

OSD5_PARAM3_TYPE: Parameter type

Type of the parameter to be displayed and modified

OSD5_PARAM4 Parameters

OSD5_PARAM4_EN: Enable

Enable setting

Values

Value

Meaning

0

Disabled

1

Enabled

OSD5_PARAM4_X: X position

Horizontal position on screen

Range

0 - 29

OSD5_PARAM4_Y: Y position

Vertical position on screen

Range

0 - 15

OSD5_PARAM4_KEY: Parameter key

Key of the parameter to be displayed and modified

OSD5_PARAM4_IDX: Parameter index

Index of the parameter to be displayed and modified

OSD5_PARAM4_GRP: Parameter group

Group of the parameter to be displayed and modified

OSD5_PARAM4_MIN: Parameter minimum

Minimum value of the parameter to be displayed and modified

OSD5_PARAM4_MAX: Parameter maximum

Maximum of the parameter to be displayed and modified

OSD5_PARAM4_INCR: Parameter increment

Increment of the parameter to be displayed and modified

OSD5_PARAM4_TYPE: Parameter type

Type of the parameter to be displayed and modified

OSD5_PARAM5 Parameters

OSD5_PARAM5_EN: Enable

Enable setting

Values

Value

Meaning

0

Disabled

1

Enabled

OSD5_PARAM5_X: X position

Horizontal position on screen

Range

0 - 29

OSD5_PARAM5_Y: Y position

Vertical position on screen

Range

0 - 15

OSD5_PARAM5_KEY: Parameter key

Key of the parameter to be displayed and modified

OSD5_PARAM5_IDX: Parameter index

Index of the parameter to be displayed and modified

OSD5_PARAM5_GRP: Parameter group

Group of the parameter to be displayed and modified

OSD5_PARAM5_MIN: Parameter minimum

Minimum value of the parameter to be displayed and modified

OSD5_PARAM5_MAX: Parameter maximum

Maximum of the parameter to be displayed and modified

OSD5_PARAM5_INCR: Parameter increment

Increment of the parameter to be displayed and modified

OSD5_PARAM5_TYPE: Parameter type

Type of the parameter to be displayed and modified

OSD5_PARAM6 Parameters

OSD5_PARAM6_EN: Enable

Enable setting

Values

Value

Meaning

0

Disabled

1

Enabled

OSD5_PARAM6_X: X position

Horizontal position on screen

Range

0 - 29

OSD5_PARAM6_Y: Y position

Vertical position on screen

Range

0 - 15

OSD5_PARAM6_KEY: Parameter key

Key of the parameter to be displayed and modified

OSD5_PARAM6_IDX: Parameter index

Index of the parameter to be displayed and modified

OSD5_PARAM6_GRP: Parameter group

Group of the parameter to be displayed and modified

OSD5_PARAM6_MIN: Parameter minimum

Minimum value of the parameter to be displayed and modified

OSD5_PARAM6_MAX: Parameter maximum

Maximum of the parameter to be displayed and modified

OSD5_PARAM6_INCR: Parameter increment

Increment of the parameter to be displayed and modified

OSD5_PARAM6_TYPE: Parameter type

Type of the parameter to be displayed and modified

OSD5_PARAM7 Parameters

OSD5_PARAM7_EN: Enable

Enable setting

Values

Value

Meaning

0

Disabled

1

Enabled

OSD5_PARAM7_X: X position

Horizontal position on screen

Range

0 - 29

OSD5_PARAM7_Y: Y position

Vertical position on screen

Range

0 - 15

OSD5_PARAM7_KEY: Parameter key

Key of the parameter to be displayed and modified

OSD5_PARAM7_IDX: Parameter index

Index of the parameter to be displayed and modified

OSD5_PARAM7_GRP: Parameter group

Group of the parameter to be displayed and modified

OSD5_PARAM7_MIN: Parameter minimum

Minimum value of the parameter to be displayed and modified

OSD5_PARAM7_MAX: Parameter maximum

Maximum of the parameter to be displayed and modified

OSD5_PARAM7_INCR: Parameter increment

Increment of the parameter to be displayed and modified

OSD5_PARAM7_TYPE: Parameter type

Type of the parameter to be displayed and modified

OSD5_PARAM8 Parameters

OSD5_PARAM8_EN: Enable

Enable setting

Values

Value

Meaning

0

Disabled

1

Enabled

OSD5_PARAM8_X: X position

Horizontal position on screen

Range

0 - 29

OSD5_PARAM8_Y: Y position

Vertical position on screen

Range

0 - 15

OSD5_PARAM8_KEY: Parameter key

Key of the parameter to be displayed and modified

OSD5_PARAM8_IDX: Parameter index

Index of the parameter to be displayed and modified

OSD5_PARAM8_GRP: Parameter group

Group of the parameter to be displayed and modified

OSD5_PARAM8_MIN: Parameter minimum

Minimum value of the parameter to be displayed and modified

OSD5_PARAM8_MAX: Parameter maximum

Maximum of the parameter to be displayed and modified

OSD5_PARAM8_INCR: Parameter increment

Increment of the parameter to be displayed and modified

OSD5_PARAM8_TYPE: Parameter type

Type of the parameter to be displayed and modified

OSD5_PARAM9 Parameters

OSD5_PARAM9_EN: Enable

Enable setting

Values

Value

Meaning

0

Disabled

1

Enabled

OSD5_PARAM9_X: X position

Horizontal position on screen

Range

0 - 29

OSD5_PARAM9_Y: Y position

Vertical position on screen

Range

0 - 15

OSD5_PARAM9_KEY: Parameter key

Key of the parameter to be displayed and modified

OSD5_PARAM9_IDX: Parameter index

Index of the parameter to be displayed and modified

OSD5_PARAM9_GRP: Parameter group

Group of the parameter to be displayed and modified

OSD5_PARAM9_MIN: Parameter minimum

Minimum value of the parameter to be displayed and modified

OSD5_PARAM9_MAX: Parameter maximum

Maximum of the parameter to be displayed and modified

OSD5_PARAM9_INCR: Parameter increment

Increment of the parameter to be displayed and modified

OSD5_PARAM9_TYPE: Parameter type

Type of the parameter to be displayed and modified

OSD6_ Parameters

OSD6_ENABLE: Enable screen

Enable this screen

Values

Value

Meaning

0

Disabled

1

Enabled

OSD6_CHAN_MIN: Transmitter switch screen minimum pwm

This sets the PWM lower limit for this screen

Range

900 - 2100

OSD6_CHAN_MAX: Transmitter switch screen maximum pwm

This sets the PWM upper limit for this screen

Range

900 - 2100

OSD6_SAVE_X: SAVE_X

Note: This parameter is for advanced users

Horizontal position of Save button on screen

Range

0 - 25

OSD6_SAVE_Y: SAVE_Y

Note: This parameter is for advanced users

Vertical position of Save button on screen

Range

0 - 15

OSD6_PARAM1 Parameters

OSD6_PARAM1_EN: Enable

Enable setting

Values

Value

Meaning

0

Disabled

1

Enabled

OSD6_PARAM1_X: X position

Horizontal position on screen

Range

0 - 29

OSD6_PARAM1_Y: Y position

Vertical position on screen

Range

0 - 15

OSD6_PARAM1_KEY: Parameter key

Key of the parameter to be displayed and modified

OSD6_PARAM1_IDX: Parameter index

Index of the parameter to be displayed and modified

OSD6_PARAM1_GRP: Parameter group

Group of the parameter to be displayed and modified

OSD6_PARAM1_MIN: Parameter minimum

Minimum value of the parameter to be displayed and modified

OSD6_PARAM1_MAX: Parameter maximum

Maximum of the parameter to be displayed and modified

OSD6_PARAM1_INCR: Parameter increment

Increment of the parameter to be displayed and modified

OSD6_PARAM1_TYPE: Parameter type

Type of the parameter to be displayed and modified

OSD6_PARAM2 Parameters

OSD6_PARAM2_EN: Enable

Enable setting

Values

Value

Meaning

0

Disabled

1

Enabled

OSD6_PARAM2_X: X position

Horizontal position on screen

Range

0 - 29

OSD6_PARAM2_Y: Y position

Vertical position on screen

Range

0 - 15

OSD6_PARAM2_KEY: Parameter key

Key of the parameter to be displayed and modified

OSD6_PARAM2_IDX: Parameter index

Index of the parameter to be displayed and modified

OSD6_PARAM2_GRP: Parameter group

Group of the parameter to be displayed and modified

OSD6_PARAM2_MIN: Parameter minimum

Minimum value of the parameter to be displayed and modified

OSD6_PARAM2_MAX: Parameter maximum

Maximum of the parameter to be displayed and modified

OSD6_PARAM2_INCR: Parameter increment

Increment of the parameter to be displayed and modified

OSD6_PARAM2_TYPE: Parameter type

Type of the parameter to be displayed and modified

OSD6_PARAM3 Parameters

OSD6_PARAM3_EN: Enable

Enable setting

Values

Value

Meaning

0

Disabled

1

Enabled

OSD6_PARAM3_X: X position

Horizontal position on screen

Range

0 - 29

OSD6_PARAM3_Y: Y position

Vertical position on screen

Range

0 - 15

OSD6_PARAM3_KEY: Parameter key

Key of the parameter to be displayed and modified

OSD6_PARAM3_IDX: Parameter index

Index of the parameter to be displayed and modified

OSD6_PARAM3_GRP: Parameter group

Group of the parameter to be displayed and modified

OSD6_PARAM3_MIN: Parameter minimum

Minimum value of the parameter to be displayed and modified

OSD6_PARAM3_MAX: Parameter maximum

Maximum of the parameter to be displayed and modified

OSD6_PARAM3_INCR: Parameter increment

Increment of the parameter to be displayed and modified

OSD6_PARAM3_TYPE: Parameter type

Type of the parameter to be displayed and modified

OSD6_PARAM4 Parameters

OSD6_PARAM4_EN: Enable

Enable setting

Values

Value

Meaning

0

Disabled

1

Enabled

OSD6_PARAM4_X: X position

Horizontal position on screen

Range

0 - 29

OSD6_PARAM4_Y: Y position

Vertical position on screen

Range

0 - 15

OSD6_PARAM4_KEY: Parameter key

Key of the parameter to be displayed and modified

OSD6_PARAM4_IDX: Parameter index

Index of the parameter to be displayed and modified

OSD6_PARAM4_GRP: Parameter group

Group of the parameter to be displayed and modified

OSD6_PARAM4_MIN: Parameter minimum

Minimum value of the parameter to be displayed and modified

OSD6_PARAM4_MAX: Parameter maximum

Maximum of the parameter to be displayed and modified

OSD6_PARAM4_INCR: Parameter increment

Increment of the parameter to be displayed and modified

OSD6_PARAM4_TYPE: Parameter type

Type of the parameter to be displayed and modified

OSD6_PARAM5 Parameters

OSD6_PARAM5_EN: Enable

Enable setting

Values

Value

Meaning

0

Disabled

1

Enabled

OSD6_PARAM5_X: X position

Horizontal position on screen

Range

0 - 29

OSD6_PARAM5_Y: Y position

Vertical position on screen

Range

0 - 15

OSD6_PARAM5_KEY: Parameter key

Key of the parameter to be displayed and modified

OSD6_PARAM5_IDX: Parameter index

Index of the parameter to be displayed and modified

OSD6_PARAM5_GRP: Parameter group

Group of the parameter to be displayed and modified

OSD6_PARAM5_MIN: Parameter minimum

Minimum value of the parameter to be displayed and modified

OSD6_PARAM5_MAX: Parameter maximum

Maximum of the parameter to be displayed and modified

OSD6_PARAM5_INCR: Parameter increment

Increment of the parameter to be displayed and modified

OSD6_PARAM5_TYPE: Parameter type

Type of the parameter to be displayed and modified

OSD6_PARAM6 Parameters

OSD6_PARAM6_EN: Enable

Enable setting

Values

Value

Meaning

0

Disabled

1

Enabled

OSD6_PARAM6_X: X position

Horizontal position on screen

Range

0 - 29

OSD6_PARAM6_Y: Y position

Vertical position on screen

Range

0 - 15

OSD6_PARAM6_KEY: Parameter key

Key of the parameter to be displayed and modified

OSD6_PARAM6_IDX: Parameter index

Index of the parameter to be displayed and modified

OSD6_PARAM6_GRP: Parameter group

Group of the parameter to be displayed and modified

OSD6_PARAM6_MIN: Parameter minimum

Minimum value of the parameter to be displayed and modified

OSD6_PARAM6_MAX: Parameter maximum

Maximum of the parameter to be displayed and modified

OSD6_PARAM6_INCR: Parameter increment

Increment of the parameter to be displayed and modified

OSD6_PARAM6_TYPE: Parameter type

Type of the parameter to be displayed and modified

OSD6_PARAM7 Parameters

OSD6_PARAM7_EN: Enable

Enable setting

Values

Value

Meaning

0

Disabled

1

Enabled

OSD6_PARAM7_X: X position

Horizontal position on screen

Range

0 - 29

OSD6_PARAM7_Y: Y position

Vertical position on screen

Range

0 - 15

OSD6_PARAM7_KEY: Parameter key

Key of the parameter to be displayed and modified

OSD6_PARAM7_IDX: Parameter index

Index of the parameter to be displayed and modified

OSD6_PARAM7_GRP: Parameter group

Group of the parameter to be displayed and modified

OSD6_PARAM7_MIN: Parameter minimum

Minimum value of the parameter to be displayed and modified

OSD6_PARAM7_MAX: Parameter maximum

Maximum of the parameter to be displayed and modified

OSD6_PARAM7_INCR: Parameter increment

Increment of the parameter to be displayed and modified

OSD6_PARAM7_TYPE: Parameter type

Type of the parameter to be displayed and modified

OSD6_PARAM8 Parameters

OSD6_PARAM8_EN: Enable

Enable setting

Values

Value

Meaning

0

Disabled

1

Enabled

OSD6_PARAM8_X: X position

Horizontal position on screen

Range

0 - 29

OSD6_PARAM8_Y: Y position

Vertical position on screen

Range

0 - 15

OSD6_PARAM8_KEY: Parameter key

Key of the parameter to be displayed and modified

OSD6_PARAM8_IDX: Parameter index

Index of the parameter to be displayed and modified

OSD6_PARAM8_GRP: Parameter group

Group of the parameter to be displayed and modified

OSD6_PARAM8_MIN: Parameter minimum

Minimum value of the parameter to be displayed and modified

OSD6_PARAM8_MAX: Parameter maximum

Maximum of the parameter to be displayed and modified

OSD6_PARAM8_INCR: Parameter increment

Increment of the parameter to be displayed and modified

OSD6_PARAM8_TYPE: Parameter type

Type of the parameter to be displayed and modified

OSD6_PARAM9 Parameters

OSD6_PARAM9_EN: Enable

Enable setting

Values

Value

Meaning

0

Disabled

1

Enabled

OSD6_PARAM9_X: X position

Horizontal position on screen

Range

0 - 29

OSD6_PARAM9_Y: Y position

Vertical position on screen

Range

0 - 15

OSD6_PARAM9_KEY: Parameter key

Key of the parameter to be displayed and modified

OSD6_PARAM9_IDX: Parameter index

Index of the parameter to be displayed and modified

OSD6_PARAM9_GRP: Parameter group

Group of the parameter to be displayed and modified

OSD6_PARAM9_MIN: Parameter minimum

Minimum value of the parameter to be displayed and modified

OSD6_PARAM9_MAX: Parameter maximum

Maximum of the parameter to be displayed and modified

OSD6_PARAM9_INCR: Parameter increment

Increment of the parameter to be displayed and modified

OSD6_PARAM9_TYPE: Parameter type

Type of the parameter to be displayed and modified

PTCH Parameters

PTCH2SRV_TCONST: Pitch Time Constant

Note: This parameter is for advanced users

Time constant in seconds from demanded to achieved pitch angle. Most models respond well to 0.5. May be reduced for faster responses, but setting lower than a model can achieve will not help.

Increment

Range

Units

0.1

0.4 - 1.0

seconds

PTCH2SRV_RMAX_UP: Pitch up max rate

Note: This parameter is for advanced users

Maximum pitch up rate that the pitch controller demands (degrees/sec) in ACRO mode.

Increment

Range

Units

1

0 - 100

degrees per second

PTCH2SRV_RMAX_DN: Pitch down max rate

Note: This parameter is for advanced users

This sets the maximum nose down pitch rate that the controller will demand (degrees/sec). Setting it to zero disables the limit.

Increment

Range

Units

1

0 - 100

degrees per second

PTCH2SRV_RLL: Roll compensation

Gain added to pitch to keep aircraft from descending or ascending in turns. Increase in increments of 0.05 to reduce altitude loss. Decrease for altitude gain.

Increment

Range

0.05

0.7 - 1.5

PTCH_RATE_P: Pitch axis rate controller P gain

Pitch axis rate controller P gain. Converts the difference between desired roll rate and actual roll rate into a motor speed output

Increment

Range

0.005

0.08 - 0.35

PTCH_RATE_I: Pitch axis rate controller I gain

Pitch axis rate controller I gain. Corrects long-term difference in desired roll rate vs actual roll rate

Increment

Range

0.01

0.01 - 0.6

PTCH_RATE_IMAX: Pitch axis rate controller I gain maximum

Pitch axis rate controller I gain maximum. Constrains the maximum motor output that the I gain will output

Increment

Range

0.01

0 - 1

PTCH_RATE_D: Pitch axis rate controller D gain

Pitch axis rate controller D gain. Compensates for short-term change in desired roll rate vs actual roll rate

Increment

Range

0.001

0.001 - 0.03

PTCH_RATE_FF: Pitch axis rate controller feed forward

Pitch axis rate controller feed forward

Increment

Range

0.001

0 - 3.0

PTCH_RATE_FLTT: Pitch axis rate controller target frequency in Hz

Pitch axis rate controller target frequency in Hz

Increment

Range

Units

1

2 - 50

hertz

PTCH_RATE_FLTE: Pitch axis rate controller error frequency in Hz

Pitch axis rate controller error frequency in Hz

Increment

Range

Units

1

2 - 50

hertz

PTCH_RATE_FLTD: Pitch axis rate controller derivative frequency in Hz

Pitch axis rate controller derivative frequency in Hz

Increment

Range

Units

1

0 - 50

hertz

PTCH_RATE_SMAX: Pitch slew rate limit

Note: This parameter is for advanced users

Sets an upper limit on the slew rate produced by the combined P and D gains. If the amplitude of the control action produced by the rate feedback exceeds this value, then the D+P gain is reduced to respect the limit. This limits the amplitude of high frequency oscillations caused by an excessive gain. The limit should be set to no more than 25% of the actuators maximum slew rate to allow for load effects. Note: The gain will not be reduced to less than 10% of the nominal value. A value of zero will disable this feature.

Increment

Range

0.5

0 - 200

Q_ Parameters

Q_ENABLE: Enable QuadPlane

This enables QuadPlane functionality, assuming multicopter motors start on output 5. If this is set to 2 then when starting AUTO mode it will initially be in VTOL AUTO mode.

Values

Value

Meaning

0

Disable

1

Enable

2

Enable VTOL AUTO

Q_ANGLE_MAX: Angle Max

Note: This parameter is for advanced users

Maximum lean angle in all VTOL flight modes

Increment

Range

Units

10

1000 - 8000

centidegrees

Q_TRANSITION_MS: Transition time

Note: This parameter is for advanced users

Transition time in milliseconds after minimum airspeed is reached

Range

Units

0 - 30000

milliseconds

Q_VELZ_MAX: Pilot maximum vertical speed up

The maximum ascending vertical velocity the pilot may request in cm/s

Increment

Range

Units

10

50 - 500

centimeters per second

Q_VELZ_MAX_DN: Pilot maximum vertical speed down

The maximum vertical velocity the pilot may request in cm/s going down. If 0, uses Q_VELZ_MAX value.

Increment

Range

Units

10

50 - 500

centimeters per second

Q_ACCEL_Z: Pilot vertical acceleration

The vertical acceleration used when pilot is controlling the altitude

Increment

Range

Units

10

50 - 500

centimeters per square second

Q_RC_SPEED: RC output speed in Hz

This is the PWM refresh rate in Hz for QuadPlane quad motors

Increment

Range

Units

10

50 - 500

hertz

Q_THR_MIN_PWM: Minimum PWM output

This is the minimum PWM output for the quad motors

Increment

Range

Units

1

800 - 2200

PWM in microseconds

Q_THR_MAX_PWM: Maximum PWM output

This is the maximum PWM output for the quad motors

Increment

Range

Units

1

800 - 2200

PWM in microseconds

Q_ASSIST_SPEED: Quadplane assistance speed

This is the speed below which the quad motors will provide stability and lift assistance in fixed wing modes. Zero means no assistance except during transition

Increment

Range

Units

0.1

0 - 100

meters per second

Q_YAW_RATE_MAX: Maximum yaw rate

This is the maximum yaw rate for pilot input on rudder stick in degrees/second

Increment

Range

Units

1

50 - 500

degrees per second

Q_LAND_SPEED: Land speed

The descent speed for the final stage of landing in cm/s

Increment

Range

Units

10

30 - 200

centimeters per second

Q_LAND_FINAL_ALT: Land final altitude

The altitude at which we should switch to Q_LAND_SPEED descent rate

Increment

Range

Units

0.1

0.5 - 50

meters

Q_TRAN_PIT_MAX: Transition max pitch

Maximum pitch during transition to auto fixed wing flight

Increment

Range

Units

1

0 - 30

degrees

Q_FRAME_CLASS: Frame Class

Controls major frame class for multicopter component

Values

Value

Meaning

0

Undefined

1

Quad

2

Hexa

3

Octa

4

OctaQuad

5

Y6

7

Tri

10

TailSitter

12

DodecaHexa

14

Deca

15

Scripting Matrix

Q_FRAME_TYPE: Frame Type (+, X or V)

Controls motor mixing for multicopter component

Values

Value

Meaning

0

Plus

1

X

2

V

3

H

4

V-Tail

5

A-Tail

10

Y6B

11

Y6F

12

BetaFlightX

13

DJIX

14

ClockwiseX

15

I

16

MOTOR_FRAME_TYPE_NYT_PLUS

17

MOTOR_FRAME_TYPE_NYT_X

18

BetaFlightXReversed

Q_VFWD_GAIN: Forward velocity hold gain

Controls use of forward motor in vtol modes. If this is zero then the forward motor will not be used for position control in VTOL modes. A value of 0.05 is a good place to start if you want to use the forward motor for position control. No forward motor will be used in QSTABILIZE or QHOVER modes. Use QLOITER for position hold with the forward motor.

Increment

Range

0.01

0 - 0.5

Q_WVANE_GAIN: Weathervaning gain

This controls the tendency to yaw to face into the wind. A value of 0.1 is to start with and will give a slow turn into the wind. Use a value of 0.4 for more rapid response. The weathervaning works by turning into the direction of roll.

Increment

Range

0.01

0 - 1

Q_WVANE_MINROLL: Weathervaning min roll

This set the minimum roll in degrees before active weathervaning will start. This may need to be larger if your aircraft has bad roll trim.

Increment

Range

0.1

0 - 10

Q_RTL_ALT: QRTL return altitude

The altitude which QRTL mode heads to initially

Increment

Range

Units

1

1 - 200

meters

Q_RTL_MODE: VTOL RTL mode

If this is set to 1 then an RTL will change to QRTL when within RTL_RADIUS meters of the RTL destination, VTOL approach: vehicle will RTL at RTL alt and circle with a radius of Q_FW_LND_APR_RAD down to Q_RLT_ALT and then transission into the wind and QRTL, see 'AUTO VTOL Landing', QRTL Always: do a QRTL instead of RTL

Values

Value

Meaning

0

Disabled

1

Enabled

2

VTOL approach

3

QRTL Always

Q_TILT_MASK: Tiltrotor mask

This is a bitmask of motors that are tiltable in a tiltrotor (or tiltwing). The mask is in terms of the standard motor order for the frame type.

Q_TILT_RATE_UP: Tiltrotor upwards tilt rate

This is the maximum speed at which the motor angle will change for a tiltrotor when moving from forward flight to hover

Increment

Range

Units

1

10 - 300

degrees per second

Q_TILT_MAX: Tiltrotor maximum VTOL angle

This is the maximum angle of the tiltable motors at which multicopter control will be enabled. Beyond this angle the plane will fly solely as a fixed wing aircraft and the motors will tilt to their maximum angle at the TILT_RATE

Increment

Range

Units

1

20 - 80

degrees

Q_GUIDED_MODE: Enable VTOL in GUIDED mode

This enables use of VTOL in guided mode. When enabled the aircraft will switch to VTOL flight when the guided destination is reached and hover at the destination.

Values

Value

Meaning

0

Disabled

1

Enabled

Q_ESC_CAL: ESC Calibration

This is used to calibrate the throttle range of the VTOL motors. Please read https://ardupilot.org/plane/docs/quadplane-esc-calibration.html before using. This parameter is automatically set back to 0 on every boot. This parameter only takes effect in QSTABILIZE mode. When set to 1 the output of all motors will come directly from the throttle stick when armed, and will be zero when disarmed. When set to 2 the output of all motors will be maximum when armed and zero when disarmed. Make sure you remove all properllers before using.

Values

Value

Meaning

0

Disabled

1

ThrottleInput

2

FullInput

Q_VFWD_ALT: Forward velocity alt cutoff

Controls altitude to disable forward velocity assist when below this relative altitude. This is useful to keep the forward velocity propeller from hitting the ground. Rangefinder height data is incorporated when available.

Increment

Range

Units

0.25

0 - 10

meters

Q_LAND_ICE_CUT: Cut IC engine on landing

This controls stopping an internal combustion engine in the final landing stage of a VTOL. This is important for aircraft where the forward thrust engine may experience prop-strike if left running during landing. This requires the engine controls are enabled using the ICE_* parameters.

Values

Value

Meaning

0

Disabled

1

Enabled

Q_ASSIST_ANGLE: Quadplane assistance angle

This is the angular error in attitude beyond which the quadplane VTOL motors will provide stability assistance. This will only be used if Q_ASSIST_SPEED is also non-zero. Assistance will be given if the attitude is outside the normal attitude limits by at least 5 degrees and the angular error in roll or pitch is greater than this angle for at least Q_ASSIST_DELAY seconds. Set to zero to disable angle assistance.

Increment

Range

Units

1

0 - 90

degrees

Q_TILT_TYPE: Tiltrotor type

This is the type of tiltrotor when TILT_MASK is non-zero. A continuous tiltrotor can tilt the rotors to any angle on demand. A binary tiltrotor assumes a retract style servo where the servo is either fully forward or fully up. In both cases the servo can't move faster than Q_TILT_RATE. A vectored yaw tiltrotor will use the tilt of the motors to control yaw in hover, Bicopter tiltrottor must use the tailsitter frame class (10)

Values

Value

Meaning

0

Continuous

1

Binary

2

VectoredYaw

3

Bicopter

Q_TAILSIT_ANGLE: Tailsitter fixed wing transition angle

This is the pitch angle at which tailsitter aircraft will change from VTOL control to fixed wing control.

Range

Units

5 - 80

degrees

Q_TAILSIT_ANG_VT: Tailsitter VTOL transition angle

This is the pitch angle at which tailsitter aircraft will change from fixed wing control to VTOL control, if zero Q_TAILSIT_ANGLE will be used

Range

Units

5 - 80

degrees

Q_TILT_RATE_DN: Tiltrotor downwards tilt rate

This is the maximum speed at which the motor angle will change for a tiltrotor when moving from hover to forward flight. When this is zero the Q_TILT_RATE_UP value is used.

Increment

Range

Units

1

10 - 300

degrees per second

Q_TAILSIT_INPUT: Tailsitter input type bitmask

This controls whether stick input when hovering as a tailsitter follows the conventions for fixed wing hovering or multicopter hovering. When PlaneMode is not enabled (bit0 = 0) the roll stick will roll the aircraft in earth frame and yaw stick will yaw in earth frame. When PlaneMode input is enabled, the roll and yaw sticks are swapped so that the roll stick controls earth-frame yaw and rudder controls earth-frame roll. When body-frame roll is enabled (bit1 = 1), the yaw stick controls earth-frame yaw rate and the roll stick controls roll in the tailsitter's body frame when flying level.

Bitmask

Bit

Meaning

0

PlaneMode

1

BodyFrameRoll

Q_TAILSIT_MASK: Tailsitter input mask

This controls what channels have full manual control when hovering as a tailsitter and the Q_TAILSIT_MASKCH channel in high. This can be used to teach yourself to prop-hang a 3D plane by learning one or more channels at a time.

Bitmask

Bit

Meaning

0

Aileron

1

Elevator

2

Throttle

3

Rudder

Q_TAILSIT_MASKCH: Tailsitter input mask channel

This controls what input channel will activate the Q_TAILSIT_MASK mask. When this channel goes above 1700 then the pilot will have direct manual control of the output channels specified in Q_TAILSIT_MASK. Set to zero to disable.

Values

Value

Meaning

0

Disabled

1

Channel1

2

Channel2

3

Channel3

4

Channel4

5

Channel5

6

Channel6

7

Channel7

8

Channel8

Q_TAILSIT_VFGAIN: Tailsitter vector thrust gain in forward flight

This controls the amount of vectored thrust control used in forward flight for a vectored tailsitter

Increment

Range

0.01

0 - 1

Q_TAILSIT_VHGAIN: Tailsitter vector thrust gain in hover

This controls the amount of vectored thrust control used in hover for a vectored tailsitter

Increment

Range

0.01

0 - 1

Q_TILT_YAW_ANGLE: Tilt minimum angle for vectored yaw

This is the angle of the tilt servos when in VTOL mode and at minimum output. This needs to be set for Q_TILT_TYPE=3 to enable vectored control for yaw of tricopter tilt quadplanes. This is also used to limit the forwards travel of bicopter tilts when in VTOL modes

Range

0 - 30

Q_TAILSIT_VHPOW: Tailsitter vector thrust gain power

This controls the amount of extra pitch given to the vectored control when at high pitch errors

Increment

Range

0.1

0 - 4

Q_OPTIONS: quadplane options

Level Transition:Keep wings within LEVEL_ROLL_LIMIT and only use forward motor(s) for climb during transition, Allow FW Takeoff: If bit is not set then NAV_TAKEOFF command on quadplanes will instead perform a NAV_VTOL takeoff, Allow FW Land:If bit is not set then NAV_LAND command on quadplanes will instead perform a NAV_VTOL_LAND, Vtol Takeoff Frame: command NAV_VTOL_TAKEOFF altitude is as set by the command's reference frame rather than a delta above current location, Use FW Approach:Use a fixed wing approach for VTOL landings, USE QRTL:instead of QLAND for rc failsafe when in VTOL modes, Use Governor:Use ICE Idle Governor in MANUAL for forward motor, Force Qassist: on always,Mtrs_Only_Qassist: in tailsitters only, uses VTOL motors and not flying surfaces for QASSIST, Airmode_On_Arm:Airmode enabled when arming by aux switch, Disarmed Yaw Tilt:Enable motor tilt for yaw when disarmed, Delay Spoolup:Delay VTOL spoolup for 2 seconds after arming, ThrLandControl: enable throttle stick control of landing rate, DisableApproach: Disable use of approach and airbrake stages in VTOL landing, EnableLandResponsition: enable pilot controlled repositioning in AUTO land. Descent will pause while repositioning.

Bitmask

Bit

Meaning

0

Level Transition

1

Allow FW Takeoff

2

Allow FW Land

3

Vtol Takeoff Frame

4

Use FW Approach

5

Use QRTL

6

Use Governor

7

Force Qassist

8

Mtrs_Only_Qassist

9

Airmode_On_Arm

10

Disarmed Yaw Tilt

11

Delay Spoolup

12

disable Qassist based on synthetic airspeed

13

Disable Ground Effect Compensation

14

Ignore forward flight angle limits in Qmodes

15

ThrLandControl

16

DisableApproach

17

EnableLandResponsition

Q_TRANS_DECEL: Transition deceleration

This is deceleration rate that will be used in calculating the stopping distance when transitioning from fixed wing flight to multicopter flight.

Increment

Range

Units

0.1

0.2 - 5

meters per square second

Q_TAILSIT_GSCMAX: Maximum tailsitter gain scaling

Maximum gain scaling for tailsitter Q_TAILSIT_GSCMSK options

Range

1 - 5

Q_TRIM_PITCH: Quadplane AHRS trim pitch

Note: This parameter is for advanced users

This sets the compensation for the pitch angle trim difference between forward and vertical flight pitch, NOTE! this is relative to forward flight trim not mounting locaiton. For tailsitters this is relative to a baseline of 90 degrees.

Increment

Range

RebootRequired

Units

0.1

-10 - +10

True

degrees

Q_TAILSIT_RLL_MX: Maximum Roll angle

Maximum Allowed roll angle for tailsitters. If this is zero then Q_ANGLE_MAX is used.

Range

Units

0 - 80

degrees

Q_FW_LND_APR_RAD: Quadplane fixed wing landing approach radius

Note: This parameter is for advanced users

This provides the radius used, when using a fixed wing landing approach. If set to 0 then the WP_LOITER_RAD will be selected.

Increment

Range

Units

5

0 - 200

meters

Q_TRANS_FAIL: Quadplane transition failure time

Note: This parameter is for advanced users

Maximum time allowed for forward transitions, exceeding this time will cancel the transition and the aircraft will immediately change to QLAND. 0 for no limit.

Increment

Range

Units

1

0 - 20

seconds

Q_TAILSIT_MOTMX: Tailsitter motor mask

Bitmask of motors to remain active in forward flight for a 'Copter' tailsitter. Non-zero indicates airframe is a Copter tailsitter and uses copter style motor layouts determined by Q_FRAME_CLASS and Q_FRAME_TYPE. This should be zero for non-Copter tailsitters.

Bitmask

Bit

Meaning

0

Motor 1

1

Motor 2

2

Motor 3

3

Motor 4

4

Motor 5

5

Motor 6

6

Motor 7

7

Motor 8

Q_THROTTLE_EXPO: Throttle expo strength

Note: This parameter is for advanced users

Amount of curvature in throttle curve: 0 is linear, 1 is cubic

Increment

Range

.1

0 - 1

Q_ACRO_RLL_RATE: QACRO mode roll rate

The maximum roll rate at full stick deflection in QACRO mode

Increment

Range

Units

1

10 - 500

degrees per second

Q_ACRO_PIT_RATE: QACRO mode pitch rate

The maximum pitch rate at full stick deflection in QACRO mode

Increment

Range

Units

1

10 - 500

degrees per second

Q_ACRO_YAW_RATE: QACRO mode yaw rate

The maximum yaw rate at full stick deflection in QACRO mode

Increment

Range

Units

1

10 - 500

degrees per second

Q_TKOFF_FAIL_SCL: Takeoff time failure scalar

Note: This parameter is for advanced users

Scalar for how long past the expected takeoff time a takeoff should be considered as failed and the vehicle will switch to QLAND. If set to 0 there is no limit on takeoff time.

Increment

Range

5.1

1.1 - 5.0

Q_TKOFF_ARSP_LIM: Takeoff airspeed limit

Note: This parameter is for advanced users

Airspeed limit during takeoff. If the airspeed exceeds this level the vehicle will switch to QLAND. This is useful for ensuring that you don't takeoff into excessively strong wind. If set to 0 there is no limit on airspeed during takeoff.

Increment

Range

Units

1

0 - 20

meters per second

Q_ASSIST_ALT: Quadplane assistance altitude

This is the altitude below which quadplane assistance will be triggered. This acts the same way as Q_ASSIST_ANGLE and Q_ASSIST_SPEED, but triggers if the aircraft drops below the given altitude while the VTOL motors are not running. A value of zero disables this feature. The altutude is calculated as being above ground level. The height above ground is given from a Lidar used if available and RNGFND_LANDING=1. Otherwise it comes from terrain data if TERRAIN_FOLLOW=1 and comes from height above home otherwise.

Increment

Range

Units

1

0 - 120

meters

Q_TAILSIT_GSCMSK: Tailsitter gain scaling mask

Bitmask of gain scaling methods to be applied: Throttle: scale gains with throttle, ATT_THR: reduce gain at high throttle/tilt, 2:Disk theory velocity calculation, requires Q_TAILSIT_DSKLD to be set, ATT_THR must not be set, 3:Altitude correction, scale with air density

Bitmask

Bit

Meaning

0

Throttle

1

ATT_THR

2

Disk Theory

3

Altitude correction

Q_TAILSIT_GSCMIN: Minimum tailsitter gain scaling

Minimum gain scaling for tailsitter Q_TAILSIT_GSCMSK options

Range

0.1 - 1

Q_ASSIST_DELAY: Quadplane assistance delay

This is delay between the assistance thresholds being met and the assistance starting.

Increment

Range

Units

0.1

0 - 2

seconds

Q_FWD_MANTHR_MAX: VTOL manual forward throttle max percent

Maximum value for manual forward throttle; used with RC option FWD_THR (209)

Range

RebootRequired

0 - 100

False

Q_TAILSIT_DSKLD: Tailsitter disk loading

This is the vehicle weight in kg divided by the total disk area of all propellers in m^2. Only used with Q_TAILSIT_GSCMSK = 4

Range

Units

0 - 50

kilograms per square meter

Q_TILT_FIX_ANGLE: Fixed wing tiltrotor angle

This is the angle the motors tilt down when at maximum output for forward flight. Set this to a non-zero value to enable vectoring for roll/pitch in forward flight on tilt-vectored aircraft

Range

Units

0 - 30

degrees

Q_TILT_FIX_GAIN: Fixed wing tiltrotor gain

This is the gain for use of tilting motors in fixed wing flight for tilt vectored quadplanes

Range

0 - 1

Q_TAILSIT_RAT_FW: Tailsitter VTOL to forward flight transition rate

The pitch rate at which tailsitter aircraft will pitch down in the transition from VTOL to forward flight

Range

Units

10 - 500

degrees per second

Q_TAILSIT_RAT_VT: Tailsitter forward flight to VTOL transition rate

The pitch rate at which tailsitter aircraft will pitch up in the transition from forward flight to VTOL

Range

Units

10 - 500

degrees per second

Q_AUTOTUNE_ Parameters

Q_AUTOTUNE_AXES: Autotune axis bitmask

1-byte bitmap of axes to autotune

Bitmask

Bit

Meaning

0

Roll

1

Pitch

2

Yaw

Q_AUTOTUNE_AGGR: Autotune aggressiveness

Autotune aggressiveness. Defines the bounce back used to detect size of the D term.

Range

0.05 - 0.10

Q_AUTOTUNE_MIN_D: AutoTune minimum D

Defines the minimum D gain

Range

0.001 - 0.006

Q_A_ Parameters

Q_A_SLEW_YAW: Yaw target slew rate

Note: This parameter is for advanced users

Maximum rate the yaw target can be updated in Loiter, RTL, Auto flight modes

Increment

Range

Units

100

500 - 18000

centidegrees per second

Q_A_ACCEL_Y_MAX: Acceleration Max for Yaw

Note: This parameter is for advanced users

Maximum acceleration in yaw axis

Increment

Range

Units

Values

1000

0 - 72000

centidegrees per square second

Value

Meaning

0

Disabled

9000

VerySlow

18000

Slow

36000

Medium

54000

Fast

Q_A_RATE_FF_ENAB: Rate Feedforward Enable

Note: This parameter is for advanced users

Controls whether body-frame rate feedfoward is enabled or disabled

Values

Value

Meaning

0

Disabled

1

Enabled

Q_A_ACCEL_R_MAX: Acceleration Max for Roll

Note: This parameter is for advanced users

Maximum acceleration in roll axis

Increment

Range

Units

Values

1000

0 - 180000

centidegrees per square second

Value

Meaning

0

Disabled

30000

VerySlow

72000

Slow

108000

Medium

162000

Fast

Q_A_ACCEL_P_MAX: Acceleration Max for Pitch

Note: This parameter is for advanced users

Maximum acceleration in pitch axis

Increment

Range

Units

Values

1000

0 - 180000

centidegrees per square second

Value

Meaning

0

Disabled

30000

VerySlow

72000

Slow

108000

Medium

162000

Fast

Q_A_ANGLE_BOOST: Angle Boost

Note: This parameter is for advanced users

Angle Boost increases output throttle as the vehicle leans to reduce loss of altitude

Values

Value

Meaning

0

Disabled

1

Enabled

Q_A_ANG_RLL_P: Roll axis angle controller P gain

Roll axis angle controller P gain. Converts the error between the desired roll angle and actual angle to a desired roll rate

Range

3.000 - 12.000

Q_A_ANG_PIT_P: Pitch axis angle controller P gain

Pitch axis angle controller P gain. Converts the error between the desired pitch angle and actual angle to a desired pitch rate

Range

3.000 - 12.000

Q_A_ANG_YAW_P: Yaw axis angle controller P gain

Yaw axis angle controller P gain. Converts the error between the desired yaw angle and actual angle to a desired yaw rate

Range

3.000 - 12.000

Q_A_ANG_LIM_TC: Angle Limit (to maintain altitude) Time Constant

Note: This parameter is for advanced users

Angle Limit (to maintain altitude) Time Constant

Range

0.5 - 10.0

Q_A_RATE_R_MAX: Angular Velocity Max for Roll

Note: This parameter is for advanced users

Maximum angular velocity in roll axis

Increment

Range

Units

Values

1

0 - 1080

degrees per second

Value

Meaning

0

Disabled

360

Slow

720

Medium

1080

Fast

Q_A_RATE_P_MAX: Angular Velocity Max for Pitch

Note: This parameter is for advanced users

Maximum angular velocity in pitch axis

Increment

Range

Units

Values

1

0 - 1080

degrees per second

Value

Meaning

0

Disabled

360

Slow

720

Medium

1080

Fast

Q_A_RATE_Y_MAX: Angular Velocity Max for Yaw

Note: This parameter is for advanced users

Maximum angular velocity in yaw axis

Increment

Range

Units

Values

1

0 - 1080

degrees per second

Value

Meaning

0

Disabled

360

Slow

720

Medium

1080

Fast

Q_A_INPUT_TC: Attitude control input time constant

Attitude control input time constant. Low numbers lead to sharper response, higher numbers to softer response

Increment

Range

Units

Values

0.01

0 - 1

seconds

0.5:Very Soft,0.2:Soft,0.15:Medium,0.1:Crisp,0.05:Very Crisp

Q_A_RAT_RLL_P: Roll axis rate controller P gain

Roll axis rate controller P gain. Converts the difference between desired roll rate and actual roll rate into a motor speed output

Increment

Range

0.005

0.01 - 0.5

Q_A_RAT_RLL_I: Roll axis rate controller I gain

Roll axis rate controller I gain. Corrects long-term difference in desired roll rate vs actual roll rate

Increment

Range

0.01

0.01 - 2.0

Q_A_RAT_RLL_IMAX: Roll axis rate controller I gain maximum

Roll axis rate controller I gain maximum. Constrains the maximum motor output that the I gain will output

Increment

Range

0.01

0 - 1

Q_A_RAT_RLL_D: Roll axis rate controller D gain

Roll axis rate controller D gain. Compensates for short-term change in desired roll rate vs actual roll rate

Increment

Range

0.001

0.0 - 0.05

Q_A_RAT_RLL_FF: Roll axis rate controller feed forward

Roll axis rate controller feed forward

Increment

Range

0.001

0 - 0.5

Q_A_RAT_RLL_FLTT: Roll axis rate controller target frequency in Hz

Roll axis rate controller target frequency in Hz

Increment

Range

Units

1

5 - 100

hertz

Q_A_RAT_RLL_FLTE: Roll axis rate controller error frequency in Hz

Roll axis rate controller error frequency in Hz

Increment

Range

Units

1

0 - 100

hertz

Q_A_RAT_RLL_FLTD: Roll axis rate controller derivative frequency in Hz

Roll axis rate controller derivative frequency in Hz

Increment

Range

Units

1

5 - 100

hertz

Q_A_RAT_RLL_SMAX: Roll slew rate limit

Note: This parameter is for advanced users

Sets an upper limit on the slew rate produced by the combined P and D gains. If the amplitude of the control action produced by the rate feedback exceeds this value, then the D+P gain is reduced to respect the limit. This limits the amplitude of high frequency oscillations caused by an excessive gain. The limit should be set to no more than 25% of the actuators maximum slew rate to allow for load effects. Note: The gain will not be reduced to less than 10% of the nominal value. A value of zero will disable this feature.

Increment

Range

0.5

0 - 200

Q_A_RAT_PIT_P: Pitch axis rate controller P gain

Pitch axis rate controller P gain. Converts the difference between desired pitch rate and actual pitch rate into a motor speed output

Increment

Range

0.005

0.01 - 0.50

Q_A_RAT_PIT_I: Pitch axis rate controller I gain

Pitch axis rate controller I gain. Corrects long-term difference in desired pitch rate vs actual pitch rate

Increment

Range

0.01

0.01 - 2.0

Q_A_RAT_PIT_IMAX: Pitch axis rate controller I gain maximum

Pitch axis rate controller I gain maximum. Constrains the maximum motor output that the I gain will output

Increment

Range

0.01

0 - 1

Q_A_RAT_PIT_D: Pitch axis rate controller D gain

Pitch axis rate controller D gain. Compensates for short-term change in desired pitch rate vs actual pitch rate

Increment

Range

0.001

0.0 - 0.05

Q_A_RAT_PIT_FF: Pitch axis rate controller feed forward

Pitch axis rate controller feed forward

Increment

Range

0.001

0 - 0.5

Q_A_RAT_PIT_FLTT: Pitch axis rate controller target frequency in Hz

Pitch axis rate controller target frequency in Hz

Increment

Range

Units

1

5 - 100

hertz

Q_A_RAT_PIT_FLTE: Pitch axis rate controller error frequency in Hz

Pitch axis rate controller error frequency in Hz

Increment

Range

Units

1

0 - 100

hertz

Q_A_RAT_PIT_FLTD: Pitch axis rate controller derivative frequency in Hz

Pitch axis rate controller derivative frequency in Hz

Increment

Range

Units

1

5 - 100

hertz

Q_A_RAT_PIT_SMAX: Pitch slew rate limit

Note: This parameter is for advanced users

Sets an upper limit on the slew rate produced by the combined P and D gains. If the amplitude of the control action produced by the rate feedback exceeds this value, then the D+P gain is reduced to respect the limit. This limits the amplitude of high frequency oscillations caused by an excessive gain. The limit should be set to no more than 25% of the actuators maximum slew rate to allow for load effects. Note: The gain will not be reduced to less than 10% of the nominal value. A value of zero will disable this feature.

Increment

Range

0.5

0 - 200

Q_A_RAT_YAW_P: Yaw axis rate controller P gain

Yaw axis rate controller P gain. Converts the difference between desired yaw rate and actual yaw rate into a motor speed output

Increment

Range

0.005

0.10 - 2.50

Q_A_RAT_YAW_I: Yaw axis rate controller I gain

Yaw axis rate controller I gain. Corrects long-term difference in desired yaw rate vs actual yaw rate

Increment

Range

0.01

0.010 - 1.0

Q_A_RAT_YAW_IMAX: Yaw axis rate controller I gain maximum

Yaw axis rate controller I gain maximum. Constrains the maximum motor output that the I gain will output

Increment

Range

0.01

0 - 1

Q_A_RAT_YAW_D: Yaw axis rate controller D gain

Yaw axis rate controller D gain. Compensates for short-term change in desired yaw rate vs actual yaw rate

Increment

Range

0.001

0.000 - 0.02

Q_A_RAT_YAW_FF: Yaw axis rate controller feed forward

Yaw axis rate controller feed forward

Increment

Range

0.001

0 - 0.5

Q_A_RAT_YAW_FLTT: Yaw axis rate controller target frequency in Hz

Yaw axis rate controller target frequency in Hz

Increment

Range

Units

1

1 - 50

hertz

Q_A_RAT_YAW_FLTE: Yaw axis rate controller error frequency in Hz

Yaw axis rate controller error frequency in Hz

Increment

Range

Units

1

0 - 20

hertz

Q_A_RAT_YAW_FLTD: Yaw axis rate controller derivative frequency in Hz

Yaw axis rate controller derivative frequency in Hz

Increment

Range

Units

1

5 - 50

hertz

Q_A_RAT_YAW_SMAX: Yaw slew rate limit

Note: This parameter is for advanced users

Sets an upper limit on the slew rate produced by the combined P and D gains. If the amplitude of the control action produced by the rate feedback exceeds this value, then the D+P gain is reduced to respect the limit. This limits the amplitude of high frequency oscillations caused by an excessive gain. The limit should be set to no more than 25% of the actuators maximum slew rate to allow for load effects. Note: The gain will not be reduced to less than 10% of the nominal value. A value of zero will disable this feature.

Increment

Range

0.5

0 - 200

Q_A_THR_MIX_MIN: Throttle Mix Minimum

Note: This parameter is for advanced users

Throttle vs attitude control prioritisation used when landing (higher values mean we prioritise attitude control over throttle)

Range

0.1 - 0.25

Q_A_THR_MIX_MAX: Throttle Mix Maximum

Note: This parameter is for advanced users

Throttle vs attitude control prioritisation used during active flight (higher values mean we prioritise attitude control over throttle)

Range

0.5 - 0.9

Q_A_THR_MIX_MAN: Throttle Mix Manual

Note: This parameter is for advanced users

Throttle vs attitude control prioritisation used during manual flight (higher values mean we prioritise attitude control over throttle)

Range

0.1 - 0.9

Q_LOIT_ Parameters

Q_LOIT_ANG_MAX: Loiter Angle Max

Note: This parameter is for advanced users

Loiter maximum lean angle. Set to zero for 2/3 of PSC_ANGLE_MAX or ANGLE_MAX

Increment

Range

Units

1

0 - 45

degrees

Q_LOIT_SPEED: Loiter Horizontal Maximum Speed

Defines the maximum speed in cm/s which the aircraft will travel horizontally while in loiter mode

Increment

Range

Units

50

20 - 3500

centimeters per second

Q_LOIT_ACC_MAX: Loiter maximum correction acceleration

Note: This parameter is for advanced users

Loiter maximum correction acceleration in cm/s/s. Higher values cause the copter to correct position errors more aggressively.

Increment

Range

Units

1

100 - 981

centimeters per square second

Q_LOIT_BRK_ACCEL: Loiter braking acceleration

Note: This parameter is for advanced users

Loiter braking acceleration in cm/s/s. Higher values stop the copter more quickly when the stick is centered.

Increment

Range

Units

1

25 - 250

centimeters per square second

Q_LOIT_BRK_JERK: Loiter braking jerk

Note: This parameter is for advanced users

Loiter braking jerk in cm/s/s/s. Higher values will remove braking faster if the pilot moves the sticks during a braking maneuver.

Increment

Range

Units

1

500 - 5000

centimeters per cubic second

Q_LOIT_BRK_DELAY: Loiter brake start delay (in seconds)

Note: This parameter is for advanced users

Loiter brake start delay (in seconds)

Increment

Range

Units

0.1

0 - 2

seconds

Q_M_ Parameters

Q_M_YAW_HEADROOM: Matrix Yaw Min

Note: This parameter is for advanced users

Yaw control is given at least this pwm in microseconds range

Range

Units

0 - 500

PWM in microseconds

Q_M_THST_EXPO: Thrust Curve Expo

Note: This parameter is for advanced users

Motor thrust curve exponent (0.0 for linear to 1.0 for second order curve)

Range

-1.0 - 1.0

Q_M_SPIN_MAX: Motor Spin maximum

Note: This parameter is for advanced users

Point at which the thrust saturates expressed as a number from 0 to 1 in the entire output range

Values

0.9:Low,0.95:Default,1.0:High

Q_M_BAT_VOLT_MAX: Battery voltage compensation maximum voltage

Note: This parameter is for advanced users

Battery voltage compensation maximum voltage (voltage above this will have no additional scaling effect on thrust). Recommend 4.2 * cell count, 0 = Disabled

Range

Units

6 - 53

volt

Q_M_BAT_VOLT_MIN: Battery voltage compensation minimum voltage

Note: This parameter is for advanced users

Battery voltage compensation minimum voltage (voltage below this will have no additional scaling effect on thrust). Recommend 3.3 * cell count, 0 = Disabled

Range

Units

6 - 42

volt

Q_M_BAT_CURR_MAX: Motor Current Max

Note: This parameter is for advanced users

Maximum current over which maximum throttle is limited (0 = Disabled)

Range

Units

0 - 200

ampere

Q_M_PWM_TYPE: Output PWM type

Note: This parameter is for advanced users

This selects the output PWM type, allowing for normal PWM continuous output, OneShot, brushed or DShot motor output

RebootRequired

Values

True

Value

Meaning

0

Normal

1

OneShot

2

OneShot125

3

Brushed

4

DShot150

5

DShot300

6

DShot600

7

DShot1200

Q_M_PWM_MIN: PWM output minimum

Note: This parameter is for advanced users

This sets the min PWM output value in microseconds that will ever be output to the motors, 0 = use input RC3_MIN

Range

Units

0 - 2000

PWM in microseconds

Q_M_PWM_MAX: PWM output maximum

Note: This parameter is for advanced users

This sets the max PWM value in microseconds that will ever be output to the motors, 0 = use input RC3_MAX

Range

Units

0 - 2000

PWM in microseconds

Q_M_SPIN_MIN: Motor Spin minimum

Note: This parameter is for advanced users

Point at which the thrust starts expressed as a number from 0 to 1 in the entire output range. Should be higher than MOT_SPIN_ARM.

Values

0.0:Low,0.15:Default,0.3:High

Q_M_SPIN_ARM: Motor Spin armed

Note: This parameter is for advanced users

Point at which the motors start to spin expressed as a number from 0 to 1 in the entire output range. Should be lower than MOT_SPIN_MIN.

Values

0.0:Low,0.1:Default,0.2:High

Q_M_BAT_CURR_TC: Motor Current Max Time Constant

Note: This parameter is for advanced users

Time constant used to limit the maximum current

Range

Units

0 - 10

seconds

Q_M_THST_HOVER: Thrust Hover Value

Note: This parameter is for advanced users

Motor thrust needed to hover expressed as a number from 0 to 1

Range

0.2 - 0.8

Q_M_HOVER_LEARN: Hover Value Learning

Note: This parameter is for advanced users

Enable/Disable automatic learning of hover throttle

Values

Value

Meaning

0

Disabled

1

Learn

2

Learn and Save

Q_M_SAFE_DISARM: Motor PWM output disabled when disarmed

Note: This parameter is for advanced users

Disables motor PWM output when disarmed

Values

Value

Meaning

0

PWM enabled while disarmed

1

PWM disabled while disarmed

Q_M_YAW_SV_ANGLE: Yaw Servo Max Lean Angle

Yaw servo's maximum lean angle

Increment

Range

Units

1

5 - 80

degrees

Q_M_SPOOL_TIME: Spool up time

Note: This parameter is for advanced users

Time in seconds to spool up the motors from zero to min throttle.

Increment

Range

Units

0.1

0 - 2

seconds

Q_M_BOOST_SCALE: Motor boost scale

Note: This parameter is for advanced users

Booster motor output scaling factor vs main throttle. The output to the BoostThrottle servo will be the main throttle times this scaling factor. A higher scaling factor will put more of the load on the booster motor. A value of 1 will set the BoostThrottle equal to the main throttle.

Increment

Range

0.1

0 - 5

Q_M_BAT_IDX: Battery compensation index

Note: This parameter is for advanced users

Which battery monitor should be used for doing compensation

Values

Value

Meaning

0

First battery

1

Second battery

Q_M_SLEW_UP_TIME: Output slew time for increasing throttle

Note: This parameter is for advanced users

Time in seconds to slew output from zero to full. This is used to limit the rate at which output can change. Range is constrained between 0 and 0.5.

Increment

Range

Units

0.001

0 - .5

seconds

Q_M_SLEW_DN_TIME: Output slew time for decreasing throttle

Note: This parameter is for advanced users

Time in seconds to slew output from full to zero. This is used to limit the rate at which output can change. Range is constrained between 0 and 0.5.

Increment

Range

Units

0.001

0 - .5

seconds

Q_M_SAFE_TIME: Time taken to disable and enable the motor PWM output when disarmed and armed.

Note: This parameter is for advanced users

Time taken to disable and enable the motor PWM output when disarmed and armed.

Increment

Range

Units

0.001

0 - 5

seconds

Q_P Parameters

Q_P_ACC_XY_FILT: XY Acceleration filter cutoff frequency

Note: This parameter is for advanced users

Lower values will slow the response of the navigation controller and reduce twitchiness

Increment

Range

Units

0.1

0.5 - 5

hertz

Q_P_POSZ_P: Position (vertical) controller P gain

Position (vertical) controller P gain. Converts the difference between the desired altitude and actual altitude into a climb or descent rate which is passed to the throttle rate controller

Range

1.000 - 3.000

Q_P_VELZ_P: Velocity (vertical) controller P gain

Velocity (vertical) controller P gain. Converts the difference between desired vertical speed and actual speed into a desired acceleration that is passed to the throttle acceleration controller

Range

1.000 - 8.000

Q_P_VELZ_I: Velocity (vertical) controller I gain

Note: This parameter is for advanced users

Velocity (vertical) controller I gain. Corrects long-term difference in desired velocity to a target acceleration

Increment

Range

0.01

0.02 - 1.00

Q_P_VELZ_IMAX: Velocity (vertical) controller I gain maximum

Velocity (vertical) controller I gain maximum. Constrains the target acceleration that the I gain will output

Range

1.000 - 8.000

Q_P_VELZ_D: Velocity (vertical) controller D gain

Note: This parameter is for advanced users

Velocity (vertical) controller D gain. Corrects short-term changes in velocity

Increment

Range

0.001

0.00 - 1.00

Q_P_VELZ_FF: Velocity (vertical) controller Feed Forward gain

Note: This parameter is for advanced users

Velocity (vertical) controller Feed Forward gain. Produces an output that is proportional to the magnitude of the target

Increment

Range

0.01

0 - 1

Q_P_VELZ_FLTE: Velocity (vertical) error filter

Note: This parameter is for advanced users

Velocity (vertical) error filter. This filter (in Hz) is applied to the input for P and I terms

Range

Units

0 - 100

hertz

Q_P_VELZ_FLTD: Velocity (vertical) input filter for D term

Note: This parameter is for advanced users

Velocity (vertical) input filter for D term. This filter (in Hz) is applied to the input for D terms

Range

Units

0 - 100

hertz

Q_P_ACCZ_P: Acceleration (vertical) controller P gain

Acceleration (vertical) controller P gain. Converts the difference between desired vertical acceleration and actual acceleration into a motor output

Increment

Range

0.05

0.200 - 1.500

Q_P_ACCZ_I: Acceleration (vertical) controller I gain

Acceleration (vertical) controller I gain. Corrects long-term difference in desired vertical acceleration and actual acceleration

Range

0.000 - 3.000

Q_P_ACCZ_IMAX: Acceleration (vertical) controller I gain maximum

Acceleration (vertical) controller I gain maximum. Constrains the maximum pwm that the I term will generate

Range

Units

0 - 1000

decipercent

Q_P_ACCZ_D: Acceleration (vertical) controller D gain

Acceleration (vertical) controller D gain. Compensates for short-term change in desired vertical acceleration vs actual acceleration

Range

0.000 - 0.400

Q_P_ACCZ_FF: Acceleration (vertical) controller feed forward

Acceleration (vertical) controller feed forward

Increment

Range

0.001

0 - 0.5

Q_P_ACCZ_FLTT: Acceleration (vertical) controller target frequency in Hz

Acceleration (vertical) controller target frequency in Hz

Increment

Range

Units

1

1 - 50

hertz

Q_P_ACCZ_FLTE: Acceleration (vertical) controller error frequency in Hz

Acceleration (vertical) controller error frequency in Hz

Increment

Range

Units

1

1 - 100

hertz

Q_P_ACCZ_FLTD: Acceleration (vertical) controller derivative frequency in Hz

Acceleration (vertical) controller derivative frequency in Hz

Increment

Range

Units

1

1 - 100

hertz

Q_P_ACCZ_SMAX: Accel (vertical) slew rate limit

Note: This parameter is for advanced users

Sets an upper limit on the slew rate produced by the combined P and D gains. If the amplitude of the control action produced by the rate feedback exceeds this value, then the D+P gain is reduced to respect the limit. This limits the amplitude of high frequency oscillations caused by an excessive gain. The limit should be set to no more than 25% of the actuators maximum slew rate to allow for load effects. Note: The gain will not be reduced to less than 10% of the nominal value. A value of zero will disable this feature.

Increment

Range

0.5

0 - 200

Q_P_POSXY_P: Position (horizontal) controller P gain

Position controller P gain. Converts the distance (in the latitude direction) to the target location into a desired speed which is then passed to the loiter latitude rate controller

Range

0.500 - 2.000

Q_P_VELXY_P: Velocity (horizontal) P gain

Note: This parameter is for advanced users

Velocity (horizontal) P gain. Converts the difference between desired and actual velocity to a target acceleration

Increment

Range

0.1

0.1 - 6.0

Q_P_VELXY_I: Velocity (horizontal) I gain

Note: This parameter is for advanced users

Velocity (horizontal) I gain. Corrects long-term difference between desired and actual velocity to a target acceleration

Increment

Range

0.01

0.02 - 1.00

Q_P_VELXY_D: Velocity (horizontal) D gain

Note: This parameter is for advanced users

Velocity (horizontal) D gain. Corrects short-term changes in velocity

Increment

Range

0.001

0.00 - 1.00

Q_P_VELXY_IMAX: Velocity (horizontal) integrator maximum

Note: This parameter is for advanced users

Velocity (horizontal) integrator maximum. Constrains the target acceleration that the I gain will output

Increment

Range

Units

10

0 - 4500

centimeters per square second

Q_P_VELXY_FLTE: Velocity (horizontal) input filter

Note: This parameter is for advanced users

Velocity (horizontal) input filter. This filter (in Hz) is applied to the input for P and I terms

Range

Units

0 - 100

hertz

Q_P_VELXY_FLTD: Velocity (horizontal) input filter

Note: This parameter is for advanced users

Velocity (horizontal) input filter. This filter (in Hz) is applied to the input for D term

Range

Units

0 - 100

hertz

Q_P_VELXY_FF: Velocity (horizontal) feed forward gain

Note: This parameter is for advanced users

Velocity (horizontal) feed forward gain. Converts the difference between desired velocity to a target acceleration

Increment

Range

0.01

0 - 6

Q_P_ANGLE_MAX: Position Control Angle Max

Note: This parameter is for advanced users

Maximum lean angle autopilot can request. Set to zero to use ANGLE_MAX parameter value

Increment

Range

Units

1

0 - 45

degrees

Q_P_JERK_XY: Jerk limit for the horizontal kinematic input shaping

Note: This parameter is for advanced users

Jerk limit of the horizontal kinematic path generation used to determine how quickly the aircraft varies the acceleration target

Increment

Range

Units

1

1 - 20

meters per cubic second

Q_P_JERK_Z: Jerk limit for the vertical kinematic input shaping

Note: This parameter is for advanced users

Jerk limit of the vertical kinematic path generation used to determine how quickly the aircraft varies the acceleration target

Increment

Range

Units

1

5 - 50

meters per cubic second

Q_WP_ Parameters

Q_WP_SPEED: Waypoint Horizontal Speed Target

Defines the speed in cm/s which the aircraft will attempt to maintain horizontally during a WP mission

Increment

Range

Units

50

20 - 2000

centimeters per second

Q_WP_RADIUS: Waypoint Radius

Defines the distance from a waypoint, that when crossed indicates the wp has been hit.

Increment

Range

Units

1

5 - 1000

centimeters

Q_WP_SPEED_UP: Waypoint Climb Speed Target

Defines the speed in cm/s which the aircraft will attempt to maintain while climbing during a WP mission

Increment

Range

Units

50

10 - 1000

centimeters per second

Q_WP_SPEED_DN: Waypoint Descent Speed Target

Defines the speed in cm/s which the aircraft will attempt to maintain while descending during a WP mission

Increment

Range

Units

10

10 - 500

centimeters per second

Q_WP_ACCEL: Waypoint Acceleration

Defines the horizontal acceleration in cm/s/s used during missions

Increment

Range

Units

10

50 - 500

centimeters per square second

Q_WP_ACCEL_Z: Waypoint Vertical Acceleration

Defines the vertical acceleration in cm/s/s used during missions

Increment

Range

Units

10

50 - 500

centimeters per square second

Q_WP_RFND_USE: Waypoint missions use rangefinder for terrain following

Note: This parameter is for advanced users

This controls if waypoint missions use rangefinder for terrain following

Values

Value

Meaning

0

Disable

1

Enable

Q_WP_JERK: Waypoint Jerk

Defines the horizontal jerk in m/s/s used during missions

Range

Units

1 - 20

meters per cubic second

Q_WP_TER_MARGIN: Waypoint Terrain following altitude margin

Note: This parameter is for advanced users

Waypoint Terrain following altitude margin. Vehicle will stop if distance from target altitude is larger than this margin (in meters)

Range

Units

0.1 - 100

meters

RALLY_ Parameters

RALLY_TOTAL: Rally Total

Note: This parameter is for advanced users

Number of rally points currently loaded

RALLY_LIMIT_KM: Rally Limit

Note: This parameter is for advanced users

Maximum distance to rally point. If the closest rally point is more than this number of kilometers from the current position and the home location is closer than any of the rally points from the current position then do RTL to home rather than to the closest rally point. This prevents a leftover rally point from a different airfield being used accidentally. If this is set to 0 then the closest rally point is always used.

Increment

Units

0.1

kilometers

RALLY_INCL_HOME: Rally Include Home

Controls if Home is included as a Rally point (i.e. as a safe landing place) for RTL

Values

Value

Meaning

0

DoNotIncludeHome

1

IncludeHome

RC Parameters

RC_OVERRIDE_TIME: RC override timeout

Note: This parameter is for advanced users

Timeout after which RC overrides will no longer be used, and RC input will resume, 0 will disable RC overrides, -1 will never timeout, and continue using overrides until they are disabled

Range

Units

0.0 - 120.0

seconds

RC_OPTIONS: RC options

Note: This parameter is for advanced users

RC input options

Bitmask

Bit

Meaning

0

Ignore RC Receiver

1

Ignore MAVLink Overrides

2

Ignore Receiver Failsafe bit but allow other RC failsafes if setup

3

FPort Pad

4

Log RC input bytes

5

Arming check throttle for 0 input

6

Skip the arming check for neutral Roll/Pitch/Yay sticks

7

Allow Switch reverse

8

Use passthrough for CRSF telemetry

9

Suppress CRSF mode/rate message for ELRS systems

10

Enable RC Protocol re-detection

RC_PROTOCOLS: RC protocols enabled

Note: This parameter is for advanced users

Bitmask of enabled RC protocols. Allows narrowing the protocol detection to only specific types of RC receivers which can avoid issues with incorrect detection. Set to 1 to enable all protocols.

Bitmask

Bit

Meaning

0

All

1

PPM

2

IBUS

3

SBUS

4

SBUS_NI

5

DSM

6

SUMD

7

SRXL

8

SRXL2

9

CRSF

10

ST24

11

FPORT

12

FPORT2

RC10_ Parameters

RC10_MIN: RC min PWM

Note: This parameter is for advanced users

RC minimum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Increment

Range

Units

1

800 - 2200

PWM in microseconds

RC10_TRIM: RC trim PWM

Note: This parameter is for advanced users

RC trim (neutral) PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Increment

Range

Units

1

800 - 2200

PWM in microseconds

RC10_MAX: RC max PWM

Note: This parameter is for advanced users

RC maximum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Increment

Range

Units

1

800 - 2200

PWM in microseconds

RC10_REVERSED: RC reversed

Note: This parameter is for advanced users

Reverse channel input. Set to 0 for normal operation. Set to 1 to reverse this input channel.

Values

Value

Meaning

0

Normal

1

Reversed

RC10_DZ: RC dead-zone

Note: This parameter is for advanced users

PWM dead zone in microseconds around trim or bottom

Range

Units

0 - 200

PWM in microseconds

RC10_OPTION: RC input option

Function assigned to this RC channel

Values

Value

Meaning

0

Do Nothing

4

ModeRTL

9

Camera Trigger

11

Fence

16

ModeAuto

24

Auto Mission Reset

27

Retract Mount

28

Relay On/Off

29

Landing Gear

30

Lost Plane Sound

31

Motor Emergency Stop

34

Relay2 On/Off

35

Relay3 On/Off

36

Relay4 On/Off

38

ADSB Avoidance En

41

ArmDisarm

43

InvertedFlight

46

RC Override Enable

51

ModeManual

55

ModeGuided

56

ModeLoiter

58

Clear Waypoints

62

Compass Learn

64

Reverse Throttle

65

GPS Disable

66

Relay5 On/Off

67

Relay6 On/Off

72

ModeCircle

77

ModeTakeoff

78

RunCam Control

79

RunCam OSD Control

81

Disarm

82

QAssist 3pos

84

Air Mode

85

Generator

86

Non Auto Terrain Follow Disable

87

Crow Select

88

Soaring Enable

89

Landing Flare

90

EKF Pos Source

91

Airspeed Ratio Calibration

92

FBWA

94

VTX Power

95

FBWA taildragger takeoff mode

96

trigger re-reading of mode switch

100

KillIMU1

101

KillIMU2

102

Camera Mode Toggle

105

GPS Disable Yaw

106

Disable Airspeed Use

107

EnableFixedWingAutotune

108

ModeQRTL

208

Flap

209

Forward Throttle

300

Scripting1

301

Scripting2

302

Scripting3

303

Scripting4

304

Scripting5

305

Scripting6

306

Scripting7

307

Scripting8

RC11_ Parameters

RC11_MIN: RC min PWM

Note: This parameter is for advanced users

RC minimum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Increment

Range

Units

1

800 - 2200

PWM in microseconds

RC11_TRIM: RC trim PWM

Note: This parameter is for advanced users

RC trim (neutral) PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Increment

Range

Units

1

800 - 2200

PWM in microseconds

RC11_MAX: RC max PWM

Note: This parameter is for advanced users

RC maximum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Increment

Range

Units

1

800 - 2200

PWM in microseconds

RC11_REVERSED: RC reversed

Note: This parameter is for advanced users

Reverse channel input. Set to 0 for normal operation. Set to 1 to reverse this input channel.

Values

Value

Meaning

0

Normal

1

Reversed

RC11_DZ: RC dead-zone

Note: This parameter is for advanced users

PWM dead zone in microseconds around trim or bottom

Range

Units

0 - 200

PWM in microseconds

RC11_OPTION: RC input option

Function assigned to this RC channel

Values

Value

Meaning

0

Do Nothing

4

ModeRTL

9

Camera Trigger

11

Fence

16

ModeAuto

24

Auto Mission Reset

27

Retract Mount

28

Relay On/Off

29

Landing Gear

30

Lost Plane Sound

31

Motor Emergency Stop

34

Relay2 On/Off

35

Relay3 On/Off

36

Relay4 On/Off

38

ADSB Avoidance En

41

ArmDisarm

43

InvertedFlight

46

RC Override Enable

51

ModeManual

55

ModeGuided

56

ModeLoiter

58

Clear Waypoints

62

Compass Learn

64

Reverse Throttle

65

GPS Disable

66

Relay5 On/Off

67

Relay6 On/Off

72

ModeCircle

77

ModeTakeoff

78

RunCam Control

79

RunCam OSD Control

81

Disarm

82

QAssist 3pos

84

Air Mode

85

Generator

86

Non Auto Terrain Follow Disable

87

Crow Select

88

Soaring Enable

89

Landing Flare

90

EKF Pos Source

91

Airspeed Ratio Calibration

92

FBWA

94

VTX Power

95

FBWA taildragger takeoff mode

96

trigger re-reading of mode switch

100

KillIMU1

101

KillIMU2

102

Camera Mode Toggle

105

GPS Disable Yaw

106

Disable Airspeed Use

107

EnableFixedWingAutotune

108

ModeQRTL

208

Flap

209

Forward Throttle

300

Scripting1

301

Scripting2

302

Scripting3

303

Scripting4

304

Scripting5

305

Scripting6

306

Scripting7

307

Scripting8

RC12_ Parameters

RC12_MIN: RC min PWM

Note: This parameter is for advanced users

RC minimum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Increment

Range

Units

1

800 - 2200

PWM in microseconds

RC12_TRIM: RC trim PWM

Note: This parameter is for advanced users

RC trim (neutral) PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Increment

Range

Units

1

800 - 2200

PWM in microseconds

RC12_MAX: RC max PWM

Note: This parameter is for advanced users

RC maximum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Increment

Range

Units

1

800 - 2200

PWM in microseconds

RC12_REVERSED: RC reversed

Note: This parameter is for advanced users

Reverse channel input. Set to 0 for normal operation. Set to 1 to reverse this input channel.

Values

Value

Meaning

0

Normal

1

Reversed

RC12_DZ: RC dead-zone

Note: This parameter is for advanced users

PWM dead zone in microseconds around trim or bottom

Range

Units

0 - 200

PWM in microseconds

RC12_OPTION: RC input option

Function assigned to this RC channel

Values

Value

Meaning

0

Do Nothing

4

ModeRTL

9

Camera Trigger

11

Fence

16

ModeAuto

24

Auto Mission Reset

27

Retract Mount

28

Relay On/Off

29

Landing Gear

30

Lost Plane Sound

31

Motor Emergency Stop

34

Relay2 On/Off

35

Relay3 On/Off

36

Relay4 On/Off

38

ADSB Avoidance En

41

ArmDisarm

43

InvertedFlight

46

RC Override Enable

51

ModeManual

55

ModeGuided

56

ModeLoiter

58

Clear Waypoints

62

Compass Learn

64

Reverse Throttle

65

GPS Disable

66

Relay5 On/Off

67

Relay6 On/Off

72

ModeCircle

77

ModeTakeoff

78

RunCam Control

79

RunCam OSD Control

81

Disarm

82

QAssist 3pos

84

Air Mode

85

Generator

86

Non Auto Terrain Follow Disable

87

Crow Select

88

Soaring Enable

89

Landing Flare

90

EKF Pos Source

91

Airspeed Ratio Calibration

92

FBWA

94

VTX Power

95

FBWA taildragger takeoff mode

96

trigger re-reading of mode switch

100

KillIMU1

101

KillIMU2

102

Camera Mode Toggle

105

GPS Disable Yaw

106

Disable Airspeed Use

107

EnableFixedWingAutotune

108

ModeQRTL

208

Flap

209

Forward Throttle

300

Scripting1

301

Scripting2

302

Scripting3

303

Scripting4

304

Scripting5

305

Scripting6

306

Scripting7

307

Scripting8

RC13_ Parameters

RC13_MIN: RC min PWM

Note: This parameter is for advanced users

RC minimum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Increment

Range

Units

1

800 - 2200

PWM in microseconds

RC13_TRIM: RC trim PWM

Note: This parameter is for advanced users

RC trim (neutral) PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Increment

Range

Units

1

800 - 2200

PWM in microseconds

RC13_MAX: RC max PWM

Note: This parameter is for advanced users

RC maximum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Increment

Range

Units

1

800 - 2200

PWM in microseconds

RC13_REVERSED: RC reversed

Note: This parameter is for advanced users

Reverse channel input. Set to 0 for normal operation. Set to 1 to reverse this input channel.

Values

Value

Meaning

0

Normal

1

Reversed

RC13_DZ: RC dead-zone

Note: This parameter is for advanced users

PWM dead zone in microseconds around trim or bottom

Range

Units

0 - 200

PWM in microseconds

RC13_OPTION: RC input option

Function assigned to this RC channel

Values

Value

Meaning

0

Do Nothing

4

ModeRTL

9

Camera Trigger

11

Fence

16

ModeAuto

24

Auto Mission Reset

27

Retract Mount

28

Relay On/Off

29

Landing Gear

30

Lost Plane Sound

31

Motor Emergency Stop

34

Relay2 On/Off

35

Relay3 On/Off

36

Relay4 On/Off

38

ADSB Avoidance En

41

ArmDisarm

43

InvertedFlight

46

RC Override Enable

51

ModeManual

55

ModeGuided

56

ModeLoiter

58

Clear Waypoints

62

Compass Learn

64

Reverse Throttle

65

GPS Disable

66

Relay5 On/Off

67

Relay6 On/Off

72

ModeCircle

77

ModeTakeoff

78

RunCam Control

79

RunCam OSD Control

81

Disarm

82

QAssist 3pos

84

Air Mode

85

Generator

86

Non Auto Terrain Follow Disable

87

Crow Select

88

Soaring Enable

89

Landing Flare

90

EKF Pos Source

91

Airspeed Ratio Calibration

92

FBWA

94

VTX Power

95

FBWA taildragger takeoff mode

96

trigger re-reading of mode switch

100

KillIMU1

101

KillIMU2

102

Camera Mode Toggle

105

GPS Disable Yaw

106

Disable Airspeed Use

107

EnableFixedWingAutotune

108

ModeQRTL

208

Flap

209

Forward Throttle

300

Scripting1

301

Scripting2

302

Scripting3

303

Scripting4

304

Scripting5

305

Scripting6

306

Scripting7

307

Scripting8

RC14_ Parameters

RC14_MIN: RC min PWM

Note: This parameter is for advanced users

RC minimum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Increment

Range

Units

1

800 - 2200

PWM in microseconds

RC14_TRIM: RC trim PWM

Note: This parameter is for advanced users

RC trim (neutral) PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Increment

Range

Units

1

800 - 2200

PWM in microseconds

RC14_MAX: RC max PWM

Note: This parameter is for advanced users

RC maximum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Increment

Range

Units

1

800 - 2200

PWM in microseconds

RC14_REVERSED: RC reversed

Note: This parameter is for advanced users

Reverse channel input. Set to 0 for normal operation. Set to 1 to reverse this input channel.

Values

Value

Meaning

0

Normal

1

Reversed

RC14_DZ: RC dead-zone

Note: This parameter is for advanced users

PWM dead zone in microseconds around trim or bottom

Range

Units

0 - 200

PWM in microseconds

RC14_OPTION: RC input option

Function assigned to this RC channel

Values

Value

Meaning

0

Do Nothing

4

ModeRTL

9

Camera Trigger

11

Fence

16

ModeAuto

24

Auto Mission Reset

27

Retract Mount

28

Relay On/Off

29

Landing Gear

30

Lost Plane Sound

31

Motor Emergency Stop

34

Relay2 On/Off

35

Relay3 On/Off

36

Relay4 On/Off

38

ADSB Avoidance En

41

ArmDisarm

43

InvertedFlight

46

RC Override Enable

51

ModeManual

55

ModeGuided

56

ModeLoiter

58

Clear Waypoints

62

Compass Learn

64

Reverse Throttle

65

GPS Disable

66

Relay5 On/Off

67

Relay6 On/Off

72

ModeCircle

77

ModeTakeoff

78

RunCam Control

79

RunCam OSD Control

81

Disarm

82

QAssist 3pos

84

Air Mode

85

Generator

86

Non Auto Terrain Follow Disable

87

Crow Select

88

Soaring Enable

89

Landing Flare

90

EKF Pos Source

91

Airspeed Ratio Calibration

92

FBWA

94

VTX Power

95

FBWA taildragger takeoff mode

96

trigger re-reading of mode switch

100

KillIMU1

101

KillIMU2

102

Camera Mode Toggle

105

GPS Disable Yaw

106

Disable Airspeed Use

107

EnableFixedWingAutotune

108

ModeQRTL

208

Flap

209

Forward Throttle

300

Scripting1

301

Scripting2

302

Scripting3

303

Scripting4

304

Scripting5

305

Scripting6

306

Scripting7

307

Scripting8

RC15_ Parameters

RC15_MIN: RC min PWM

Note: This parameter is for advanced users

RC minimum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Increment

Range

Units

1

800 - 2200

PWM in microseconds

RC15_TRIM: RC trim PWM

Note: This parameter is for advanced users

RC trim (neutral) PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Increment

Range

Units

1

800 - 2200

PWM in microseconds

RC15_MAX: RC max PWM

Note: This parameter is for advanced users

RC maximum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Increment

Range

Units

1

800 - 2200

PWM in microseconds

RC15_REVERSED: RC reversed

Note: This parameter is for advanced users

Reverse channel input. Set to 0 for normal operation. Set to 1 to reverse this input channel.

Values

Value

Meaning

0

Normal

1

Reversed

RC15_DZ: RC dead-zone

Note: This parameter is for advanced users

PWM dead zone in microseconds around trim or bottom

Range

Units

0 - 200

PWM in microseconds

RC15_OPTION: RC input option

Function assigned to this RC channel

Values

Value

Meaning

0

Do Nothing

4

ModeRTL

9

Camera Trigger

11

Fence

16

ModeAuto

24

Auto Mission Reset

27

Retract Mount

28

Relay On/Off

29

Landing Gear

30

Lost Plane Sound

31

Motor Emergency Stop

34

Relay2 On/Off

35

Relay3 On/Off

36

Relay4 On/Off

38

ADSB Avoidance En

41

ArmDisarm

43

InvertedFlight

46

RC Override Enable

51

ModeManual

55

ModeGuided

56

ModeLoiter

58

Clear Waypoints

62

Compass Learn

64

Reverse Throttle

65

GPS Disable

66

Relay5 On/Off

67

Relay6 On/Off

72

ModeCircle

77

ModeTakeoff

78

RunCam Control

79

RunCam OSD Control

81

Disarm

82

QAssist 3pos

84

Air Mode

85

Generator

86

Non Auto Terrain Follow Disable

87

Crow Select

88

Soaring Enable

89

Landing Flare

90

EKF Pos Source

91

Airspeed Ratio Calibration

92

FBWA

94

VTX Power

95

FBWA taildragger takeoff mode

96

trigger re-reading of mode switch

100

KillIMU1

101

KillIMU2

102

Camera Mode Toggle

105

GPS Disable Yaw

106

Disable Airspeed Use

107

EnableFixedWingAutotune

108

ModeQRTL

208

Flap

209

Forward Throttle

300

Scripting1

301

Scripting2

302

Scripting3

303

Scripting4

304

Scripting5

305

Scripting6

306

Scripting7

307

Scripting8

RC16_ Parameters

RC16_MIN: RC min PWM

Note: This parameter is for advanced users

RC minimum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Increment

Range

Units

1

800 - 2200

PWM in microseconds

RC16_TRIM: RC trim PWM

Note: This parameter is for advanced users

RC trim (neutral) PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Increment

Range

Units

1

800 - 2200

PWM in microseconds

RC16_MAX: RC max PWM

Note: This parameter is for advanced users

RC maximum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Increment

Range

Units

1

800 - 2200

PWM in microseconds

RC16_REVERSED: RC reversed

Note: This parameter is for advanced users

Reverse channel input. Set to 0 for normal operation. Set to 1 to reverse this input channel.

Values

Value

Meaning

0

Normal

1

Reversed

RC16_DZ: RC dead-zone

Note: This parameter is for advanced users

PWM dead zone in microseconds around trim or bottom

Range

Units

0 - 200

PWM in microseconds

RC16_OPTION: RC input option

Function assigned to this RC channel

Values

Value

Meaning

0

Do Nothing

4

ModeRTL

9

Camera Trigger

11

Fence

16

ModeAuto

24

Auto Mission Reset

27

Retract Mount

28

Relay On/Off

29

Landing Gear

30

Lost Plane Sound

31

Motor Emergency Stop

34

Relay2 On/Off

35

Relay3 On/Off

36

Relay4 On/Off

38

ADSB Avoidance En

41

ArmDisarm

43

InvertedFlight

46

RC Override Enable

51

ModeManual

55

ModeGuided

56

ModeLoiter

58

Clear Waypoints

62

Compass Learn

64

Reverse Throttle

65

GPS Disable

66

Relay5 On/Off

67

Relay6 On/Off

72

ModeCircle

77

ModeTakeoff

78

RunCam Control

79

RunCam OSD Control

81

Disarm

82

QAssist 3pos

84

Air Mode

85

Generator

86

Non Auto Terrain Follow Disable

87

Crow Select

88

Soaring Enable

89

Landing Flare

90

EKF Pos Source

91

Airspeed Ratio Calibration

92

FBWA

94

VTX Power

95

FBWA taildragger takeoff mode

96

trigger re-reading of mode switch

100

KillIMU1

101

KillIMU2

102

Camera Mode Toggle

105

GPS Disable Yaw

106

Disable Airspeed Use

107

EnableFixedWingAutotune

108

ModeQRTL

208

Flap

209

Forward Throttle

300

Scripting1

301

Scripting2

302

Scripting3

303

Scripting4

304

Scripting5

305

Scripting6

306

Scripting7

307

Scripting8

RC1_ Parameters

RC1_MIN: RC min PWM

Note: This parameter is for advanced users

RC minimum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Increment

Range

Units

1

800 - 2200

PWM in microseconds

RC1_TRIM: RC trim PWM

Note: This parameter is for advanced users

RC trim (neutral) PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Increment

Range

Units

1

800 - 2200

PWM in microseconds

RC1_MAX: RC max PWM

Note: This parameter is for advanced users

RC maximum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Increment

Range

Units

1

800 - 2200

PWM in microseconds

RC1_REVERSED: RC reversed

Note: This parameter is for advanced users

Reverse channel input. Set to 0 for normal operation. Set to 1 to reverse this input channel.

Values

Value

Meaning

0

Normal

1

Reversed

RC1_DZ: RC dead-zone

Note: This parameter is for advanced users

PWM dead zone in microseconds around trim or bottom

Range

Units

0 - 200

PWM in microseconds

RC1_OPTION: RC input option

Function assigned to this RC channel

Values

Value

Meaning

0

Do Nothing

4

ModeRTL

9

Camera Trigger

11

Fence

16

ModeAuto

24

Auto Mission Reset

27

Retract Mount

28

Relay On/Off

29

Landing Gear

30

Lost Plane Sound

31

Motor Emergency Stop

34

Relay2 On/Off

35

Relay3 On/Off

36

Relay4 On/Off

38

ADSB Avoidance En

41

ArmDisarm

43

InvertedFlight

46

RC Override Enable

51

ModeManual

55

ModeGuided

56

ModeLoiter

58

Clear Waypoints

62

Compass Learn

64

Reverse Throttle

65

GPS Disable

66

Relay5 On/Off

67

Relay6 On/Off

72

ModeCircle

77

ModeTakeoff

78

RunCam Control

79

RunCam OSD Control

81

Disarm

82

QAssist 3pos

84

Air Mode

85

Generator

86

Non Auto Terrain Follow Disable

87

Crow Select

88

Soaring Enable

89

Landing Flare

90

EKF Pos Source

91

Airspeed Ratio Calibration

92

FBWA

94

VTX Power

95

FBWA taildragger takeoff mode

96

trigger re-reading of mode switch

100

KillIMU1

101

KillIMU2

102

Camera Mode Toggle

105

GPS Disable Yaw

106

Disable Airspeed Use

107

EnableFixedWingAutotune

108

ModeQRTL

208

Flap

209

Forward Throttle

300

Scripting1

301

Scripting2

302

Scripting3

303

Scripting4

304

Scripting5

305

Scripting6

306

Scripting7

307

Scripting8

RC2_ Parameters

RC2_MIN: RC min PWM

Note: This parameter is for advanced users

RC minimum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Increment

Range

Units

1

800 - 2200

PWM in microseconds

RC2_TRIM: RC trim PWM

Note: This parameter is for advanced users

RC trim (neutral) PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Increment

Range

Units

1

800 - 2200

PWM in microseconds

RC2_MAX: RC max PWM

Note: This parameter is for advanced users

RC maximum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Increment

Range

Units

1

800 - 2200

PWM in microseconds

RC2_REVERSED: RC reversed

Note: This parameter is for advanced users

Reverse channel input. Set to 0 for normal operation. Set to 1 to reverse this input channel.

Values

Value

Meaning

0

Normal

1

Reversed

RC2_DZ: RC dead-zone

Note: This parameter is for advanced users

PWM dead zone in microseconds around trim or bottom

Range

Units

0 - 200

PWM in microseconds

RC2_OPTION: RC input option

Function assigned to this RC channel

Values

Value

Meaning

0

Do Nothing

4

ModeRTL

9

Camera Trigger

11

Fence

16

ModeAuto

24

Auto Mission Reset

27

Retract Mount

28

Relay On/Off

29

Landing Gear

30

Lost Plane Sound

31

Motor Emergency Stop

34

Relay2 On/Off

35

Relay3 On/Off

36

Relay4 On/Off

38

ADSB Avoidance En

41

ArmDisarm

43

InvertedFlight

46

RC Override Enable

51

ModeManual

55

ModeGuided

56

ModeLoiter

58

Clear Waypoints

62

Compass Learn

64

Reverse Throttle

65

GPS Disable

66

Relay5 On/Off

67

Relay6 On/Off

72

ModeCircle

77

ModeTakeoff

78

RunCam Control

79

RunCam OSD Control

81

Disarm

82

QAssist 3pos

84

Air Mode

85

Generator

86

Non Auto Terrain Follow Disable

87

Crow Select

88

Soaring Enable

89

Landing Flare

90

EKF Pos Source

91

Airspeed Ratio Calibration

92

FBWA

94

VTX Power

95

FBWA taildragger takeoff mode

96

trigger re-reading of mode switch

100

KillIMU1

101

KillIMU2

102

Camera Mode Toggle

105

GPS Disable Yaw

106

Disable Airspeed Use

107

EnableFixedWingAutotune

108

ModeQRTL

208

Flap

209

Forward Throttle

300

Scripting1

301

Scripting2

302

Scripting3

303

Scripting4

304

Scripting5

305

Scripting6

306

Scripting7

307

Scripting8

RC3_ Parameters

RC3_MIN: RC min PWM

Note: This parameter is for advanced users

RC minimum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Increment

Range

Units

1

800 - 2200

PWM in microseconds

RC3_TRIM: RC trim PWM

Note: This parameter is for advanced users

RC trim (neutral) PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Increment

Range

Units

1

800 - 2200

PWM in microseconds

RC3_MAX: RC max PWM

Note: This parameter is for advanced users

RC maximum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Increment

Range

Units

1

800 - 2200

PWM in microseconds

RC3_REVERSED: RC reversed

Note: This parameter is for advanced users

Reverse channel input. Set to 0 for normal operation. Set to 1 to reverse this input channel.

Values

Value

Meaning

0

Normal

1

Reversed

RC3_DZ: RC dead-zone

Note: This parameter is for advanced users

PWM dead zone in microseconds around trim or bottom

Range

Units

0 - 200

PWM in microseconds

RC3_OPTION: RC input option

Function assigned to this RC channel

Values

Value

Meaning

0

Do Nothing

4

ModeRTL

9

Camera Trigger

11

Fence

16

ModeAuto

24

Auto Mission Reset

27

Retract Mount

28

Relay On/Off

29

Landing Gear

30

Lost Plane Sound

31

Motor Emergency Stop

34

Relay2 On/Off

35

Relay3 On/Off

36

Relay4 On/Off

38

ADSB Avoidance En

41

ArmDisarm

43

InvertedFlight

46

RC Override Enable

51

ModeManual

55

ModeGuided

56

ModeLoiter

58

Clear Waypoints

62

Compass Learn

64

Reverse Throttle

65

GPS Disable

66

Relay5 On/Off

67

Relay6 On/Off

72

ModeCircle

77

ModeTakeoff

78

RunCam Control

79

RunCam OSD Control

81

Disarm

82

QAssist 3pos

84

Air Mode

85

Generator

86

Non Auto Terrain Follow Disable

87

Crow Select

88

Soaring Enable

89

Landing Flare

90

EKF Pos Source

91

Airspeed Ratio Calibration

92

FBWA

94

VTX Power

95

FBWA taildragger takeoff mode

96

trigger re-reading of mode switch

100

KillIMU1

101

KillIMU2

102

Camera Mode Toggle

105

GPS Disable Yaw

106

Disable Airspeed Use

107

EnableFixedWingAutotune

108

ModeQRTL

208

Flap

209

Forward Throttle

300

Scripting1

301

Scripting2

302

Scripting3

303

Scripting4

304

Scripting5

305

Scripting6

306

Scripting7

307

Scripting8

RC4_ Parameters

RC4_MIN: RC min PWM

Note: This parameter is for advanced users

RC minimum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Increment

Range

Units

1

800 - 2200

PWM in microseconds

RC4_TRIM: RC trim PWM

Note: This parameter is for advanced users

RC trim (neutral) PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Increment

Range

Units

1

800 - 2200

PWM in microseconds

RC4_MAX: RC max PWM

Note: This parameter is for advanced users

RC maximum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Increment

Range

Units

1

800 - 2200

PWM in microseconds

RC4_REVERSED: RC reversed

Note: This parameter is for advanced users

Reverse channel input. Set to 0 for normal operation. Set to 1 to reverse this input channel.

Values

Value

Meaning

0

Normal

1

Reversed

RC4_DZ: RC dead-zone

Note: This parameter is for advanced users

PWM dead zone in microseconds around trim or bottom

Range

Units

0 - 200

PWM in microseconds

RC4_OPTION: RC input option

Function assigned to this RC channel

Values

Value

Meaning

0

Do Nothing

4

ModeRTL

9

Camera Trigger

11

Fence

16

ModeAuto

24

Auto Mission Reset

27

Retract Mount

28

Relay On/Off

29

Landing Gear

30

Lost Plane Sound

31

Motor Emergency Stop

34

Relay2 On/Off

35

Relay3 On/Off

36

Relay4 On/Off

38

ADSB Avoidance En

41

ArmDisarm

43

InvertedFlight

46

RC Override Enable

51

ModeManual

55

ModeGuided

56

ModeLoiter

58

Clear Waypoints

62

Compass Learn

64

Reverse Throttle

65

GPS Disable

66

Relay5 On/Off

67

Relay6 On/Off

72

ModeCircle

77

ModeTakeoff

78

RunCam Control

79

RunCam OSD Control

81

Disarm

82

QAssist 3pos

84

Air Mode

85

Generator

86

Non Auto Terrain Follow Disable

87

Crow Select

88

Soaring Enable

89

Landing Flare

90

EKF Pos Source

91

Airspeed Ratio Calibration

92

FBWA

94

VTX Power

95

FBWA taildragger takeoff mode

96

trigger re-reading of mode switch

100

KillIMU1

101

KillIMU2

102

Camera Mode Toggle

105

GPS Disable Yaw

106

Disable Airspeed Use

107

EnableFixedWingAutotune

108

ModeQRTL

208

Flap

209

Forward Throttle

300

Scripting1

301

Scripting2

302

Scripting3

303

Scripting4

304

Scripting5

305

Scripting6

306

Scripting7

307

Scripting8

RC5_ Parameters

RC5_MIN: RC min PWM

Note: This parameter is for advanced users

RC minimum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Increment

Range

Units

1

800 - 2200

PWM in microseconds

RC5_TRIM: RC trim PWM

Note: This parameter is for advanced users

RC trim (neutral) PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Increment

Range

Units

1

800 - 2200

PWM in microseconds

RC5_MAX: RC max PWM

Note: This parameter is for advanced users

RC maximum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Increment

Range

Units

1

800 - 2200

PWM in microseconds

RC5_REVERSED: RC reversed

Note: This parameter is for advanced users

Reverse channel input. Set to 0 for normal operation. Set to 1 to reverse this input channel.

Values

Value

Meaning

0

Normal

1

Reversed

RC5_DZ: RC dead-zone

Note: This parameter is for advanced users

PWM dead zone in microseconds around trim or bottom

Range

Units

0 - 200

PWM in microseconds

RC5_OPTION: RC input option

Function assigned to this RC channel

Values

Value

Meaning

0

Do Nothing

4

ModeRTL

9

Camera Trigger

11

Fence

16

ModeAuto

24

Auto Mission Reset

27

Retract Mount

28

Relay On/Off

29

Landing Gear

30

Lost Plane Sound

31

Motor Emergency Stop

34

Relay2 On/Off

35

Relay3 On/Off

36

Relay4 On/Off

38

ADSB Avoidance En

41

ArmDisarm

43

InvertedFlight

46

RC Override Enable

51

ModeManual

55

ModeGuided

56

ModeLoiter

58

Clear Waypoints

62

Compass Learn

64

Reverse Throttle

65

GPS Disable

66

Relay5 On/Off

67

Relay6 On/Off

72

ModeCircle

77

ModeTakeoff

78

RunCam Control

79

RunCam OSD Control

81

Disarm

82

QAssist 3pos

84

Air Mode

85

Generator

86

Non Auto Terrain Follow Disable

87

Crow Select

88

Soaring Enable

89

Landing Flare

90

EKF Pos Source

91

Airspeed Ratio Calibration

92

FBWA

94

VTX Power

95

FBWA taildragger takeoff mode

96

trigger re-reading of mode switch

100

KillIMU1

101

KillIMU2

102

Camera Mode Toggle

105

GPS Disable Yaw

106

Disable Airspeed Use

107

EnableFixedWingAutotune

108

ModeQRTL

208

Flap

209

Forward Throttle

300

Scripting1

301

Scripting2

302

Scripting3

303

Scripting4

304

Scripting5

305

Scripting6

306

Scripting7

307

Scripting8

RC6_ Parameters

RC6_MIN: RC min PWM

Note: This parameter is for advanced users

RC minimum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Increment

Range

Units

1

800 - 2200

PWM in microseconds

RC6_TRIM: RC trim PWM

Note: This parameter is for advanced users

RC trim (neutral) PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Increment

Range

Units

1

800 - 2200

PWM in microseconds

RC6_MAX: RC max PWM

Note: This parameter is for advanced users

RC maximum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Increment

Range

Units

1

800 - 2200

PWM in microseconds

RC6_REVERSED: RC reversed

Note: This parameter is for advanced users

Reverse channel input. Set to 0 for normal operation. Set to 1 to reverse this input channel.

Values

Value

Meaning

0

Normal

1

Reversed

RC6_DZ: RC dead-zone

Note: This parameter is for advanced users

PWM dead zone in microseconds around trim or bottom

Range

Units

0 - 200

PWM in microseconds

RC6_OPTION: RC input option

Function assigned to this RC channel

Values

Value

Meaning

0

Do Nothing

4

ModeRTL

9

Camera Trigger

11

Fence

16

ModeAuto

24

Auto Mission Reset

27

Retract Mount

28

Relay On/Off

29

Landing Gear

30

Lost Plane Sound

31

Motor Emergency Stop

34

Relay2 On/Off

35

Relay3 On/Off

36

Relay4 On/Off

38

ADSB Avoidance En

41

ArmDisarm

43

InvertedFlight

46

RC Override Enable

51

ModeManual

55

ModeGuided

56

ModeLoiter

58

Clear Waypoints

62

Compass Learn

64

Reverse Throttle

65

GPS Disable

66

Relay5 On/Off

67

Relay6 On/Off

72

ModeCircle

77

ModeTakeoff

78

RunCam Control

79

RunCam OSD Control

81

Disarm

82

QAssist 3pos

84

Air Mode

85

Generator

86

Non Auto Terrain Follow Disable

87

Crow Select

88

Soaring Enable

89

Landing Flare

90

EKF Pos Source

91

Airspeed Ratio Calibration

92

FBWA

94

VTX Power

95

FBWA taildragger takeoff mode

96

trigger re-reading of mode switch

100

KillIMU1

101

KillIMU2

102

Camera Mode Toggle

105

GPS Disable Yaw

106

Disable Airspeed Use

107

EnableFixedWingAutotune

108

ModeQRTL

208

Flap

209

Forward Throttle

300

Scripting1

301

Scripting2

302

Scripting3

303

Scripting4

304

Scripting5

305

Scripting6

306

Scripting7

307

Scripting8

RC7_ Parameters

RC7_MIN: RC min PWM

Note: This parameter is for advanced users

RC minimum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Increment

Range

Units

1

800 - 2200

PWM in microseconds

RC7_TRIM: RC trim PWM

Note: This parameter is for advanced users

RC trim (neutral) PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Increment

Range

Units

1

800 - 2200

PWM in microseconds

RC7_MAX: RC max PWM

Note: This parameter is for advanced users

RC maximum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Increment

Range

Units

1

800 - 2200

PWM in microseconds

RC7_REVERSED: RC reversed

Note: This parameter is for advanced users

Reverse channel input. Set to 0 for normal operation. Set to 1 to reverse this input channel.

Values

Value

Meaning

0

Normal

1

Reversed

RC7_DZ: RC dead-zone

Note: This parameter is for advanced users

PWM dead zone in microseconds around trim or bottom

Range

Units

0 - 200

PWM in microseconds

RC7_OPTION: RC input option

Function assigned to this RC channel

Values

Value

Meaning

0

Do Nothing

4

ModeRTL

9

Camera Trigger

11

Fence

16

ModeAuto

24

Auto Mission Reset

27

Retract Mount

28

Relay On/Off

29

Landing Gear

30

Lost Plane Sound

31

Motor Emergency Stop

34

Relay2 On/Off

35

Relay3 On/Off

36

Relay4 On/Off

38

ADSB Avoidance En

41

ArmDisarm

43

InvertedFlight

46

RC Override Enable

51

ModeManual

55

ModeGuided

56

ModeLoiter

58

Clear Waypoints

62

Compass Learn

64

Reverse Throttle

65

GPS Disable

66

Relay5 On/Off

67

Relay6 On/Off

72

ModeCircle

77

ModeTakeoff

78

RunCam Control

79

RunCam OSD Control

81

Disarm

82

QAssist 3pos

84

Air Mode

85

Generator

86

Non Auto Terrain Follow Disable

87

Crow Select

88

Soaring Enable

89

Landing Flare

90

EKF Pos Source

91

Airspeed Ratio Calibration

92

FBWA

94

VTX Power

95

FBWA taildragger takeoff mode

96

trigger re-reading of mode switch

100

KillIMU1

101

KillIMU2

102

Camera Mode Toggle

105

GPS Disable Yaw

106

Disable Airspeed Use

107

EnableFixedWingAutotune

108

ModeQRTL

208

Flap

209

Forward Throttle

300

Scripting1

301

Scripting2

302

Scripting3

303

Scripting4

304

Scripting5

305

Scripting6

306

Scripting7

307

Scripting8

RC8_ Parameters

RC8_MIN: RC min PWM

Note: This parameter is for advanced users

RC minimum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Increment

Range

Units

1

800 - 2200

PWM in microseconds

RC8_TRIM: RC trim PWM

Note: This parameter is for advanced users

RC trim (neutral) PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Increment

Range

Units

1

800 - 2200

PWM in microseconds

RC8_MAX: RC max PWM

Note: This parameter is for advanced users

RC maximum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Increment

Range

Units

1

800 - 2200

PWM in microseconds

RC8_REVERSED: RC reversed

Note: This parameter is for advanced users

Reverse channel input. Set to 0 for normal operation. Set to 1 to reverse this input channel.

Values

Value

Meaning

0

Normal

1

Reversed

RC8_DZ: RC dead-zone

Note: This parameter is for advanced users

PWM dead zone in microseconds around trim or bottom

Range

Units

0 - 200

PWM in microseconds

RC8_OPTION: RC input option

Function assigned to this RC channel

Values

Value

Meaning

0

Do Nothing

4

ModeRTL

9

Camera Trigger

11

Fence

16

ModeAuto

24

Auto Mission Reset

27

Retract Mount

28

Relay On/Off

29

Landing Gear

30

Lost Plane Sound

31

Motor Emergency Stop

34

Relay2 On/Off

35

Relay3 On/Off

36

Relay4 On/Off

38

ADSB Avoidance En

41

ArmDisarm

43

InvertedFlight

46

RC Override Enable

51

ModeManual

55

ModeGuided

56

ModeLoiter

58

Clear Waypoints

62

Compass Learn

64

Reverse Throttle

65

GPS Disable

66

Relay5 On/Off

67

Relay6 On/Off

72

ModeCircle

77

ModeTakeoff

78

RunCam Control

79

RunCam OSD Control

81

Disarm

82

QAssist 3pos

84

Air Mode

85

Generator

86

Non Auto Terrain Follow Disable

87

Crow Select

88

Soaring Enable

89

Landing Flare

90

EKF Pos Source

91

Airspeed Ratio Calibration

92

FBWA

94

VTX Power

95

FBWA taildragger takeoff mode

96

trigger re-reading of mode switch

100

KillIMU1

101

KillIMU2

102

Camera Mode Toggle

105

GPS Disable Yaw

106

Disable Airspeed Use

107

EnableFixedWingAutotune

108

ModeQRTL

208

Flap

209

Forward Throttle

300

Scripting1

301

Scripting2

302

Scripting3

303

Scripting4

304

Scripting5

305

Scripting6

306

Scripting7

307

Scripting8

RC9_ Parameters

RC9_MIN: RC min PWM

Note: This parameter is for advanced users

RC minimum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Increment

Range

Units

1

800 - 2200

PWM in microseconds

RC9_TRIM: RC trim PWM

Note: This parameter is for advanced users

RC trim (neutral) PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Increment

Range

Units

1

800 - 2200

PWM in microseconds

RC9_MAX: RC max PWM

Note: This parameter is for advanced users

RC maximum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Increment

Range

Units

1

800 - 2200

PWM in microseconds

RC9_REVERSED: RC reversed

Note: This parameter is for advanced users

Reverse channel input. Set to 0 for normal operation. Set to 1 to reverse this input channel.

Values

Value

Meaning

0

Normal

1

Reversed

RC9_DZ: RC dead-zone

Note: This parameter is for advanced users

PWM dead zone in microseconds around trim or bottom

Range

Units

0 - 200

PWM in microseconds

RC9_OPTION: RC input option

Function assigned to this RC channel

Values

Value

Meaning

0

Do Nothing

4

ModeRTL

9

Camera Trigger

11

Fence

16

ModeAuto

24

Auto Mission Reset

27

Retract Mount

28

Relay On/Off

29

Landing Gear

30

Lost Plane Sound

31

Motor Emergency Stop

34

Relay2 On/Off

35

Relay3 On/Off

36

Relay4 On/Off

38

ADSB Avoidance En

41

ArmDisarm

43

InvertedFlight

46

RC Override Enable

51

ModeManual

55

ModeGuided

56

ModeLoiter

58

Clear Waypoints

62

Compass Learn

64

Reverse Throttle

65

GPS Disable

66

Relay5 On/Off

67

Relay6 On/Off

72

ModeCircle

77

ModeTakeoff

78

RunCam Control

79

RunCam OSD Control

81

Disarm

82

QAssist 3pos

84

Air Mode

85

Generator

86

Non Auto Terrain Follow Disable

87

Crow Select

88

Soaring Enable

89

Landing Flare

90

EKF Pos Source

91

Airspeed Ratio Calibration

92

FBWA

94

VTX Power

95

FBWA taildragger takeoff mode

96

trigger re-reading of mode switch

100

KillIMU1

101

KillIMU2

102

Camera Mode Toggle

105

GPS Disable Yaw

106

Disable Airspeed Use

107

EnableFixedWingAutotune

108

ModeQRTL

208

Flap

209

Forward Throttle

300

Scripting1

301

Scripting2

302

Scripting3

303

Scripting4

304

Scripting5

305

Scripting6

306

Scripting7

307

Scripting8

RCMAP_ Parameters

RCMAP_ROLL: Roll channel

Note: This parameter is for advanced users

Roll channel number. This is useful when you have a RC transmitter that can't change the channel order easily. Roll is normally on channel 1, but you can move it to any channel with this parameter. Reboot is required for changes to take effect.

Increment

Range

RebootRequired

1

1 - 8

True

RCMAP_PITCH: Pitch channel

Note: This parameter is for advanced users

Pitch channel number. This is useful when you have a RC transmitter that can't change the channel order easily. Pitch is normally on channel 2, but you can move it to any channel with this parameter. Reboot is required for changes to take effect.

Increment

Range

RebootRequired

1

1 - 8

True

RCMAP_THROTTLE: Throttle channel

Note: This parameter is for advanced users

Throttle channel number. This is useful when you have a RC transmitter that can't change the channel order easily. Throttle is normally on channel 3, but you can move it to any channel with this parameter. Warning APM 2.X: Changing the throttle channel could produce unexpected fail-safe results if connection between receiver and on-board PPM Encoder is lost. Disabling on-board PPM Encoder is recommended. Reboot is required for changes to take effect.

Increment

Range

RebootRequired

1

1 - 8

True

RCMAP_YAW: Yaw channel

Note: This parameter is for advanced users

Yaw channel number. This is useful when you have a RC transmitter that can't change the channel order easily. Yaw (also known as rudder) is normally on channel 4, but you can move it to any channel with this parameter. Reboot is required for changes to take effect.

Increment

Range

RebootRequired

1

1 - 8

True

RELAY_ Parameters

RELAY_PIN: First Relay Pin

Digital pin number for first relay control. This is the pin used for camera control.

Values

Value

Meaning

-1

Disabled

49

BB Blue GP0 pin 4

50

AUXOUT1

51

AUXOUT2

52

AUXOUT3

53

AUXOUT4

54

AUXOUT5

55

AUXOUT6

57

BB Blue GP0 pin 3

113

BB Blue GP0 pin 6

116

BB Blue GP0 pin 5

27

BBBMini Pin P8.17

RELAY_PIN2: Second Relay Pin

Digital pin number for 2nd relay control.

Values

Value

Meaning

-1

Disabled

49

BB Blue GP0 pin 4

50

AUXOUT1

51

AUXOUT2

52

AUXOUT3

53

AUXOUT4

54

AUXOUT5

55

AUXOUT6

57

BB Blue GP0 pin 3

113

BB Blue GP0 pin 6

116

BB Blue GP0 pin 5

65

BBBMini Pin P8.18

RELAY_PIN3: Third Relay Pin

Digital pin number for 3rd relay control.

Values

Value

Meaning

-1

Disabled

49

BB Blue GP0 pin 4

50

AUXOUT1

51

AUXOUT2

52

AUXOUT3

53

AUXOUT4

54

AUXOUT5

55

AUXOUT6

57

BB Blue GP0 pin 3

113

BB Blue GP0 pin 6

116

BB Blue GP0 pin 5

22

BBBMini Pin P8.19

RELAY_PIN4: Fourth Relay Pin

Digital pin number for 4th relay control.

Values

Value

Meaning

-1

Disabled

49

BB Blue GP0 pin 4

50

AUXOUT1

51

AUXOUT2

52

AUXOUT3

53

AUXOUT4

54

AUXOUT5

55

AUXOUT6

57

BB Blue GP0 pin 3

113

BB Blue GP0 pin 6

116

BB Blue GP0 pin 5

63

BBBMini Pin P8.34

RELAY_DEFAULT: Default relay state

The state of the relay on boot.

Values

Value

Meaning

0

Off

1

On

2

NoChange

RELAY_PIN5: Fifth Relay Pin

Digital pin number for 5th relay control.

Values

Value

Meaning

-1

Disabled

49

BB Blue GP0 pin 4

50

AUXOUT1

51

AUXOUT2

52

AUXOUT3

53

AUXOUT4

54

AUXOUT5

55

AUXOUT6

57

BB Blue GP0 pin 3

113

BB Blue GP0 pin 6

116

BB Blue GP0 pin 5

62

BBBMini Pin P8.13

RELAY_PIN6: Sixth Relay Pin

Digital pin number for 6th relay control.

Values

Value

Meaning

-1

Disabled

49

BB Blue GP0 pin 4

50

AUXOUT1

51

AUXOUT2

52

AUXOUT3

53

AUXOUT4

54

AUXOUT5

55

AUXOUT6

57

BB Blue GP0 pin 3

113

BB Blue GP0 pin 6

116

BB Blue GP0 pin 5

37

BBBMini Pin P8.14

RLL Parameters

RLL2SRV_TCONST: Roll Time Constant

Note: This parameter is for advanced users

Time constant in seconds from demanded to achieved roll angle. Most models respond well to 0.5. May be reduced for faster responses, but setting lower than a model can achieve will not help.

Increment

Range

Units

0.1

0.4 - 1.0

seconds

RLL2SRV_RMAX: Maximum Roll Rate

Note: This parameter is for advanced users

Maximum roll rate that the roll controller demands (degrees/sec) in ACRO mode.

Increment

Range

Units

1

0 - 180

degrees per second

RLL_RATE_P: Roll axis rate controller P gain

Roll axis rate controller P gain. Converts the difference between desired roll rate and actual roll rate into a motor speed output

Increment

Range

0.005

0.08 - 0.35

RLL_RATE_I: Roll axis rate controller I gain

Roll axis rate controller I gain. Corrects long-term difference in desired roll rate vs actual roll rate

Increment

Range

0.01

0.01 - 0.6

RLL_RATE_IMAX: Roll axis rate controller I gain maximum

Roll axis rate controller I gain maximum. Constrains the maximum motor output that the I gain will output

Increment

Range

0.01

0 - 1

RLL_RATE_D: Roll axis rate controller D gain

Roll axis rate controller D gain. Compensates for short-term change in desired roll rate vs actual roll rate

Increment

Range

0.001

0.001 - 0.03

RLL_RATE_FF: Roll axis rate controller feed forward

Roll axis rate controller feed forward

Increment

Range

0.001

0 - 3.0

RLL_RATE_FLTT: Roll axis rate controller target frequency in Hz

Roll axis rate controller target frequency in Hz

Increment

Range

Units

1

2 - 50

hertz

RLL_RATE_FLTE: Roll axis rate controller error frequency in Hz

Roll axis rate controller error frequency in Hz

Increment

Range

Units

1

2 - 50

hertz

RLL_RATE_FLTD: Roll axis rate controller derivative frequency in Hz

Roll axis rate controller derivative frequency in Hz

Increment

Range

Units

1

0 - 50

hertz

RLL_RATE_SMAX: Roll slew rate limit

Note: This parameter is for advanced users

Sets an upper limit on the slew rate produced by the combined P and D gains. If the amplitude of the control action produced by the rate feedback exceeds this value, then the D+P gain is reduced to respect the limit. This limits the amplitude of high frequency oscillations caused by an excessive gain. The limit should be set to no more than 25% of the actuators maximum slew rate to allow for load effects. Note: The gain will not be reduced to less than 10% of the nominal value. A value of zero will disable this feature.

Increment

Range

0.5

0 - 200

RNGFND1_ Parameters

RNGFND1_TYPE: Rangefinder type

What type of rangefinder device that is connected

Values

Value

Meaning

0

None

1

Analog

2

MaxbotixI2C

3

LidarLite-I2C

5

PWM

6

BBB-PRU

7

LightWareI2C

8

LightWareSerial

9

Bebop

10

MAVLink

11

uLanding

12

LeddarOne

13

MaxbotixSerial

14

TeraRangerI2C

15

LidarLiteV3-I2C

16

VL53L0X or VL53L1X

17

NMEA

18

WASP-LRF

19

BenewakeTF02

20

Benewake-Serial

21

LidarLightV3HP

22

PWM

23

BlueRoboticsPing

24

UAVCAN

25

BenewakeTFminiPlus-I2C

26

LanbaoPSK-CM8JL65-CC5

27

BenewakeTF03

28

VL53L1X-ShortRange

29

LeddarVu8-Serial

30

HC-SR04

31

GYUS42v2

32

MSP

33

USD1_CAN

34

Benewake_CAN

100

SITL

RNGFND1_PIN: Rangefinder pin

Analog or PWM input pin that rangefinder is connected to. Airspeed ports can be used for Analog input, AUXOUT can be used for PWM input

Values

Value

Meaning

-1

Not Used

11

PX4-airspeed port

15

Pixhawk-airspeed port

50

Pixhawk AUXOUT1

51

Pixhawk AUXOUT2

52

Pixhawk AUXOUT3

53

Pixhawk AUXOUT4

54

Pixhawk AUXOUT5

55

Pixhawk AUXOUT6

RNGFND1_SCALING: Rangefinder scaling

Scaling factor between rangefinder reading and distance. For the linear and inverted functions this is in meters per volt. For the hyperbolic function the units are meterVolts.

Increment

Units

0.001

meters per volt

RNGFND1_OFFSET: rangefinder offset

Offset in volts for zero distance for analog rangefinders. Offset added to distance in centimeters for PWM lidars

Increment

Units

0.001

volt

RNGFND1_FUNCTION: Rangefinder function

Control over what function is used to calculate distance. For a linear function, the distance is (voltage-offset)*scaling. For a inverted function the distance is (offset-voltage)*scaling. For a hyperbolic function the distance is scaling/(voltage-offset). The functions return the distance in meters.

Values

Value

Meaning

0

Linear

1

Inverted

2

Hyperbolic

RNGFND1_MIN_CM: Rangefinder minimum distance

Minimum distance in centimeters that rangefinder can reliably read

Increment

Units

1

centimeters

RNGFND1_MAX_CM: Rangefinder maximum distance

Maximum distance in centimeters that rangefinder can reliably read

Increment

Units

1

centimeters

RNGFND1_STOP_PIN: Rangefinder stop pin

Digital pin that enables/disables rangefinder measurement for the pwm rangefinder. A value of -1 means no pin. If this is set, then the pin is set to 1 to enable the rangefinder and set to 0 to disable it. This is used to enable powersaving when out of range.

Values

Value

Meaning

-1

Not Used

50

Pixhawk AUXOUT1

51

Pixhawk AUXOUT2

52

Pixhawk AUXOUT3

53

Pixhawk AUXOUT4

54

Pixhawk AUXOUT5

55

Pixhawk AUXOUT6

111

PX4 FMU Relay1

112

PX4 FMU Relay2

113

PX4IO Relay1

114

PX4IO Relay2

115

PX4IO ACC1

116

PX4IO ACC2

RNGFND1_RMETRIC: Ratiometric

This parameter sets whether an analog rangefinder is ratiometric. Most analog rangefinders are ratiometric, meaning that their output voltage is influenced by the supply voltage. Some analog rangefinders (such as the SF/02) have their own internal voltage regulators so they are not ratiometric.

Values

Value

Meaning

0

No

1

Yes

RNGFND1_PWRRNG: Powersave range

This parameter sets the estimated terrain distance in meters above which the sensor will be put into a power saving mode (if available). A value of zero means power saving is not enabled

Range

Units

0 - 32767

meters

RNGFND1_GNDCLEAR: Distance (in cm) from the range finder to the ground

This parameter sets the expected range measurement(in cm) that the range finder should return when the vehicle is on the ground.

Increment

Range

Units

1

5 - 127

centimeters

RNGFND1_ADDR: Bus address of sensor

This sets the bus address of the sensor, where applicable. Used for the I2C and UAVCAN sensors to allow for multiple sensors on different addresses.

Increment

Range

1

0 - 127

RNGFND1_POS_X: X position offset

Note: This parameter is for advanced users

X position of the rangefinder in body frame. Positive X is forward of the origin. Use the zero range datum point if supplied.

Increment

Range

Units

0.01

-5 - 5

meters

RNGFND1_POS_Y: Y position offset

Note: This parameter is for advanced users

Y position of the rangefinder in body frame. Positive Y is to the right of the origin. Use the zero range datum point if supplied.

Increment

Range

Units

0.01

-5 - 5

meters

RNGFND1_POS_Z: Z position offset

Note: This parameter is for advanced users

Z position of the rangefinder in body frame. Positive Z is down from the origin. Use the zero range datum point if supplied.

Increment

Range

Units

0.01

-5 - 5

meters

RNGFND1_ORIENT: Rangefinder orientation

Note: This parameter is for advanced users

Orientation of rangefinder

Values

Value

Meaning

0

Forward

1

Forward-Right

2

Right

3

Back-Right

4

Back

5

Back-Left

6

Left

7

Forward-Left

24

Up

25

Down

RNGFND1_WSP_MAVG: Moving Average Range

Note: This parameter is for advanced users

Sets the number of historic range results to use for calculating the current range result. When MAVG is greater than 1, the current range result will be the current measured value averaged with the N-1 previous results

Range

0 - 255

RNGFND1_WSP_MEDF: Moving Median Filter

Note: This parameter is for advanced users

Sets the window size for the real-time median filter. When MEDF is greater than 0 the median filter is active

Range

0 - 255

RNGFND1_WSP_FRQ: Frequency

Note: This parameter is for advanced users

Sets the repetition frequency of the ranging operation in Hertz. Upon entering the desired frequency the system will calculate the nearest frequency that it can handle according to the resolution of internal timers.

Range

0 - 10000

RNGFND1_WSP_AVG: Multi-pulse averages

Note: This parameter is for advanced users

Sets the number of pulses to be used in multi-pulse averaging mode. In this mode, a sequence of rapid fire ranges are taken and then averaged to improve the accuracy of the measurement

Range

0 - 255

RNGFND1_WSP_THR: Sensitivity threshold

Note: This parameter is for advanced users

Sets the system sensitivity. Larger values of THR represent higher sensitivity. The system may limit the maximum value of THR to prevent excessive false alarm rates based on settings made at the factory. Set to -1 for automatic threshold adjustments

Range

-1 - 255

RNGFND1_WSP_BAUD: Baud rate

Note: This parameter is for advanced users

Desired baud rate

Values

Value

Meaning

0

Low Speed

1

High Speed

RNGFND1_RECV_ID: CAN receive ID

Note: This parameter is for advanced users

The receive ID of the CAN frames. A value of zero means all IDs are accepted.

Range

0 - 65535

RNGFND1_SNR_MIN: Minimum signal strength

Note: This parameter is for advanced users

Minimum signal strength (SNR) to accept distance

Range

0 - 65535

RNGFND2_ Parameters

RNGFND2_TYPE: Rangefinder type

What type of rangefinder device that is connected

Values

Value

Meaning

0

None

1

Analog

2

MaxbotixI2C

3

LidarLite-I2C

5

PWM

6

BBB-PRU

7

LightWareI2C

8

LightWareSerial

9

Bebop

10

MAVLink

11

uLanding

12

LeddarOne

13

MaxbotixSerial

14

TeraRangerI2C

15

LidarLiteV3-I2C

16

VL53L0X or VL53L1X

17

NMEA

18

WASP-LRF

19

BenewakeTF02

20

Benewake-Serial

21

LidarLightV3HP

22

PWM

23

BlueRoboticsPing

24

UAVCAN

25

BenewakeTFminiPlus-I2C

26

LanbaoPSK-CM8JL65-CC5

27

BenewakeTF03

28

VL53L1X-ShortRange

29

LeddarVu8-Serial

30

HC-SR04

31

GYUS42v2

32

MSP

33

USD1_CAN

34

Benewake_CAN

100

SITL

RNGFND2_PIN: Rangefinder pin

Analog or PWM input pin that rangefinder is connected to. Airspeed ports can be used for Analog input, AUXOUT can be used for PWM input

Values

Value

Meaning

-1

Not Used

11

PX4-airspeed port

15

Pixhawk-airspeed port

50

Pixhawk AUXOUT1

51

Pixhawk AUXOUT2

52

Pixhawk AUXOUT3

53

Pixhawk AUXOUT4

54

Pixhawk AUXOUT5

55

Pixhawk AUXOUT6

RNGFND2_SCALING: Rangefinder scaling

Scaling factor between rangefinder reading and distance. For the linear and inverted functions this is in meters per volt. For the hyperbolic function the units are meterVolts.

Increment

Units

0.001

meters per volt

RNGFND2_OFFSET: rangefinder offset

Offset in volts for zero distance for analog rangefinders. Offset added to distance in centimeters for PWM lidars

Increment

Units

0.001

volt

RNGFND2_FUNCTION: Rangefinder function

Control over what function is used to calculate distance. For a linear function, the distance is (voltage-offset)*scaling. For a inverted function the distance is (offset-voltage)*scaling. For a hyperbolic function the distance is scaling/(voltage-offset). The functions return the distance in meters.

Values

Value

Meaning

0

Linear

1

Inverted

2

Hyperbolic

RNGFND2_MIN_CM: Rangefinder minimum distance

Minimum distance in centimeters that rangefinder can reliably read

Increment

Units

1

centimeters

RNGFND2_MAX_CM: Rangefinder maximum distance

Maximum distance in centimeters that rangefinder can reliably read

Increment

Units

1

centimeters

RNGFND2_STOP_PIN: Rangefinder stop pin

Digital pin that enables/disables rangefinder measurement for the pwm rangefinder. A value of -1 means no pin. If this is set, then the pin is set to 1 to enable the rangefinder and set to 0 to disable it. This is used to enable powersaving when out of range.

Values

Value

Meaning

-1

Not Used

50

Pixhawk AUXOUT1

51

Pixhawk AUXOUT2

52

Pixhawk AUXOUT3

53

Pixhawk AUXOUT4

54

Pixhawk AUXOUT5

55

Pixhawk AUXOUT6

111

PX4 FMU Relay1

112

PX4 FMU Relay2

113

PX4IO Relay1

114

PX4IO Relay2

115

PX4IO ACC1

116

PX4IO ACC2

RNGFND2_RMETRIC: Ratiometric

This parameter sets whether an analog rangefinder is ratiometric. Most analog rangefinders are ratiometric, meaning that their output voltage is influenced by the supply voltage. Some analog rangefinders (such as the SF/02) have their own internal voltage regulators so they are not ratiometric.

Values

Value

Meaning

0

No

1

Yes

RNGFND2_PWRRNG: Powersave range

This parameter sets the estimated terrain distance in meters above which the sensor will be put into a power saving mode (if available). A value of zero means power saving is not enabled

Range

Units

0 - 32767

meters

RNGFND2_GNDCLEAR: Distance (in cm) from the range finder to the ground

This parameter sets the expected range measurement(in cm) that the range finder should return when the vehicle is on the ground.

Increment

Range

Units

1

5 - 127

centimeters

RNGFND2_ADDR: Bus address of sensor

This sets the bus address of the sensor, where applicable. Used for the I2C and UAVCAN sensors to allow for multiple sensors on different addresses.

Increment

Range

1

0 - 127

RNGFND2_POS_X: X position offset

Note: This parameter is for advanced users

X position of the rangefinder in body frame. Positive X is forward of the origin. Use the zero range datum point if supplied.

Increment

Range

Units

0.01

-5 - 5

meters

RNGFND2_POS_Y: Y position offset

Note: This parameter is for advanced users

Y position of the rangefinder in body frame. Positive Y is to the right of the origin. Use the zero range datum point if supplied.

Increment

Range

Units

0.01

-5 - 5

meters

RNGFND2_POS_Z: Z position offset

Note: This parameter is for advanced users

Z position of the rangefinder in body frame. Positive Z is down from the origin. Use the zero range datum point if supplied.

Increment

Range

Units

0.01

-5 - 5

meters

RNGFND2_ORIENT: Rangefinder orientation

Note: This parameter is for advanced users

Orientation of rangefinder

Values

Value

Meaning

0

Forward

1

Forward-Right

2

Right

3

Back-Right

4

Back

5

Back-Left

6

Left

7

Forward-Left

24

Up

25

Down

RNGFND2_WSP_MAVG: Moving Average Range

Note: This parameter is for advanced users

Sets the number of historic range results to use for calculating the current range result. When MAVG is greater than 1, the current range result will be the current measured value averaged with the N-1 previous results

Range

0 - 255

RNGFND2_WSP_MEDF: Moving Median Filter

Note: This parameter is for advanced users

Sets the window size for the real-time median filter. When MEDF is greater than 0 the median filter is active

Range

0 - 255

RNGFND2_WSP_FRQ: Frequency

Note: This parameter is for advanced users

Sets the repetition frequency of the ranging operation in Hertz. Upon entering the desired frequency the system will calculate the nearest frequency that it can handle according to the resolution of internal timers.

Range

0 - 10000

RNGFND2_WSP_AVG: Multi-pulse averages

Note: This parameter is for advanced users

Sets the number of pulses to be used in multi-pulse averaging mode. In this mode, a sequence of rapid fire ranges are taken and then averaged to improve the accuracy of the measurement

Range

0 - 255

RNGFND2_WSP_THR: Sensitivity threshold

Note: This parameter is for advanced users

Sets the system sensitivity. Larger values of THR represent higher sensitivity. The system may limit the maximum value of THR to prevent excessive false alarm rates based on settings made at the factory. Set to -1 for automatic threshold adjustments

Range

-1 - 255

RNGFND2_WSP_BAUD: Baud rate

Note: This parameter is for advanced users

Desired baud rate

Values

Value

Meaning

0

Low Speed

1

High Speed

RNGFND2_RECV_ID: CAN receive ID

Note: This parameter is for advanced users

The receive ID of the CAN frames. A value of zero means all IDs are accepted.

Range

0 - 65535

RNGFND2_SNR_MIN: Minimum signal strength

Note: This parameter is for advanced users

Minimum signal strength (SNR) to accept distance

Range

0 - 65535

RNGFND3_ Parameters

RNGFND3_TYPE: Rangefinder type

What type of rangefinder device that is connected

Values

Value

Meaning

0

None

1

Analog

2

MaxbotixI2C

3

LidarLite-I2C

5

PWM

6

BBB-PRU

7

LightWareI2C

8

LightWareSerial

9

Bebop

10

MAVLink

11

uLanding

12

LeddarOne

13

MaxbotixSerial

14

TeraRangerI2C

15

LidarLiteV3-I2C

16

VL53L0X or VL53L1X

17

NMEA

18

WASP-LRF

19

BenewakeTF02

20

Benewake-Serial

21

LidarLightV3HP

22

PWM

23

BlueRoboticsPing

24

UAVCAN

25

BenewakeTFminiPlus-I2C

26

LanbaoPSK-CM8JL65-CC5

27

BenewakeTF03

28

VL53L1X-ShortRange

29

LeddarVu8-Serial

30

HC-SR04

31

GYUS42v2

32

MSP

33

USD1_CAN

34

Benewake_CAN

100

SITL

RNGFND3_PIN: Rangefinder pin

Analog or PWM input pin that rangefinder is connected to. Airspeed ports can be used for Analog input, AUXOUT can be used for PWM input

Values

Value

Meaning

-1

Not Used

11

PX4-airspeed port

15

Pixhawk-airspeed port

50

Pixhawk AUXOUT1

51

Pixhawk AUXOUT2

52

Pixhawk AUXOUT3

53

Pixhawk AUXOUT4

54

Pixhawk AUXOUT5

55

Pixhawk AUXOUT6

RNGFND3_SCALING: Rangefinder scaling

Scaling factor between rangefinder reading and distance. For the linear and inverted functions this is in meters per volt. For the hyperbolic function the units are meterVolts.

Increment

Units

0.001

meters per volt

RNGFND3_OFFSET: rangefinder offset

Offset in volts for zero distance for analog rangefinders. Offset added to distance in centimeters for PWM lidars

Increment

Units

0.001

volt

RNGFND3_FUNCTION: Rangefinder function

Control over what function is used to calculate distance. For a linear function, the distance is (voltage-offset)*scaling. For a inverted function the distance is (offset-voltage)*scaling. For a hyperbolic function the distance is scaling/(voltage-offset). The functions return the distance in meters.

Values

Value

Meaning

0

Linear

1

Inverted

2

Hyperbolic

RNGFND3_MIN_CM: Rangefinder minimum distance

Minimum distance in centimeters that rangefinder can reliably read

Increment

Units

1

centimeters

RNGFND3_MAX_CM: Rangefinder maximum distance

Maximum distance in centimeters that rangefinder can reliably read

Increment

Units

1

centimeters

RNGFND3_STOP_PIN: Rangefinder stop pin

Digital pin that enables/disables rangefinder measurement for the pwm rangefinder. A value of -1 means no pin. If this is set, then the pin is set to 1 to enable the rangefinder and set to 0 to disable it. This is used to enable powersaving when out of range.

Values

Value

Meaning

-1

Not Used

50

Pixhawk AUXOUT1

51

Pixhawk AUXOUT2

52

Pixhawk AUXOUT3

53

Pixhawk AUXOUT4

54

Pixhawk AUXOUT5

55

Pixhawk AUXOUT6

111

PX4 FMU Relay1

112

PX4 FMU Relay2

113

PX4IO Relay1

114

PX4IO Relay2

115

PX4IO ACC1

116

PX4IO ACC2

RNGFND3_RMETRIC: Ratiometric

This parameter sets whether an analog rangefinder is ratiometric. Most analog rangefinders are ratiometric, meaning that their output voltage is influenced by the supply voltage. Some analog rangefinders (such as the SF/02) have their own internal voltage regulators so they are not ratiometric.

Values

Value

Meaning

0

No

1

Yes

RNGFND3_PWRRNG: Powersave range

This parameter sets the estimated terrain distance in meters above which the sensor will be put into a power saving mode (if available). A value of zero means power saving is not enabled

Range

Units

0 - 32767

meters

RNGFND3_GNDCLEAR: Distance (in cm) from the range finder to the ground

This parameter sets the expected range measurement(in cm) that the range finder should return when the vehicle is on the ground.

Increment

Range

Units

1

5 - 127

centimeters

RNGFND3_ADDR: Bus address of sensor

This sets the bus address of the sensor, where applicable. Used for the I2C and UAVCAN sensors to allow for multiple sensors on different addresses.

Increment

Range

1

0 - 127

RNGFND3_POS_X: X position offset

Note: This parameter is for advanced users

X position of the rangefinder in body frame. Positive X is forward of the origin. Use the zero range datum point if supplied.

Increment

Range

Units

0.01

-5 - 5

meters

RNGFND3_POS_Y: Y position offset

Note: This parameter is for advanced users

Y position of the rangefinder in body frame. Positive Y is to the right of the origin. Use the zero range datum point if supplied.

Increment

Range

Units

0.01

-5 - 5

meters

RNGFND3_POS_Z: Z position offset

Note: This parameter is for advanced users

Z position of the rangefinder in body frame. Positive Z is down from the origin. Use the zero range datum point if supplied.

Increment

Range

Units

0.01

-5 - 5

meters

RNGFND3_ORIENT: Rangefinder orientation

Note: This parameter is for advanced users

Orientation of rangefinder

Values

Value

Meaning

0

Forward

1

Forward-Right

2

Right

3

Back-Right

4

Back

5

Back-Left

6

Left

7

Forward-Left

24

Up

25

Down

RNGFND3_WSP_MAVG: Moving Average Range

Note: This parameter is for advanced users

Sets the number of historic range results to use for calculating the current range result. When MAVG is greater than 1, the current range result will be the current measured value averaged with the N-1 previous results

Range

0 - 255

RNGFND3_WSP_MEDF: Moving Median Filter

Note: This parameter is for advanced users

Sets the window size for the real-time median filter. When MEDF is greater than 0 the median filter is active

Range

0 - 255

RNGFND3_WSP_FRQ: Frequency

Note: This parameter is for advanced users

Sets the repetition frequency of the ranging operation in Hertz. Upon entering the desired frequency the system will calculate the nearest frequency that it can handle according to the resolution of internal timers.

Range

0 - 10000

RNGFND3_WSP_AVG: Multi-pulse averages

Note: This parameter is for advanced users

Sets the number of pulses to be used in multi-pulse averaging mode. In this mode, a sequence of rapid fire ranges are taken and then averaged to improve the accuracy of the measurement

Range

0 - 255

RNGFND3_WSP_THR: Sensitivity threshold

Note: This parameter is for advanced users

Sets the system sensitivity. Larger values of THR represent higher sensitivity. The system may limit the maximum value of THR to prevent excessive false alarm rates based on settings made at the factory. Set to -1 for automatic threshold adjustments

Range

-1 - 255

RNGFND3_WSP_BAUD: Baud rate

Note: This parameter is for advanced users

Desired baud rate

Values

Value

Meaning

0

Low Speed

1

High Speed

RNGFND3_RECV_ID: CAN receive ID

Note: This parameter is for advanced users

The receive ID of the CAN frames. A value of zero means all IDs are accepted.

Range

0 - 65535

RNGFND3_SNR_MIN: Minimum signal strength

Note: This parameter is for advanced users

Minimum signal strength (SNR) to accept distance

Range

0 - 65535

RNGFND4_ Parameters

RNGFND4_TYPE: Rangefinder type

What type of rangefinder device that is connected

Values

Value

Meaning

0

None

1

Analog

2

MaxbotixI2C

3

LidarLite-I2C

5

PWM

6

BBB-PRU

7

LightWareI2C

8

LightWareSerial

9

Bebop

10

MAVLink

11

uLanding

12

LeddarOne

13

MaxbotixSerial

14

TeraRangerI2C

15

LidarLiteV3-I2C

16

VL53L0X or VL53L1X

17

NMEA

18

WASP-LRF

19

BenewakeTF02

20

Benewake-Serial

21

LidarLightV3HP

22

PWM

23

BlueRoboticsPing

24

UAVCAN

25

BenewakeTFminiPlus-I2C

26

LanbaoPSK-CM8JL65-CC5

27

BenewakeTF03

28

VL53L1X-ShortRange

29

LeddarVu8-Serial

30

HC-SR04

31

GYUS42v2

32

MSP

33

USD1_CAN

34

Benewake_CAN

100

SITL

RNGFND4_PIN: Rangefinder pin

Analog or PWM input pin that rangefinder is connected to. Airspeed ports can be used for Analog input, AUXOUT can be used for PWM input

Values

Value

Meaning

-1

Not Used

11

PX4-airspeed port

15

Pixhawk-airspeed port

50

Pixhawk AUXOUT1

51

Pixhawk AUXOUT2

52

Pixhawk AUXOUT3

53

Pixhawk AUXOUT4

54

Pixhawk AUXOUT5

55

Pixhawk AUXOUT6

RNGFND4_SCALING: Rangefinder scaling

Scaling factor between rangefinder reading and distance. For the linear and inverted functions this is in meters per volt. For the hyperbolic function the units are meterVolts.

Increment

Units

0.001

meters per volt

RNGFND4_OFFSET: rangefinder offset

Offset in volts for zero distance for analog rangefinders. Offset added to distance in centimeters for PWM lidars

Increment

Units

0.001

volt

RNGFND4_FUNCTION: Rangefinder function

Control over what function is used to calculate distance. For a linear function, the distance is (voltage-offset)*scaling. For a inverted function the distance is (offset-voltage)*scaling. For a hyperbolic function the distance is scaling/(voltage-offset). The functions return the distance in meters.

Values

Value

Meaning

0

Linear

1

Inverted

2

Hyperbolic

RNGFND4_MIN_CM: Rangefinder minimum distance

Minimum distance in centimeters that rangefinder can reliably read

Increment

Units

1

centimeters

RNGFND4_MAX_CM: Rangefinder maximum distance

Maximum distance in centimeters that rangefinder can reliably read

Increment

Units

1

centimeters

RNGFND4_STOP_PIN: Rangefinder stop pin

Digital pin that enables/disables rangefinder measurement for the pwm rangefinder. A value of -1 means no pin. If this is set, then the pin is set to 1 to enable the rangefinder and set to 0 to disable it. This is used to enable powersaving when out of range.

Values

Value

Meaning

-1

Not Used

50

Pixhawk AUXOUT1

51

Pixhawk AUXOUT2

52

Pixhawk AUXOUT3

53

Pixhawk AUXOUT4

54

Pixhawk AUXOUT5

55

Pixhawk AUXOUT6

111

PX4 FMU Relay1

112

PX4 FMU Relay2

113

PX4IO Relay1

114

PX4IO Relay2

115

PX4IO ACC1

116

PX4IO ACC2

RNGFND4_RMETRIC: Ratiometric

This parameter sets whether an analog rangefinder is ratiometric. Most analog rangefinders are ratiometric, meaning that their output voltage is influenced by the supply voltage. Some analog rangefinders (such as the SF/02) have their own internal voltage regulators so they are not ratiometric.

Values

Value

Meaning

0

No

1

Yes

RNGFND4_PWRRNG: Powersave range

This parameter sets the estimated terrain distance in meters above which the sensor will be put into a power saving mode (if available). A value of zero means power saving is not enabled

Range

Units

0 - 32767

meters

RNGFND4_GNDCLEAR: Distance (in cm) from the range finder to the ground

This parameter sets the expected range measurement(in cm) that the range finder should return when the vehicle is on the ground.

Increment

Range

Units

1

5 - 127

centimeters

RNGFND4_ADDR: Bus address of sensor

This sets the bus address of the sensor, where applicable. Used for the I2C and UAVCAN sensors to allow for multiple sensors on different addresses.

Increment

Range

1

0 - 127

RNGFND4_POS_X: X position offset

Note: This parameter is for advanced users

X position of the rangefinder in body frame. Positive X is forward of the origin. Use the zero range datum point if supplied.

Increment

Range

Units

0.01

-5 - 5

meters

RNGFND4_POS_Y: Y position offset

Note: This parameter is for advanced users

Y position of the rangefinder in body frame. Positive Y is to the right of the origin. Use the zero range datum point if supplied.

Increment

Range

Units

0.01

-5 - 5

meters

RNGFND4_POS_Z: Z position offset

Note: This parameter is for advanced users

Z position of the rangefinder in body frame. Positive Z is down from the origin. Use the zero range datum point if supplied.

Increment

Range

Units

0.01

-5 - 5

meters

RNGFND4_ORIENT: Rangefinder orientation

Note: This parameter is for advanced users

Orientation of rangefinder

Values

Value

Meaning

0

Forward

1

Forward-Right

2

Right

3

Back-Right

4

Back

5

Back-Left

6

Left

7

Forward-Left

24

Up

25

Down

RNGFND4_WSP_MAVG: Moving Average Range

Note: This parameter is for advanced users

Sets the number of historic range results to use for calculating the current range result. When MAVG is greater than 1, the current range result will be the current measured value averaged with the N-1 previous results

Range

0 - 255

RNGFND4_WSP_MEDF: Moving Median Filter

Note: This parameter is for advanced users

Sets the window size for the real-time median filter. When MEDF is greater than 0 the median filter is active

Range

0 - 255

RNGFND4_WSP_FRQ: Frequency

Note: This parameter is for advanced users

Sets the repetition frequency of the ranging operation in Hertz. Upon entering the desired frequency the system will calculate the nearest frequency that it can handle according to the resolution of internal timers.

Range

0 - 10000

RNGFND4_WSP_AVG: Multi-pulse averages

Note: This parameter is for advanced users

Sets the number of pulses to be used in multi-pulse averaging mode. In this mode, a sequence of rapid fire ranges are taken and then averaged to improve the accuracy of the measurement

Range

0 - 255

RNGFND4_WSP_THR: Sensitivity threshold

Note: This parameter is for advanced users

Sets the system sensitivity. Larger values of THR represent higher sensitivity. The system may limit the maximum value of THR to prevent excessive false alarm rates based on settings made at the factory. Set to -1 for automatic threshold adjustments

Range

-1 - 255

RNGFND4_WSP_BAUD: Baud rate

Note: This parameter is for advanced users

Desired baud rate

Values

Value

Meaning

0

Low Speed

1

High Speed

RNGFND4_RECV_ID: CAN receive ID

Note: This parameter is for advanced users

The receive ID of the CAN frames. A value of zero means all IDs are accepted.

Range

0 - 65535

RNGFND4_SNR_MIN: Minimum signal strength

Note: This parameter is for advanced users

Minimum signal strength (SNR) to accept distance

Range

0 - 65535

RNGFND5_ Parameters

RNGFND5_TYPE: Rangefinder type

What type of rangefinder device that is connected

Values

Value

Meaning

0

None

1

Analog

2

MaxbotixI2C

3

LidarLite-I2C

5

PWM

6

BBB-PRU

7

LightWareI2C

8

LightWareSerial

9

Bebop

10

MAVLink

11

uLanding

12

LeddarOne

13

MaxbotixSerial

14

TeraRangerI2C

15

LidarLiteV3-I2C

16

VL53L0X or VL53L1X

17

NMEA

18

WASP-LRF

19

BenewakeTF02

20

Benewake-Serial

21

LidarLightV3HP

22

PWM

23

BlueRoboticsPing

24

UAVCAN

25

BenewakeTFminiPlus-I2C

26

LanbaoPSK-CM8JL65-CC5

27

BenewakeTF03

28

VL53L1X-ShortRange

29

LeddarVu8-Serial

30

HC-SR04

31

GYUS42v2

32

MSP

33

USD1_CAN

34

Benewake_CAN

100

SITL

RNGFND5_PIN: Rangefinder pin

Analog or PWM input pin that rangefinder is connected to. Airspeed ports can be used for Analog input, AUXOUT can be used for PWM input

Values

Value

Meaning

-1

Not Used

11

PX4-airspeed port

15

Pixhawk-airspeed port

50

Pixhawk AUXOUT1

51

Pixhawk AUXOUT2

52

Pixhawk AUXOUT3

53

Pixhawk AUXOUT4

54

Pixhawk AUXOUT5

55

Pixhawk AUXOUT6

RNGFND5_SCALING: Rangefinder scaling

Scaling factor between rangefinder reading and distance. For the linear and inverted functions this is in meters per volt. For the hyperbolic function the units are meterVolts.

Increment

Units

0.001

meters per volt

RNGFND5_OFFSET: rangefinder offset

Offset in volts for zero distance for analog rangefinders. Offset added to distance in centimeters for PWM lidars

Increment

Units

0.001

volt

RNGFND5_FUNCTION: Rangefinder function

Control over what function is used to calculate distance. For a linear function, the distance is (voltage-offset)*scaling. For a inverted function the distance is (offset-voltage)*scaling. For a hyperbolic function the distance is scaling/(voltage-offset). The functions return the distance in meters.

Values

Value

Meaning

0

Linear

1

Inverted

2

Hyperbolic

RNGFND5_MIN_CM: Rangefinder minimum distance

Minimum distance in centimeters that rangefinder can reliably read

Increment

Units

1

centimeters

RNGFND5_MAX_CM: Rangefinder maximum distance

Maximum distance in centimeters that rangefinder can reliably read

Increment

Units

1

centimeters

RNGFND5_STOP_PIN: Rangefinder stop pin

Digital pin that enables/disables rangefinder measurement for the pwm rangefinder. A value of -1 means no pin. If this is set, then the pin is set to 1 to enable the rangefinder and set to 0 to disable it. This is used to enable powersaving when out of range.

Values

Value

Meaning

-1

Not Used

50

Pixhawk AUXOUT1

51

Pixhawk AUXOUT2

52

Pixhawk AUXOUT3

53

Pixhawk AUXOUT4

54

Pixhawk AUXOUT5

55

Pixhawk AUXOUT6

111

PX4 FMU Relay1

112

PX4 FMU Relay2

113

PX4IO Relay1

114

PX4IO Relay2

115

PX4IO ACC1

116

PX4IO ACC2

RNGFND5_RMETRIC: Ratiometric

This parameter sets whether an analog rangefinder is ratiometric. Most analog rangefinders are ratiometric, meaning that their output voltage is influenced by the supply voltage. Some analog rangefinders (such as the SF/02) have their own internal voltage regulators so they are not ratiometric.

Values

Value

Meaning

0

No

1

Yes

RNGFND5_PWRRNG: Powersave range

This parameter sets the estimated terrain distance in meters above which the sensor will be put into a power saving mode (if available). A value of zero means power saving is not enabled

Range

Units

0 - 32767

meters

RNGFND5_GNDCLEAR: Distance (in cm) from the range finder to the ground

This parameter sets the expected range measurement(in cm) that the range finder should return when the vehicle is on the ground.

Increment

Range

Units

1

5 - 127

centimeters

RNGFND5_ADDR: Bus address of sensor

This sets the bus address of the sensor, where applicable. Used for the I2C and UAVCAN sensors to allow for multiple sensors on different addresses.

Increment

Range

1

0 - 127

RNGFND5_POS_X: X position offset

Note: This parameter is for advanced users

X position of the rangefinder in body frame. Positive X is forward of the origin. Use the zero range datum point if supplied.

Increment

Range

Units

0.01

-5 - 5

meters

RNGFND5_POS_Y: Y position offset

Note: This parameter is for advanced users

Y position of the rangefinder in body frame. Positive Y is to the right of the origin. Use the zero range datum point if supplied.

Increment

Range

Units

0.01

-5 - 5

meters

RNGFND5_POS_Z: Z position offset

Note: This parameter is for advanced users

Z position of the rangefinder in body frame. Positive Z is down from the origin. Use the zero range datum point if supplied.

Increment

Range

Units

0.01

-5 - 5

meters

RNGFND5_ORIENT: Rangefinder orientation

Note: This parameter is for advanced users

Orientation of rangefinder

Values

Value

Meaning

0

Forward

1

Forward-Right

2

Right

3

Back-Right

4

Back

5

Back-Left

6

Left

7

Forward-Left

24

Up

25

Down

RNGFND5_WSP_MAVG: Moving Average Range

Note: This parameter is for advanced users

Sets the number of historic range results to use for calculating the current range result. When MAVG is greater than 1, the current range result will be the current measured value averaged with the N-1 previous results

Range

0 - 255

RNGFND5_WSP_MEDF: Moving Median Filter

Note: This parameter is for advanced users

Sets the window size for the real-time median filter. When MEDF is greater than 0 the median filter is active

Range

0 - 255

RNGFND5_WSP_FRQ: Frequency

Note: This parameter is for advanced users

Sets the repetition frequency of the ranging operation in Hertz. Upon entering the desired frequency the system will calculate the nearest frequency that it can handle according to the resolution of internal timers.

Range

0 - 10000

RNGFND5_WSP_AVG: Multi-pulse averages

Note: This parameter is for advanced users

Sets the number of pulses to be used in multi-pulse averaging mode. In this mode, a sequence of rapid fire ranges are taken and then averaged to improve the accuracy of the measurement

Range

0 - 255

RNGFND5_WSP_THR: Sensitivity threshold

Note: This parameter is for advanced users

Sets the system sensitivity. Larger values of THR represent higher sensitivity. The system may limit the maximum value of THR to prevent excessive false alarm rates based on settings made at the factory. Set to -1 for automatic threshold adjustments

Range

-1 - 255

RNGFND5_WSP_BAUD: Baud rate

Note: This parameter is for advanced users

Desired baud rate

Values

Value

Meaning

0

Low Speed

1

High Speed

RNGFND5_RECV_ID: CAN receive ID

Note: This parameter is for advanced users

The receive ID of the CAN frames. A value of zero means all IDs are accepted.

Range

0 - 65535

RNGFND5_SNR_MIN: Minimum signal strength

Note: This parameter is for advanced users

Minimum signal strength (SNR) to accept distance

Range

0 - 65535

RNGFND6_ Parameters

RNGFND6_TYPE: Rangefinder type

What type of rangefinder device that is connected

Values

Value

Meaning

0

None

1

Analog

2

MaxbotixI2C

3

LidarLite-I2C

5

PWM

6

BBB-PRU

7

LightWareI2C

8

LightWareSerial

9

Bebop

10

MAVLink

11

uLanding

12

LeddarOne

13

MaxbotixSerial

14

TeraRangerI2C

15

LidarLiteV3-I2C

16

VL53L0X or VL53L1X

17

NMEA

18

WASP-LRF

19

BenewakeTF02

20

Benewake-Serial

21

LidarLightV3HP

22

PWM

23

BlueRoboticsPing

24

UAVCAN

25

BenewakeTFminiPlus-I2C

26

LanbaoPSK-CM8JL65-CC5

27

BenewakeTF03

28

VL53L1X-ShortRange

29

LeddarVu8-Serial

30

HC-SR04

31

GYUS42v2

32

MSP

33

USD1_CAN

34

Benewake_CAN

100

SITL

RNGFND6_PIN: Rangefinder pin

Analog or PWM input pin that rangefinder is connected to. Airspeed ports can be used for Analog input, AUXOUT can be used for PWM input

Values

Value

Meaning

-1

Not Used

11

PX4-airspeed port

15

Pixhawk-airspeed port

50

Pixhawk AUXOUT1

51

Pixhawk AUXOUT2

52

Pixhawk AUXOUT3

53

Pixhawk AUXOUT4

54

Pixhawk AUXOUT5

55

Pixhawk AUXOUT6

RNGFND6_SCALING: Rangefinder scaling

Scaling factor between rangefinder reading and distance. For the linear and inverted functions this is in meters per volt. For the hyperbolic function the units are meterVolts.

Increment

Units

0.001

meters per volt

RNGFND6_OFFSET: rangefinder offset

Offset in volts for zero distance for analog rangefinders. Offset added to distance in centimeters for PWM lidars

Increment

Units

0.001

volt

RNGFND6_FUNCTION: Rangefinder function

Control over what function is used to calculate distance. For a linear function, the distance is (voltage-offset)*scaling. For a inverted function the distance is (offset-voltage)*scaling. For a hyperbolic function the distance is scaling/(voltage-offset). The functions return the distance in meters.

Values

Value

Meaning

0

Linear

1

Inverted

2

Hyperbolic

RNGFND6_MIN_CM: Rangefinder minimum distance

Minimum distance in centimeters that rangefinder can reliably read

Increment

Units

1

centimeters

RNGFND6_MAX_CM: Rangefinder maximum distance

Maximum distance in centimeters that rangefinder can reliably read

Increment

Units

1

centimeters

RNGFND6_STOP_PIN: Rangefinder stop pin

Digital pin that enables/disables rangefinder measurement for the pwm rangefinder. A value of -1 means no pin. If this is set, then the pin is set to 1 to enable the rangefinder and set to 0 to disable it. This is used to enable powersaving when out of range.

Values

Value

Meaning

-1

Not Used

50

Pixhawk AUXOUT1

51

Pixhawk AUXOUT2

52

Pixhawk AUXOUT3

53

Pixhawk AUXOUT4

54

Pixhawk AUXOUT5

55

Pixhawk AUXOUT6

111

PX4 FMU Relay1

112

PX4 FMU Relay2

113

PX4IO Relay1

114

PX4IO Relay2

115

PX4IO ACC1

116

PX4IO ACC2

RNGFND6_RMETRIC: Ratiometric

This parameter sets whether an analog rangefinder is ratiometric. Most analog rangefinders are ratiometric, meaning that their output voltage is influenced by the supply voltage. Some analog rangefinders (such as the SF/02) have their own internal voltage regulators so they are not ratiometric.

Values

Value

Meaning

0

No

1

Yes

RNGFND6_PWRRNG: Powersave range

This parameter sets the estimated terrain distance in meters above which the sensor will be put into a power saving mode (if available). A value of zero means power saving is not enabled

Range

Units

0 - 32767

meters

RNGFND6_GNDCLEAR: Distance (in cm) from the range finder to the ground

This parameter sets the expected range measurement(in cm) that the range finder should return when the vehicle is on the ground.

Increment

Range

Units

1

5 - 127

centimeters

RNGFND6_ADDR: Bus address of sensor

This sets the bus address of the sensor, where applicable. Used for the I2C and UAVCAN sensors to allow for multiple sensors on different addresses.

Increment

Range

1

0 - 127

RNGFND6_POS_X: X position offset

Note: This parameter is for advanced users

X position of the rangefinder in body frame. Positive X is forward of the origin. Use the zero range datum point if supplied.

Increment

Range

Units

0.01

-5 - 5

meters

RNGFND6_POS_Y: Y position offset

Note: This parameter is for advanced users

Y position of the rangefinder in body frame. Positive Y is to the right of the origin. Use the zero range datum point if supplied.

Increment

Range

Units

0.01

-5 - 5

meters

RNGFND6_POS_Z: Z position offset

Note: This parameter is for advanced users

Z position of the rangefinder in body frame. Positive Z is down from the origin. Use the zero range datum point if supplied.

Increment

Range

Units

0.01

-5 - 5

meters

RNGFND6_ORIENT: Rangefinder orientation

Note: This parameter is for advanced users

Orientation of rangefinder

Values

Value

Meaning

0

Forward

1

Forward-Right

2

Right

3

Back-Right

4

Back

5

Back-Left

6

Left

7

Forward-Left

24

Up

25

Down

RNGFND6_WSP_MAVG: Moving Average Range

Note: This parameter is for advanced users

Sets the number of historic range results to use for calculating the current range result. When MAVG is greater than 1, the current range result will be the current measured value averaged with the N-1 previous results

Range

0 - 255

RNGFND6_WSP_MEDF: Moving Median Filter

Note: This parameter is for advanced users

Sets the window size for the real-time median filter. When MEDF is greater than 0 the median filter is active

Range

0 - 255

RNGFND6_WSP_FRQ: Frequency

Note: This parameter is for advanced users

Sets the repetition frequency of the ranging operation in Hertz. Upon entering the desired frequency the system will calculate the nearest frequency that it can handle according to the resolution of internal timers.

Range

0 - 10000

RNGFND6_WSP_AVG: Multi-pulse averages

Note: This parameter is for advanced users

Sets the number of pulses to be used in multi-pulse averaging mode. In this mode, a sequence of rapid fire ranges are taken and then averaged to improve the accuracy of the measurement

Range

0 - 255

RNGFND6_WSP_THR: Sensitivity threshold

Note: This parameter is for advanced users

Sets the system sensitivity. Larger values of THR represent higher sensitivity. The system may limit the maximum value of THR to prevent excessive false alarm rates based on settings made at the factory. Set to -1 for automatic threshold adjustments

Range

-1 - 255

RNGFND6_WSP_BAUD: Baud rate

Note: This parameter is for advanced users

Desired baud rate

Values

Value

Meaning

0

Low Speed

1

High Speed

RNGFND6_RECV_ID: CAN receive ID

Note: This parameter is for advanced users

The receive ID of the CAN frames. A value of zero means all IDs are accepted.

Range

0 - 65535

RNGFND6_SNR_MIN: Minimum signal strength

Note: This parameter is for advanced users

Minimum signal strength (SNR) to accept distance

Range

0 - 65535

RNGFND7_ Parameters

RNGFND7_TYPE: Rangefinder type

What type of rangefinder device that is connected

Values

Value

Meaning

0

None

1

Analog

2

MaxbotixI2C

3

LidarLite-I2C

5

PWM

6

BBB-PRU

7

LightWareI2C

8

LightWareSerial

9

Bebop

10

MAVLink

11

uLanding

12

LeddarOne

13

MaxbotixSerial

14

TeraRangerI2C

15

LidarLiteV3-I2C

16

VL53L0X or VL53L1X

17

NMEA

18

WASP-LRF

19

BenewakeTF02

20

Benewake-Serial

21

LidarLightV3HP

22

PWM

23

BlueRoboticsPing

24

UAVCAN

25

BenewakeTFminiPlus-I2C

26

LanbaoPSK-CM8JL65-CC5

27

BenewakeTF03

28

VL53L1X-ShortRange

29

LeddarVu8-Serial

30

HC-SR04

31

GYUS42v2

32

MSP

33

USD1_CAN

34

Benewake_CAN

100

SITL

RNGFND7_PIN: Rangefinder pin

Analog or PWM input pin that rangefinder is connected to. Airspeed ports can be used for Analog input, AUXOUT can be used for PWM input

Values

Value

Meaning

-1

Not Used

11

PX4-airspeed port

15

Pixhawk-airspeed port

50

Pixhawk AUXOUT1

51

Pixhawk AUXOUT2

52

Pixhawk AUXOUT3

53

Pixhawk AUXOUT4

54

Pixhawk AUXOUT5

55

Pixhawk AUXOUT6

RNGFND7_SCALING: Rangefinder scaling

Scaling factor between rangefinder reading and distance. For the linear and inverted functions this is in meters per volt. For the hyperbolic function the units are meterVolts.

Increment

Units

0.001

meters per volt

RNGFND7_OFFSET: rangefinder offset

Offset in volts for zero distance for analog rangefinders. Offset added to distance in centimeters for PWM lidars

Increment

Units

0.001

volt

RNGFND7_FUNCTION: Rangefinder function

Control over what function is used to calculate distance. For a linear function, the distance is (voltage-offset)*scaling. For a inverted function the distance is (offset-voltage)*scaling. For a hyperbolic function the distance is scaling/(voltage-offset). The functions return the distance in meters.

Values

Value

Meaning

0

Linear

1

Inverted

2

Hyperbolic

RNGFND7_MIN_CM: Rangefinder minimum distance

Minimum distance in centimeters that rangefinder can reliably read

Increment

Units

1

centimeters

RNGFND7_MAX_CM: Rangefinder maximum distance

Maximum distance in centimeters that rangefinder can reliably read

Increment

Units

1

centimeters

RNGFND7_STOP_PIN: Rangefinder stop pin

Digital pin that enables/disables rangefinder measurement for the pwm rangefinder. A value of -1 means no pin. If this is set, then the pin is set to 1 to enable the rangefinder and set to 0 to disable it. This is used to enable powersaving when out of range.

Values

Value

Meaning

-1

Not Used

50

Pixhawk AUXOUT1

51

Pixhawk AUXOUT2

52

Pixhawk AUXOUT3

53

Pixhawk AUXOUT4

54

Pixhawk AUXOUT5

55

Pixhawk AUXOUT6

111

PX4 FMU Relay1

112

PX4 FMU Relay2

113

PX4IO Relay1

114

PX4IO Relay2

115

PX4IO ACC1

116

PX4IO ACC2

RNGFND7_RMETRIC: Ratiometric

This parameter sets whether an analog rangefinder is ratiometric. Most analog rangefinders are ratiometric, meaning that their output voltage is influenced by the supply voltage. Some analog rangefinders (such as the SF/02) have their own internal voltage regulators so they are not ratiometric.

Values

Value

Meaning

0

No

1

Yes

RNGFND7_PWRRNG: Powersave range

This parameter sets the estimated terrain distance in meters above which the sensor will be put into a power saving mode (if available). A value of zero means power saving is not enabled

Range

Units

0 - 32767

meters

RNGFND7_GNDCLEAR: Distance (in cm) from the range finder to the ground

This parameter sets the expected range measurement(in cm) that the range finder should return when the vehicle is on the ground.

Increment

Range

Units

1

5 - 127

centimeters

RNGFND7_ADDR: Bus address of sensor

This sets the bus address of the sensor, where applicable. Used for the I2C and UAVCAN sensors to allow for multiple sensors on different addresses.

Increment

Range

1

0 - 127

RNGFND7_POS_X: X position offset

Note: This parameter is for advanced users

X position of the rangefinder in body frame. Positive X is forward of the origin. Use the zero range datum point if supplied.

Increment

Range

Units

0.01

-5 - 5

meters

RNGFND7_POS_Y: Y position offset

Note: This parameter is for advanced users

Y position of the rangefinder in body frame. Positive Y is to the right of the origin. Use the zero range datum point if supplied.

Increment

Range

Units

0.01

-5 - 5

meters

RNGFND7_POS_Z: Z position offset

Note: This parameter is for advanced users

Z position of the rangefinder in body frame. Positive Z is down from the origin. Use the zero range datum point if supplied.

Increment

Range

Units

0.01

-5 - 5

meters

RNGFND7_ORIENT: Rangefinder orientation

Note: This parameter is for advanced users

Orientation of rangefinder

Values

Value

Meaning

0

Forward

1

Forward-Right

2

Right

3

Back-Right

4

Back

5

Back-Left

6

Left

7

Forward-Left

24

Up

25

Down

RNGFND7_WSP_MAVG: Moving Average Range

Note: This parameter is for advanced users

Sets the number of historic range results to use for calculating the current range result. When MAVG is greater than 1, the current range result will be the current measured value averaged with the N-1 previous results

Range

0 - 255

RNGFND7_WSP_MEDF: Moving Median Filter

Note: This parameter is for advanced users

Sets the window size for the real-time median filter. When MEDF is greater than 0 the median filter is active

Range

0 - 255

RNGFND7_WSP_FRQ: Frequency

Note: This parameter is for advanced users

Sets the repetition frequency of the ranging operation in Hertz. Upon entering the desired frequency the system will calculate the nearest frequency that it can handle according to the resolution of internal timers.

Range

0 - 10000

RNGFND7_WSP_AVG: Multi-pulse averages

Note: This parameter is for advanced users

Sets the number of pulses to be used in multi-pulse averaging mode. In this mode, a sequence of rapid fire ranges are taken and then averaged to improve the accuracy of the measurement

Range

0 - 255

RNGFND7_WSP_THR: Sensitivity threshold

Note: This parameter is for advanced users

Sets the system sensitivity. Larger values of THR represent higher sensitivity. The system may limit the maximum value of THR to prevent excessive false alarm rates based on settings made at the factory. Set to -1 for automatic threshold adjustments

Range

-1 - 255

RNGFND7_WSP_BAUD: Baud rate

Note: This parameter is for advanced users

Desired baud rate

Values

Value

Meaning

0

Low Speed

1

High Speed

RNGFND7_RECV_ID: CAN receive ID

Note: This parameter is for advanced users

The receive ID of the CAN frames. A value of zero means all IDs are accepted.

Range

0 - 65535

RNGFND7_SNR_MIN: Minimum signal strength

Note: This parameter is for advanced users

Minimum signal strength (SNR) to accept distance

Range

0 - 65535

RNGFND8_ Parameters

RNGFND8_TYPE: Rangefinder type

What type of rangefinder device that is connected

Values

Value

Meaning

0

None

1

Analog

2

MaxbotixI2C

3

LidarLite-I2C

5

PWM

6

BBB-PRU

7

LightWareI2C

8

LightWareSerial

9

Bebop

10

MAVLink

11

uLanding

12

LeddarOne

13

MaxbotixSerial

14

TeraRangerI2C

15

LidarLiteV3-I2C

16

VL53L0X or VL53L1X

17

NMEA

18

WASP-LRF

19

BenewakeTF02

20

Benewake-Serial

21

LidarLightV3HP

22

PWM

23

BlueRoboticsPing

24

UAVCAN

25

BenewakeTFminiPlus-I2C

26

LanbaoPSK-CM8JL65-CC5

27

BenewakeTF03

28

VL53L1X-ShortRange

29

LeddarVu8-Serial

30

HC-SR04

31

GYUS42v2

32

MSP

33

USD1_CAN

34

Benewake_CAN

100

SITL

RNGFND8_PIN: Rangefinder pin

Analog or PWM input pin that rangefinder is connected to. Airspeed ports can be used for Analog input, AUXOUT can be used for PWM input

Values

Value

Meaning

-1

Not Used

11

PX4-airspeed port

15

Pixhawk-airspeed port

50

Pixhawk AUXOUT1

51

Pixhawk AUXOUT2

52

Pixhawk AUXOUT3

53

Pixhawk AUXOUT4

54

Pixhawk AUXOUT5

55

Pixhawk AUXOUT6

RNGFND8_SCALING: Rangefinder scaling

Scaling factor between rangefinder reading and distance. For the linear and inverted functions this is in meters per volt. For the hyperbolic function the units are meterVolts.

Increment

Units

0.001

meters per volt

RNGFND8_OFFSET: rangefinder offset

Offset in volts for zero distance for analog rangefinders. Offset added to distance in centimeters for PWM lidars

Increment

Units

0.001

volt

RNGFND8_FUNCTION: Rangefinder function

Control over what function is used to calculate distance. For a linear function, the distance is (voltage-offset)*scaling. For a inverted function the distance is (offset-voltage)*scaling. For a hyperbolic function the distance is scaling/(voltage-offset). The functions return the distance in meters.

Values

Value

Meaning

0

Linear

1

Inverted

2

Hyperbolic

RNGFND8_MIN_CM: Rangefinder minimum distance

Minimum distance in centimeters that rangefinder can reliably read

Increment

Units

1

centimeters

RNGFND8_MAX_CM: Rangefinder maximum distance

Maximum distance in centimeters that rangefinder can reliably read

Increment

Units

1

centimeters

RNGFND8_STOP_PIN: Rangefinder stop pin

Digital pin that enables/disables rangefinder measurement for the pwm rangefinder. A value of -1 means no pin. If this is set, then the pin is set to 1 to enable the rangefinder and set to 0 to disable it. This is used to enable powersaving when out of range.

Values

Value

Meaning

-1

Not Used

50

Pixhawk AUXOUT1

51

Pixhawk AUXOUT2

52

Pixhawk AUXOUT3

53

Pixhawk AUXOUT4

54

Pixhawk AUXOUT5

55

Pixhawk AUXOUT6

111

PX4 FMU Relay1

112

PX4 FMU Relay2

113

PX4IO Relay1

114

PX4IO Relay2

115

PX4IO ACC1

116

PX4IO ACC2

RNGFND8_RMETRIC: Ratiometric

This parameter sets whether an analog rangefinder is ratiometric. Most analog rangefinders are ratiometric, meaning that their output voltage is influenced by the supply voltage. Some analog rangefinders (such as the SF/02) have their own internal voltage regulators so they are not ratiometric.

Values

Value

Meaning

0

No

1

Yes

RNGFND8_PWRRNG: Powersave range

This parameter sets the estimated terrain distance in meters above which the sensor will be put into a power saving mode (if available). A value of zero means power saving is not enabled

Range

Units

0 - 32767

meters

RNGFND8_GNDCLEAR: Distance (in cm) from the range finder to the ground

This parameter sets the expected range measurement(in cm) that the range finder should return when the vehicle is on the ground.

Increment

Range

Units

1

5 - 127

centimeters

RNGFND8_ADDR: Bus address of sensor

This sets the bus address of the sensor, where applicable. Used for the I2C and UAVCAN sensors to allow for multiple sensors on different addresses.

Increment

Range

1

0 - 127

RNGFND8_POS_X: X position offset

Note: This parameter is for advanced users

X position of the rangefinder in body frame. Positive X is forward of the origin. Use the zero range datum point if supplied.

Increment

Range

Units

0.01

-5 - 5

meters

RNGFND8_POS_Y: Y position offset

Note: This parameter is for advanced users

Y position of the rangefinder in body frame. Positive Y is to the right of the origin. Use the zero range datum point if supplied.

Increment

Range

Units

0.01

-5 - 5

meters

RNGFND8_POS_Z: Z position offset

Note: This parameter is for advanced users

Z position of the rangefinder in body frame. Positive Z is down from the origin. Use the zero range datum point if supplied.

Increment

Range

Units

0.01

-5 - 5

meters

RNGFND8_ORIENT: Rangefinder orientation

Note: This parameter is for advanced users

Orientation of rangefinder

Values

Value

Meaning

0

Forward

1

Forward-Right

2

Right

3

Back-Right

4

Back

5

Back-Left

6

Left

7

Forward-Left

24

Up

25

Down

RNGFND8_WSP_MAVG: Moving Average Range

Note: This parameter is for advanced users

Sets the number of historic range results to use for calculating the current range result. When MAVG is greater than 1, the current range result will be the current measured value averaged with the N-1 previous results

Range

0 - 255

RNGFND8_WSP_MEDF: Moving Median Filter

Note: This parameter is for advanced users

Sets the window size for the real-time median filter. When MEDF is greater than 0 the median filter is active

Range

0 - 255

RNGFND8_WSP_FRQ: Frequency

Note: This parameter is for advanced users

Sets the repetition frequency of the ranging operation in Hertz. Upon entering the desired frequency the system will calculate the nearest frequency that it can handle according to the resolution of internal timers.

Range

0 - 10000

RNGFND8_WSP_AVG: Multi-pulse averages

Note: This parameter is for advanced users

Sets the number of pulses to be used in multi-pulse averaging mode. In this mode, a sequence of rapid fire ranges are taken and then averaged to improve the accuracy of the measurement

Range

0 - 255

RNGFND8_WSP_THR: Sensitivity threshold

Note: This parameter is for advanced users

Sets the system sensitivity. Larger values of THR represent higher sensitivity. The system may limit the maximum value of THR to prevent excessive false alarm rates based on settings made at the factory. Set to -1 for automatic threshold adjustments

Range

-1 - 255

RNGFND8_WSP_BAUD: Baud rate

Note: This parameter is for advanced users

Desired baud rate

Values

Value

Meaning

0

Low Speed

1

High Speed

RNGFND8_RECV_ID: CAN receive ID

Note: This parameter is for advanced users

The receive ID of the CAN frames. A value of zero means all IDs are accepted.

Range

0 - 65535

RNGFND8_SNR_MIN: Minimum signal strength

Note: This parameter is for advanced users

Minimum signal strength (SNR) to accept distance

Range

0 - 65535

RNGFND9_ Parameters

RNGFND9_TYPE: Rangefinder type

What type of rangefinder device that is connected

Values

Value

Meaning

0

None

1

Analog

2

MaxbotixI2C

3

LidarLite-I2C

5

PWM

6

BBB-PRU

7

LightWareI2C

8

LightWareSerial

9

Bebop

10

MAVLink

11

uLanding

12

LeddarOne

13

MaxbotixSerial

14

TeraRangerI2C

15

LidarLiteV3-I2C

16

VL53L0X or VL53L1X

17

NMEA

18

WASP-LRF

19

BenewakeTF02

20

Benewake-Serial

21

LidarLightV3HP

22

PWM

23

BlueRoboticsPing

24

UAVCAN

25

BenewakeTFminiPlus-I2C

26

LanbaoPSK-CM8JL65-CC5

27

BenewakeTF03

28

VL53L1X-ShortRange

29

LeddarVu8-Serial

30

HC-SR04

31

GYUS42v2

32

MSP

33

USD1_CAN

34

Benewake_CAN

100

SITL

RNGFND9_PIN: Rangefinder pin

Analog or PWM input pin that rangefinder is connected to. Airspeed ports can be used for Analog input, AUXOUT can be used for PWM input

Values

Value

Meaning

-1

Not Used

11

PX4-airspeed port

15

Pixhawk-airspeed port

50

Pixhawk AUXOUT1

51

Pixhawk AUXOUT2

52

Pixhawk AUXOUT3

53

Pixhawk AUXOUT4

54

Pixhawk AUXOUT5

55

Pixhawk AUXOUT6

RNGFND9_SCALING: Rangefinder scaling

Scaling factor between rangefinder reading and distance. For the linear and inverted functions this is in meters per volt. For the hyperbolic function the units are meterVolts.

Increment

Units

0.001

meters per volt

RNGFND9_OFFSET: rangefinder offset

Offset in volts for zero distance for analog rangefinders. Offset added to distance in centimeters for PWM lidars

Increment

Units

0.001

volt

RNGFND9_FUNCTION: Rangefinder function

Control over what function is used to calculate distance. For a linear function, the distance is (voltage-offset)*scaling. For a inverted function the distance is (offset-voltage)*scaling. For a hyperbolic function the distance is scaling/(voltage-offset). The functions return the distance in meters.

Values

Value

Meaning

0

Linear

1

Inverted

2

Hyperbolic

RNGFND9_MIN_CM: Rangefinder minimum distance

Minimum distance in centimeters that rangefinder can reliably read

Increment

Units

1

centimeters

RNGFND9_MAX_CM: Rangefinder maximum distance

Maximum distance in centimeters that rangefinder can reliably read

Increment

Units

1

centimeters

RNGFND9_STOP_PIN: Rangefinder stop pin

Digital pin that enables/disables rangefinder measurement for the pwm rangefinder. A value of -1 means no pin. If this is set, then the pin is set to 1 to enable the rangefinder and set to 0 to disable it. This is used to enable powersaving when out of range.

Values

Value

Meaning

-1

Not Used

50

Pixhawk AUXOUT1

51

Pixhawk AUXOUT2

52

Pixhawk AUXOUT3

53

Pixhawk AUXOUT4

54

Pixhawk AUXOUT5

55

Pixhawk AUXOUT6

111

PX4 FMU Relay1

112

PX4 FMU Relay2

113

PX4IO Relay1

114

PX4IO Relay2

115

PX4IO ACC1

116

PX4IO ACC2

RNGFND9_RMETRIC: Ratiometric

This parameter sets whether an analog rangefinder is ratiometric. Most analog rangefinders are ratiometric, meaning that their output voltage is influenced by the supply voltage. Some analog rangefinders (such as the SF/02) have their own internal voltage regulators so they are not ratiometric.

Values

Value

Meaning

0

No

1

Yes

RNGFND9_PWRRNG: Powersave range

This parameter sets the estimated terrain distance in meters above which the sensor will be put into a power saving mode (if available). A value of zero means power saving is not enabled

Range

Units

0 - 32767

meters

RNGFND9_GNDCLEAR: Distance (in cm) from the range finder to the ground

This parameter sets the expected range measurement(in cm) that the range finder should return when the vehicle is on the ground.

Increment

Range

Units

1

5 - 127

centimeters

RNGFND9_ADDR: Bus address of sensor

This sets the bus address of the sensor, where applicable. Used for the I2C and UAVCAN sensors to allow for multiple sensors on different addresses.

Increment

Range

1

0 - 127

RNGFND9_POS_X: X position offset

Note: This parameter is for advanced users

X position of the rangefinder in body frame. Positive X is forward of the origin. Use the zero range datum point if supplied.

Increment

Range

Units

0.01

-5 - 5

meters

RNGFND9_POS_Y: Y position offset

Note: This parameter is for advanced users

Y position of the rangefinder in body frame. Positive Y is to the right of the origin. Use the zero range datum point if supplied.

Increment

Range

Units

0.01

-5 - 5

meters

RNGFND9_POS_Z: Z position offset

Note: This parameter is for advanced users

Z position of the rangefinder in body frame. Positive Z is down from the origin. Use the zero range datum point if supplied.

Increment

Range

Units

0.01

-5 - 5

meters

RNGFND9_ORIENT: Rangefinder orientation

Note: This parameter is for advanced users

Orientation of rangefinder

Values

Value

Meaning

0

Forward

1

Forward-Right

2

Right

3

Back-Right

4

Back

5

Back-Left

6

Left

7

Forward-Left

24

Up

25

Down

RNGFND9_WSP_MAVG: Moving Average Range

Note: This parameter is for advanced users

Sets the number of historic range results to use for calculating the current range result. When MAVG is greater than 1, the current range result will be the current measured value averaged with the N-1 previous results

Range

0 - 255

RNGFND9_WSP_MEDF: Moving Median Filter

Note: This parameter is for advanced users

Sets the window size for the real-time median filter. When MEDF is greater than 0 the median filter is active

Range

0 - 255

RNGFND9_WSP_FRQ: Frequency

Note: This parameter is for advanced users

Sets the repetition frequency of the ranging operation in Hertz. Upon entering the desired frequency the system will calculate the nearest frequency that it can handle according to the resolution of internal timers.

Range

0 - 10000

RNGFND9_WSP_AVG: Multi-pulse averages

Note: This parameter is for advanced users

Sets the number of pulses to be used in multi-pulse averaging mode. In this mode, a sequence of rapid fire ranges are taken and then averaged to improve the accuracy of the measurement

Range

0 - 255

RNGFND9_WSP_THR: Sensitivity threshold

Note: This parameter is for advanced users

Sets the system sensitivity. Larger values of THR represent higher sensitivity. The system may limit the maximum value of THR to prevent excessive false alarm rates based on settings made at the factory. Set to -1 for automatic threshold adjustments

Range

-1 - 255

RNGFND9_WSP_BAUD: Baud rate

Note: This parameter is for advanced users

Desired baud rate

Values

Value

Meaning

0

Low Speed

1

High Speed

RNGFND9_RECV_ID: CAN receive ID

Note: This parameter is for advanced users

The receive ID of the CAN frames. A value of zero means all IDs are accepted.

Range

0 - 65535

RNGFND9_SNR_MIN: Minimum signal strength

Note: This parameter is for advanced users

Minimum signal strength (SNR) to accept distance

Range

0 - 65535

RNGFNDA_ Parameters

RNGFNDA_TYPE: Rangefinder type

What type of rangefinder device that is connected

Values

Value

Meaning

0

None

1

Analog

2

MaxbotixI2C

3

LidarLite-I2C

5

PWM

6

BBB-PRU

7

LightWareI2C

8

LightWareSerial

9

Bebop

10

MAVLink

11

uLanding

12

LeddarOne

13

MaxbotixSerial

14

TeraRangerI2C

15

LidarLiteV3-I2C

16

VL53L0X or VL53L1X

17

NMEA

18

WASP-LRF

19

BenewakeTF02

20

Benewake-Serial

21

LidarLightV3HP

22

PWM

23

BlueRoboticsPing

24

UAVCAN

25

BenewakeTFminiPlus-I2C

26

LanbaoPSK-CM8JL65-CC5

27

BenewakeTF03

28

VL53L1X-ShortRange

29

LeddarVu8-Serial

30

HC-SR04

31

GYUS42v2

32

MSP

33

USD1_CAN

34

Benewake_CAN

100

SITL

RNGFNDA_PIN: Rangefinder pin

Analog or PWM input pin that rangefinder is connected to. Airspeed ports can be used for Analog input, AUXOUT can be used for PWM input

Values

Value

Meaning

-1

Not Used

11

PX4-airspeed port

15

Pixhawk-airspeed port

50

Pixhawk AUXOUT1

51

Pixhawk AUXOUT2

52

Pixhawk AUXOUT3

53

Pixhawk AUXOUT4

54

Pixhawk AUXOUT5

55

Pixhawk AUXOUT6

RNGFNDA_SCALING: Rangefinder scaling

Scaling factor between rangefinder reading and distance. For the linear and inverted functions this is in meters per volt. For the hyperbolic function the units are meterVolts.

Increment

Units

0.001

meters per volt

RNGFNDA_OFFSET: rangefinder offset

Offset in volts for zero distance for analog rangefinders. Offset added to distance in centimeters for PWM lidars

Increment

Units

0.001

volt

RNGFNDA_FUNCTION: Rangefinder function

Control over what function is used to calculate distance. For a linear function, the distance is (voltage-offset)*scaling. For a inverted function the distance is (offset-voltage)*scaling. For a hyperbolic function the distance is scaling/(voltage-offset). The functions return the distance in meters.

Values

Value

Meaning

0

Linear

1

Inverted

2

Hyperbolic

RNGFNDA_MIN_CM: Rangefinder minimum distance

Minimum distance in centimeters that rangefinder can reliably read

Increment

Units

1

centimeters

RNGFNDA_MAX_CM: Rangefinder maximum distance

Maximum distance in centimeters that rangefinder can reliably read

Increment

Units

1

centimeters

RNGFNDA_STOP_PIN: Rangefinder stop pin

Digital pin that enables/disables rangefinder measurement for the pwm rangefinder. A value of -1 means no pin. If this is set, then the pin is set to 1 to enable the rangefinder and set to 0 to disable it. This is used to enable powersaving when out of range.

Values

Value

Meaning

-1

Not Used

50

Pixhawk AUXOUT1

51

Pixhawk AUXOUT2

52

Pixhawk AUXOUT3

53

Pixhawk AUXOUT4

54

Pixhawk AUXOUT5

55

Pixhawk AUXOUT6

111

PX4 FMU Relay1

112

PX4 FMU Relay2

113

PX4IO Relay1

114

PX4IO Relay2

115

PX4IO ACC1

116

PX4IO ACC2

RNGFNDA_RMETRIC: Ratiometric

This parameter sets whether an analog rangefinder is ratiometric. Most analog rangefinders are ratiometric, meaning that their output voltage is influenced by the supply voltage. Some analog rangefinders (such as the SF/02) have their own internal voltage regulators so they are not ratiometric.

Values

Value

Meaning

0

No

1

Yes

RNGFNDA_PWRRNG: Powersave range

This parameter sets the estimated terrain distance in meters above which the sensor will be put into a power saving mode (if available). A value of zero means power saving is not enabled

Range

Units

0 - 32767

meters

RNGFNDA_GNDCLEAR: Distance (in cm) from the range finder to the ground

This parameter sets the expected range measurement(in cm) that the range finder should return when the vehicle is on the ground.

Increment

Range

Units

1

5 - 127

centimeters

RNGFNDA_ADDR: Bus address of sensor

This sets the bus address of the sensor, where applicable. Used for the I2C and UAVCAN sensors to allow for multiple sensors on different addresses.

Increment

Range

1

0 - 127

RNGFNDA_POS_X: X position offset

Note: This parameter is for advanced users

X position of the rangefinder in body frame. Positive X is forward of the origin. Use the zero range datum point if supplied.

Increment

Range

Units

0.01

-5 - 5

meters

RNGFNDA_POS_Y: Y position offset

Note: This parameter is for advanced users

Y position of the rangefinder in body frame. Positive Y is to the right of the origin. Use the zero range datum point if supplied.

Increment

Range

Units

0.01

-5 - 5

meters

RNGFNDA_POS_Z: Z position offset

Note: This parameter is for advanced users

Z position of the rangefinder in body frame. Positive Z is down from the origin. Use the zero range datum point if supplied.

Increment

Range

Units

0.01

-5 - 5

meters

RNGFNDA_ORIENT: Rangefinder orientation

Note: This parameter is for advanced users

Orientation of rangefinder

Values

Value

Meaning

0

Forward

1

Forward-Right

2

Right

3

Back-Right

4

Back

5

Back-Left

6

Left

7

Forward-Left

24

Up

25

Down

RNGFNDA_WSP_MAVG: Moving Average Range

Note: This parameter is for advanced users

Sets the number of historic range results to use for calculating the current range result. When MAVG is greater than 1, the current range result will be the current measured value averaged with the N-1 previous results

Range

0 - 255

RNGFNDA_WSP_MEDF: Moving Median Filter

Note: This parameter is for advanced users

Sets the window size for the real-time median filter. When MEDF is greater than 0 the median filter is active

Range

0 - 255

RNGFNDA_WSP_FRQ: Frequency

Note: This parameter is for advanced users

Sets the repetition frequency of the ranging operation in Hertz. Upon entering the desired frequency the system will calculate the nearest frequency that it can handle according to the resolution of internal timers.

Range

0 - 10000

RNGFNDA_WSP_AVG: Multi-pulse averages

Note: This parameter is for advanced users

Sets the number of pulses to be used in multi-pulse averaging mode. In this mode, a sequence of rapid fire ranges are taken and then averaged to improve the accuracy of the measurement

Range

0 - 255

RNGFNDA_WSP_THR: Sensitivity threshold

Note: This parameter is for advanced users

Sets the system sensitivity. Larger values of THR represent higher sensitivity. The system may limit the maximum value of THR to prevent excessive false alarm rates based on settings made at the factory. Set to -1 for automatic threshold adjustments

Range

-1 - 255

RNGFNDA_WSP_BAUD: Baud rate

Note: This parameter is for advanced users

Desired baud rate

Values

Value

Meaning

0

Low Speed

1

High Speed

RNGFNDA_RECV_ID: CAN receive ID

Note: This parameter is for advanced users

The receive ID of the CAN frames. A value of zero means all IDs are accepted.

Range

0 - 65535

RNGFNDA_SNR_MIN: Minimum signal strength

Note: This parameter is for advanced users

Minimum signal strength (SNR) to accept distance

Range

0 - 65535

RPM Parameters

RPM_TYPE: RPM type

What type of RPM sensor is connected

Values

Value

Meaning

0

None

1

PWM

2

AUXPIN

3

EFI

4

Harmonic Notch

RPM_SCALING: RPM scaling

Scaling factor between sensor reading and RPM.

Increment

0.001

RPM_MAX: Maximum RPM

Maximum RPM to report

Increment

1

RPM_MIN: Minimum RPM

Minimum RPM to report

Increment

1

RPM_MIN_QUAL: Minimum Quality

Note: This parameter is for advanced users

Minimum data quality to be used

Increment

0.1

RPM_PIN: Input pin number

Which pin to use

Values

Value

Meaning

-1

Disabled

50

PixhawkAUX1

51

PixhawkAUX2

52

PixhawkAUX3

53

PixhawkAUX4

54

PixhawkAUX5

55

PixhawkAUX6

RPM2_TYPE: Second RPM type

Note: This parameter is for advanced users

What type of RPM sensor is connected

Values

Value

Meaning

0

None

1

PWM

2

AUXPIN

3

EFI

4

Harmonic Notch

RPM2_SCALING: RPM scaling

Note: This parameter is for advanced users

Scaling factor between sensor reading and RPM.

Increment

0.001

RPM2_PIN: RPM2 input pin number

Which pin to use

Values

Value

Meaning

-1

Disabled

50

PixhawkAUX1

51

PixhawkAUX2

52

PixhawkAUX3

53

PixhawkAUX4

54

PixhawkAUX5

55

PixhawkAUX6

RSSI_ Parameters

RSSI_TYPE: RSSI Type

Radio Receiver RSSI type. If your radio receiver supports RSSI of some kind, set it here, then set its associated RSSI_XXXXX parameters, if any.

Values

Value

Meaning

0

Disabled

1

AnalogPin

2

RCChannelPwmValue

3

ReceiverProtocol

4

PWMInputPin

5

TelemetryRadioRSSI

RSSI_ANA_PIN: Receiver RSSI sensing pin

Pin used to read the RSSI voltage or PWM value

Values

Value

Meaning

8

V5 Nano

11

Pixracer

13

Pixhawk ADC4

14

Pixhawk ADC3

15

Pixhawk ADC6/Pixhawk2 ADC

50

PixhawkAUX1

51

PixhawkAUX2

52

PixhawkAUX3

53

PixhawkAUX4

54

PixhawkAUX5

55

PixhawkAUX6

103

Pixhawk SBUS

RSSI_PIN_LOW: RSSI pin's lowest voltage

RSSI pin's voltage received on the RSSI_ANA_PIN when the signal strength is the weakest. Some radio receivers put out inverted values so this value may be higher than RSSI_PIN_HIGH

Increment

Range

Units

0.01

0 - 5.0

volt

RSSI_PIN_HIGH: RSSI pin's highest voltage

RSSI pin's voltage received on the RSSI_ANA_PIN when the signal strength is the strongest. Some radio receivers put out inverted values so this value may be lower than RSSI_PIN_LOW

Increment

Range

Units

0.01

0 - 5.0

volt

RSSI_CHANNEL: Receiver RSSI channel number

The channel number where RSSI will be output by the radio receiver (5 and above).

Range

0 - 16

RSSI_CHAN_LOW: RSSI PWM low value

PWM value that the radio receiver will put on the RSSI_CHANNEL or RSSI_ANA_PIN when the signal strength is the weakest. Some radio receivers output inverted values so this value may be lower than RSSI_CHAN_HIGH

Range

Units

0 - 2000

PWM in microseconds

RSSI_CHAN_HIGH: Receiver RSSI PWM high value

PWM value that the radio receiver will put on the RSSI_CHANNEL or RSSI_ANA_PIN when the signal strength is the strongest. Some radio receivers output inverted values so this value may be higher than RSSI_CHAN_LOW

Range

Units

0 - 2000

PWM in microseconds

SCHED_ Parameters

SCHED_DEBUG: Scheduler debug level

Note: This parameter is for advanced users

Set to non-zero to enable scheduler debug messages. When set to show "Slips" the scheduler will display a message whenever a scheduled task is delayed due to too much CPU load. When set to ShowOverruns the scheduled will display a message whenever a task takes longer than the limit promised in the task table.

Values

Value

Meaning

0

Disabled

2

ShowSlips

3

ShowOverruns

SCHED_LOOP_RATE: Scheduling main loop rate

Note: This parameter is for advanced users

This controls the rate of the main control loop in Hz. This should only be changed by developers. This only takes effect on restart. Values over 400 are considered highly experimental.

RebootRequired

Values

True

Value

Meaning

50

50Hz

100

100Hz

200

200Hz

250

250Hz

300

300Hz

400

400Hz

SCHED_OPTIONS: Scheduling options

Note: This parameter is for advanced users

This controls optional aspects of the scheduler.

Bitmask

Bit

Meaning

0

Enable per-task perf info

SCR_ Parameters

SCR_ENABLE: Enable Scripting

Note: This parameter is for advanced users

Controls if scripting is enabled

RebootRequired

Values

True

Value

Meaning

0

None

1

Lua Scripts

SCR_VM_I_COUNT: Scripting Virtual Machine Instruction Count

Note: This parameter is for advanced users

The number virtual machine instructions that can be run before considering a script to have taken an excessive amount of time

Increment

Range

10000

1000 - 1000000

SCR_HEAP_SIZE: Scripting Heap Size

Note: This parameter is for advanced users

Amount of memory available for scripting

Increment

Range

RebootRequired

1024

1024 - 1048576

True

SCR_DEBUG_LVL: Scripting Debug Level

Note: This parameter is for advanced users

The higher the number the more verbose builtin scripting debug will be.

SCR_USER1: Scripting User Parameter1

General purpose user variable input for scripts

SCR_USER2: Scripting User Parameter2

General purpose user variable input for scripts

SCR_USER3: Scripting User Parameter3

General purpose user variable input for scripts

SCR_USER4: Scripting User Parameter4

General purpose user variable input for scripts

SCR_DIR_DISABLE: Directory disable

Note: This parameter is for advanced users

This will stop scripts being loaded from the given locations

Bitmask

RebootRequired

Bit

Meaning

0

ROMFS

1

APM/scripts

True

SERIAL Parameters

SERIAL0_BAUD: Serial0 baud rate

The baud rate used on the USB console. Most stm32-based boards can support rates of up to 1500. If you setup a rate you cannot support and then can't connect to your board you should load a firmware from a different vehicle type. That will reset all your parameters to defaults.

Values

Value

Meaning

1

1200

2

2400

4

4800

9

9600

19

19200

38

38400

57

57600

111

111100

115

115200

230

230400

256

256000

460

460800

500

500000

921

921600

1500

1500000

SERIAL0_PROTOCOL: Console protocol selection

Control what protocol to use on the console.

RebootRequired

Values

True

Value

Meaning

1

MAVlink1

2

MAVLink2

SERIAL1_PROTOCOL: Telem1 protocol selection

Control what protocol to use on the Telem1 port. Note that the Frsky options require external converter hardware. See the wiki for details.

RebootRequired

Values

True

Value

Meaning

-1

None

1

MAVLink1

2

MAVLink2

3

Frsky D

4

Frsky SPort

5

GPS

7

Alexmos Gimbal Serial

8

SToRM32 Gimbal Serial

9

Rangefinder

10

FrSky SPort Passthrough (OpenTX)

11

Lidar360

13

Beacon

14

Volz servo out

15

SBus servo out

16

ESC Telemetry

17

Devo Telemetry

18

OpticalFlow

19

RobotisServo

20

NMEA Output

21

WindVane

22

SLCAN

23

RCIN

24

MegaSquirt EFI

25

LTM

26

RunCam

27

HottTelem

28

Scripting

29

Crossfire

30

Generator

31

Winch

32

MSP

33

DJI FPV

34

AirSpeed

35

ADSB

36

AHRS

37

SmartAudio

38

FETtecOneWire

SERIAL1_BAUD: Telem1 Baud Rate

The baud rate used on the Telem1 port. Most stm32-based boards can support rates of up to 1500. If you setup a rate you cannot support and then can't connect to your board you should load a firmware from a different vehicle type. That will reset all your parameters to defaults.

Values

Value

Meaning

1

1200

2

2400

4

4800

9

9600

19

19200

38

38400

57

57600

111

111100

115

115200

230

230400

256

256000

460

460800

500

500000

921

921600

1500

1500000

SERIAL2_PROTOCOL: Telemetry 2 protocol selection

Control what protocol to use on the Telem2 port. Note that the Frsky options require external converter hardware. See the wiki for details.

RebootRequired

Values

True

Value

Meaning

-1

None

1

MAVLink1

2

MAVLink2

3

Frsky D

4

Frsky SPort

5

GPS

7

Alexmos Gimbal Serial

8

SToRM32 Gimbal Serial

9

Rangefinder

10

FrSky SPort Passthrough (OpenTX)

11

Lidar360

13

Beacon

14

Volz servo out

15

SBus servo out

16

ESC Telemetry

17

Devo Telemetry

18

OpticalFlow

19

RobotisServo

20

NMEA Output

21

WindVane

22

SLCAN

23

RCIN

24

MegaSquirt EFI

25

LTM

26

RunCam

27

HottTelem

28

Scripting

29

Crossfire

30

Generator

31

Winch

32

MSP

33

DJI FPV

34

AirSpeed

35

ADSB

36

AHRS

37

SmartAudio

38

FETtecOneWire

SERIAL2_BAUD: Telemetry 2 Baud Rate

The baud rate of the Telem2 port. Most stm32-based boards can support rates of up to 1500. If you setup a rate you cannot support and then can't connect to your board you should load a firmware from a different vehicle type. That will reset all your parameters to defaults.

Values

Value

Meaning

1

1200

2

2400

4

4800

9

9600

19

19200

38

38400

57

57600

111

111100

115

115200

230

230400

256

256000

460

460800

500

500000

921

921600

1500

1500000

SERIAL3_PROTOCOL: Serial 3 (GPS) protocol selection

Control what protocol Serial 3 (GPS) should be used for. Note that the Frsky options require external converter hardware. See the wiki for details.

RebootRequired

Values

True

Value

Meaning

-1

None

1

MAVLink1

2

MAVLink2

3

Frsky D

4

Frsky SPort

5

GPS

7

Alexmos Gimbal Serial

8

SToRM32 Gimbal Serial

9

Rangefinder

10

FrSky SPort Passthrough (OpenTX)

11

Lidar360

13

Beacon

14

Volz servo out

15

SBus servo out

16

ESC Telemetry

17

Devo Telemetry

18

OpticalFlow

19

RobotisServo

20

NMEA Output

21

WindVane

22

SLCAN

23

RCIN

24

MegaSquirt EFI

25

LTM

26

RunCam

27

HottTelem

28

Scripting

29

Crossfire

30

Generator

31

Winch

32

MSP

33

DJI FPV

34

AirSpeed

35

ADSB

36

AHRS

37

SmartAudio

38

FETtecOneWire

SERIAL3_BAUD: Serial 3 (GPS) Baud Rate

The baud rate used for the Serial 3 (GPS). Most stm32-based boards can support rates of up to 1500. If you setup a rate you cannot support and then can't connect to your board you should load a firmware from a different vehicle type. That will reset all your parameters to defaults.

Values

Value

Meaning

1

1200

2

2400

4

4800

9

9600

19

19200

38

38400

57

57600

111

111100

115

115200

230

230400

256

256000

460

460800

500

500000

921

921600

1500

1500000

SERIAL4_PROTOCOL: Serial4 protocol selection

Control what protocol Serial4 port should be used for. Note that the Frsky options require external converter hardware. See the wiki for details.

RebootRequired

Values

True

Value

Meaning

-1

None

1

MAVLink1

2

MAVLink2

3

Frsky D

4

Frsky SPort

5

GPS

7

Alexmos Gimbal Serial

8

SToRM32 Gimbal Serial

9

Rangefinder

10

FrSky SPort Passthrough (OpenTX)

11

Lidar360

13

Beacon

14

Volz servo out

15

SBus servo out

16

ESC Telemetry

17

Devo Telemetry

18

OpticalFlow

19

RobotisServo

20

NMEA Output

21

WindVane

22

SLCAN

23

RCIN

24

MegaSquirt EFI

25

LTM

26

RunCam

27

HottTelem

28

Scripting

29

Crossfire

30

Generator

31

Winch

32

MSP

33

DJI FPV

34

AirSpeed

35

ADSB

36

AHRS

37

SmartAudio

38

FETtecOneWire

SERIAL4_BAUD: Serial 4 Baud Rate

The baud rate used for Serial4. Most stm32-based boards can support rates of up to 1500. If you setup a rate you cannot support and then can't connect to your board you should load a firmware from a different vehicle type. That will reset all your parameters to defaults.

Values

Value

Meaning

1

1200

2

2400

4

4800

9

9600

19

19200

38

38400

57

57600

111

111100

115

115200

230

230400

256

256000

460

460800

500

500000

921

921600

1500

1500000

SERIAL5_PROTOCOL: Serial5 protocol selection

Control what protocol Serial5 port should be used for. Note that the Frsky options require external converter hardware. See the wiki for details.

RebootRequired

Values

True

Value

Meaning

-1

None

1

MAVLink1

2

MAVLink2

3

Frsky D

4

Frsky SPort

5

GPS

7

Alexmos Gimbal Serial

8

SToRM32 Gimbal Serial

9

Rangefinder

10

FrSky SPort Passthrough (OpenTX)

11

Lidar360

13

Beacon

14

Volz servo out

15

SBus servo out

16

ESC Telemetry

17

Devo Telemetry

18

OpticalFlow

19

RobotisServo

20

NMEA Output

21

WindVane

22

SLCAN

23

RCIN

24

MegaSquirt EFI

25

LTM

26

RunCam

27

HottTelem

28

Scripting

29

Crossfire

30

Generator

31

Winch

32

MSP

33

DJI FPV

34

AirSpeed

35

ADSB

36

AHRS

37

SmartAudio

38

FETtecOneWire

SERIAL5_BAUD: Serial 5 Baud Rate

The baud rate used for Serial5. Most stm32-based boards can support rates of up to 1500. If you setup a rate you cannot support and then can't connect to your board you should load a firmware from a different vehicle type. That will reset all your parameters to defaults.

Values

Value

Meaning

1

1200

2

2400

4

4800

9

9600

19

19200

38

38400

57

57600

111

111100

115

115200

230

230400

256

256000

460

460800

500

500000

921

921600

1500

1500000

SERIAL6_PROTOCOL: Serial6 protocol selection

Control what protocol Serial6 port should be used for. Note that the Frsky options require external converter hardware. See the wiki for details.

RebootRequired

Values

True

Value

Meaning

-1

None

1

MAVLink1

2

MAVLink2

3

Frsky D

4

Frsky SPort

5

GPS

7

Alexmos Gimbal Serial

8

SToRM32 Gimbal Serial

9

Rangefinder

10

FrSky SPort Passthrough (OpenTX)

11

Lidar360

13

Beacon

14

Volz servo out

15

SBus servo out

16

ESC Telemetry

17

Devo Telemetry

18

OpticalFlow

19

RobotisServo

20

NMEA Output

21

WindVane

22

SLCAN

23

RCIN

24

MegaSquirt EFI

25

LTM

26

RunCam

27

HottTelem

28

Scripting

29

Crossfire

30

Generator

31

Winch

32

MSP

33

DJI FPV

34

AirSpeed

35

ADSB

36

AHRS

37

SmartAudio

38

FETtecOneWire

SERIAL6_BAUD: Serial 6 Baud Rate

The baud rate used for Serial6. Most stm32-based boards can support rates of up to 1500. If you setup a rate you cannot support and then can't connect to your board you should load a firmware from a different vehicle type. That will reset all your parameters to defaults.

Values

Value

Meaning

1

1200

2

2400

4

4800

9

9600

19

19200

38

38400

57

57600

111

111100

115

115200

230

230400

256

256000

460

460800

500

500000

921

921600

1500

1500000

SERIAL1_OPTIONS: Telem1 options

Note: This parameter is for advanced users

Control over UART options. The InvertRX option controls invert of the receive pin. The InvertTX option controls invert of the transmit pin. The HalfDuplex option controls half-duplex (onewire) mode, where both transmit and receive is done on the transmit wire. The Swap option allows the RX and TX pins to be swapped on STM32F7 based boards.

Bitmask

RebootRequired

Bit

Meaning

0

InvertRX

1

InvertTX

2

HalfDuplex

3

Swap

4

RX_PullDown

5

RX_PullUp

6

TX_PullDown

7

TX_PullUp

8

RX_NoDMA

9

TX_NoDMA

10

Don’t forward mavlink to/from

11

DisableFIFO

True

SERIAL2_OPTIONS: Telem2 options

Note: This parameter is for advanced users

Control over UART options. The InvertRX option controls invert of the receive pin. The InvertTX option controls invert of the transmit pin. The HalfDuplex option controls half-duplex (onewire) mode, where both transmit and receive is done on the transmit wire.

Bitmask

RebootRequired

Bit

Meaning

0

InvertRX

1

InvertTX

2

HalfDuplex

3

Swap

4

RX_PullDown

5

RX_PullUp

6

TX_PullDown

7

TX_PullUp

8

RX_NoDMA

9

TX_NoDMA

10

Don’t forward mavlink to/from

11

DisableFIFO

True

SERIAL3_OPTIONS: Serial3 options

Note: This parameter is for advanced users

Control over UART options. The InvertRX option controls invert of the receive pin. The InvertTX option controls invert of the transmit pin. The HalfDuplex option controls half-duplex (onewire) mode, where both transmit and receive is done on the transmit wire.

Bitmask

RebootRequired

Bit

Meaning

0

InvertRX

1

InvertTX

2

HalfDuplex

3

Swap

4

RX_PullDown

5

RX_PullUp

6

TX_PullDown

7

TX_PullUp

8

RX_NoDMA

9

TX_NoDMA

10

Don’t forward mavlink to/from

11

DisableFIFO

True

SERIAL4_OPTIONS: Serial4 options

Note: This parameter is for advanced users

Control over UART options. The InvertRX option controls invert of the receive pin. The InvertTX option controls invert of the transmit pin. The HalfDuplex option controls half-duplex (onewire) mode, where both transmit and receive is done on the transmit wire.

Bitmask

RebootRequired

Bit

Meaning

0

InvertRX

1

InvertTX

2

HalfDuplex

3

Swap

4

RX_PullDown

5

RX_PullUp

6

TX_PullDown

7

TX_PullUp

8

RX_NoDMA

9

TX_NoDMA

10

Don’t forward mavlink to/from

11

DisableFIFO

True

SERIAL5_OPTIONS: Serial5 options

Note: This parameter is for advanced users

Control over UART options. The InvertRX option controls invert of the receive pin. The InvertTX option controls invert of the transmit pin. The HalfDuplex option controls half-duplex (onewire) mode, where both transmit and receive is done on the transmit wire.

Bitmask

RebootRequired

Bit

Meaning

0

InvertRX

1

InvertTX

2

HalfDuplex

3

Swap

4

RX_PullDown

5

RX_PullUp

6

TX_PullDown

7

TX_PullUp

8

RX_NoDMA

9

TX_NoDMA

10

Don’t forward mavlink to/from

11

DisableFIFO

True

SERIAL6_OPTIONS: Serial6 options

Note: This parameter is for advanced users

Control over UART options. The InvertRX option controls invert of the receive pin. The InvertTX option controls invert of the transmit pin. The HalfDuplex option controls half-duplex (onewire) mode, where both transmit and receive is done on the transmit wire.

Bitmask

RebootRequired

Bit

Meaning

0

InvertRX

1

InvertTX

2

HalfDuplex

3

Swap

4

RX_PullDown

5

RX_PullUp

6

TX_PullDown

7

TX_PullUp

8

RX_NoDMA

9

TX_NoDMA

10

Don’t forward mavlink to/from

11

DisableFIFO

True

SERIAL_PASS1: Serial passthru first port

Note: This parameter is for advanced users

This sets one side of pass-through between two serial ports. Once both sides are set then all data received on either port will be passed to the other port

Values

Value

Meaning

-1

Disabled

0

Serial0

1

Serial1

2

Serial2

3

Serial3

4

Serial4

5

Serial5

6

Serial6

SERIAL_PASS2: Serial passthru second port

Note: This parameter is for advanced users

This sets one side of pass-through between two serial ports. Once both sides are set then all data received on either port will be passed to the other port

Values

Value

Meaning

-1

Disabled

0

Serial0

1

Serial1

2

Serial2

3

Serial3

4

Serial4

5

Serial5

6

Serial6

SERIAL_PASSTIMO: Serial passthru timeout

Note: This parameter is for advanced users

This sets a timeout for serial pass-through in seconds. When the pass-through is enabled by setting the SERIAL_PASS1 and SERIAL_PASS2 parameters then it remains in effect until no data comes from the first port for SERIAL_PASSTIMO seconds. This allows the port to revent to its normal usage (such as MAVLink connection to a GCS) when it is no longer needed. A value of 0 means no timeout.

Range

Units

0 - 120

seconds

SERIAL7_PROTOCOL: Serial7 protocol selection

Control what protocol Serial7 port should be used for. Note that the Frsky options require external converter hardware. See the wiki for details.

RebootRequired

Values

True

Value

Meaning

-1

None

1

MAVLink1

2

MAVLink2

3

Frsky D

4

Frsky SPort

5

GPS

7

Alexmos Gimbal Serial

8

SToRM32 Gimbal Serial

9

Rangefinder

10

FrSky SPort Passthrough (OpenTX)

11

Lidar360

13

Beacon

14

Volz servo out

15

SBus servo out

16

ESC Telemetry

17

Devo Telemetry

18

OpticalFlow

19

RobotisServo

20

NMEA Output

21

WindVane

22

SLCAN

23

RCIN

24

MegaSquirt EFI

25

LTM

26

RunCam

27

HottTelem

28

Scripting

29

Crossfire

30

Generator

31

Winch

32

MSP

33

DJI FPV

34

AirSpeed

35

ADSB

36

AHRS

37

SmartAudio

38

FETtecOneWire

SERIAL7_BAUD: Serial 7 Baud Rate

The baud rate used for Serial7. Most stm32-based boards can support rates of up to 1500. If you setup a rate you cannot support and then can't connect to your board you should load a firmware from a different vehicle type. That will reset all your parameters to defaults.

Values

Value

Meaning

1

1200

2

2400

4

4800

9

9600

19

19200

38

38400

57

57600

111

111100

115

115200

230

230400

256

256000

460

460800

500

500000

921

921600

1500

1500000

SERIAL7_OPTIONS: Serial7 options

Note: This parameter is for advanced users

Control over UART options. The InvertRX option controls invert of the receive pin. The InvertTX option controls invert of the transmit pin. The HalfDuplex option controls half-duplex (onewire) mode, where both transmit and receive is done on the transmit wire.

Bitmask

RebootRequired

Bit

Meaning

0

InvertRX

1

InvertTX

2

HalfDuplex

3

Swap

4

RX_PullDown

5

RX_PullUp

6

TX_PullDown

7

TX_PullUp

8

RX_NoDMA

9

TX_NoDMA

10

Don’t forward mavlink to/from

11

DisableFIFO

True

SERIAL8_PROTOCOL: Serial8 protocol selection

Control what protocol Serial8 port should be used for. Note that the Frsky options require external converter hardware. See the wiki for details.

RebootRequired

Values

True

Value

Meaning

-1

None

1

MAVLink1

2

MAVLink2

3

Frsky D

4

Frsky SPort

5

GPS

7

Alexmos Gimbal Serial

8

SToRM32 Gimbal Serial

9

Rangefinder

10

FrSky SPort Passthrough (OpenTX)

11

Lidar360

13

Beacon

14

Volz servo out

15

SBus servo out

16

ESC Telemetry

17

Devo Telemetry

18

OpticalFlow

19

RobotisServo

20

NMEA Output

21

WindVane

22

SLCAN

23

RCIN

24

MegaSquirt EFI

25

LTM

26

RunCam

27

HottTelem

28

Scripting

29

Crossfire

30

Generator

31

Winch

32

MSP

33

DJI FPV

34

AirSpeed

35

ADSB

36

AHRS

37

SmartAudio

38

FETtecOneWire

SERIAL8_BAUD: Serial 8 Baud Rate

The baud rate used for Serial8. Most stm32-based boards can support rates of up to 1500. If you setup a rate you cannot support and then can't connect to your board you should load a firmware from a different vehicle type. That will reset all your parameters to defaults.

Values

Value

Meaning

1

1200

2

2400

4

4800

9

9600

19

19200

38

38400

57

57600

111

111100

115

115200

230

230400

256

256000

460

460800

500

500000

921

921600

1500

1500000

SERIAL8_OPTIONS: Serial8 options

Note: This parameter is for advanced users

Control over UART options. The InvertRX option controls invert of the receive pin. The InvertTX option controls invert of the transmit pin. The HalfDuplex option controls half-duplex (onewire) mode, where both transmit and receive is done on the transmit wire.

Bitmask

RebootRequired

Bit

Meaning

0

InvertRX

1

InvertTX

2

HalfDuplex

3

Swap

4

RX_PullDown

5

RX_PullUp

6

TX_PullDown

7

TX_PullUp

8

RX_NoDMA

9

TX_NoDMA

10

Don’t forward mavlink to/from

11

DisableFIFO

True

SERVO Parameters

SERVO_AUTO_TRIM: Automatic servo trim

Note: This parameter is for advanced users

This enables automatic servo trim in flight. Servos will be trimed in stabilized flight modes when the aircraft is close to level. Changes to servo trim will be saved every 10 seconds and will persist between flights. The automatic trim won't go more than 20% away from a centered trim.

Values

Value

Meaning

0

Disable

1

Enable

SERVO_RATE: Servo default output rate

Note: This parameter is for advanced users

This sets the default output rate in Hz for all outputs.

Range

Units

25 - 400

hertz

SERVO_DSHOT_RATE: Servo DShot output rate

Note: This parameter is for advanced users

This sets the DShot output rate for all outputs as a multiple of the loop rate. 0 sets the output rate to be fixed at 1Khz for low loop rates. This value should never be set below 500Hz.

Values

Value

Meaning

0

1Khz

1

loop-rate

2

double loop-rate

3

triple loop-rate

4

quadruple loop rate

SERVO_DSHOT_ESC: Servo DShot ESC type

Note: This parameter is for advanced users

This sets the DShot ESC type for all outputs. The ESC type affects the range of DShot commands available. None means that no dshot commands will be executed.

Values

Value

Meaning

0

None

1

BLHeli32/BLHeli_S/Kiss

SERVO10_ Parameters

SERVO10_MIN: Minimum PWM

minimum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Increment

Range

Units

1

500 - 2200

PWM in microseconds

SERVO10_MAX: Maximum PWM

maximum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Increment

Range

Units

1

800 - 2200

PWM in microseconds

SERVO10_TRIM: Trim PWM

Trim PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Increment

Range

Units

1

800 - 2200

PWM in microseconds

SERVO10_REVERSED: Servo reverse

Reverse servo operation. Set to 0 for normal operation. Set to 1 to reverse this output channel.

Values

Value

Meaning

0

Normal

1

Reversed

SERVO10_FUNCTION: Servo output function

Function assigned to this servo. Setting this to Disabled(0) will setup this output for control by auto missions or MAVLink servo set commands. any other value will enable the corresponding function

Values

Value

Meaning

0

Disabled

1

RCPassThru

2

Flap

3

FlapAuto

4

Aileron

6

MountPan

7

MountTilt

8

MountRoll

9

MountOpen

10

CameraTrigger

12

Mount2Pan

13

Mount2Tilt

14

Mount2Roll

15

Mount2Open

16

DifferentialSpoilerLeft1

17

DifferentialSpoilerRight1

19

Elevator

21

Rudder

22

SprayerPump

23

SprayerSpinner

24

FlaperonLeft

25

FlaperonRight

26

GroundSteering

27

Parachute

28

Gripper

29

LandingGear

30

EngineRunEnable

33

Motor1

34

Motor2

35

Motor3

36

Motor4

37

Motor5

38

Motor6

39

Motor7/TailTiltServo

40

Motor8

41

TiltMotorsFront

45

TiltMotorsRear

46

TiltMotorRearLeft

47

TiltMotorRearRight

51

RCIN1

52

RCIN2

53

RCIN3

54

RCIN4

55

RCIN5

56

RCIN6

57

RCIN7

58

RCIN8

59

RCIN9

60

RCIN10

61

RCIN11

62

RCIN12

63

RCIN13

64

RCIN14

65

RCIN15

66

RCIN16

67

Ignition

69

Starter

70

Throttle

73

ThrottleLeft

74

ThrottleRight

75

TiltMotorFrontLeft

76

TiltMotorFrontRight

77

ElevonLeft

78

ElevonRight

79

VTailLeft

80

VTailRight

82

Motor9

83

Motor10

84

Motor11

85

Motor12

86

DifferentialSpoilerLeft2

87

DifferentialSpoilerRight2

90

CameraISO

91

CameraAperture

92

CameraFocus

93

CameraShutterSpeed

94

Script1

95

Script2

96

Script3

97

Script4

98

Script5

99

Script6

100

Script7

101

Script8

102

Script9

103

Script10

104

Script11

105

Script12

106

Script13

107

Script14

108

Script15

109

Script16

120

NeoPixel1

121

NeoPixel2

122

NeoPixel3

123

NeoPixel4

124

RateRoll

125

RatePitch

126

RateThrust

127

RateYaw

129

ProfiLED1

130

ProfiLED2

131

ProfiLED3

132

ProfiLEDClock

134

SERVOn_MIN

135

SERVOn_TRIM

136

SERVOn_MAX

SERVO11_ Parameters

SERVO11_MIN: Minimum PWM

minimum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Increment

Range

Units

1

500 - 2200

PWM in microseconds

SERVO11_MAX: Maximum PWM

maximum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Increment

Range

Units

1

800 - 2200

PWM in microseconds

SERVO11_TRIM: Trim PWM

Trim PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Increment

Range

Units

1

800 - 2200

PWM in microseconds

SERVO11_REVERSED: Servo reverse

Reverse servo operation. Set to 0 for normal operation. Set to 1 to reverse this output channel.

Values

Value

Meaning

0

Normal

1

Reversed

SERVO11_FUNCTION: Servo output function

Function assigned to this servo. Setting this to Disabled(0) will setup this output for control by auto missions or MAVLink servo set commands. any other value will enable the corresponding function

Values

Value

Meaning

0

Disabled

1

RCPassThru

2

Flap

3

FlapAuto

4

Aileron

6

MountPan

7

MountTilt

8

MountRoll

9

MountOpen

10

CameraTrigger

12

Mount2Pan

13

Mount2Tilt

14

Mount2Roll

15

Mount2Open

16

DifferentialSpoilerLeft1

17

DifferentialSpoilerRight1

19

Elevator

21

Rudder

22

SprayerPump

23

SprayerSpinner

24

FlaperonLeft

25

FlaperonRight

26

GroundSteering

27

Parachute

28

Gripper

29

LandingGear

30

EngineRunEnable

33

Motor1

34

Motor2

35

Motor3

36

Motor4

37

Motor5

38

Motor6

39

Motor7/TailTiltServo

40

Motor8

41

TiltMotorsFront

45

TiltMotorsRear

46

TiltMotorRearLeft

47

TiltMotorRearRight

51

RCIN1

52

RCIN2

53

RCIN3

54

RCIN4

55

RCIN5

56

RCIN6

57

RCIN7

58

RCIN8

59

RCIN9

60

RCIN10

61

RCIN11

62

RCIN12

63

RCIN13

64

RCIN14

65

RCIN15

66

RCIN16

67

Ignition

69

Starter

70

Throttle

73

ThrottleLeft

74

ThrottleRight

75

TiltMotorFrontLeft

76

TiltMotorFrontRight

77

ElevonLeft

78

ElevonRight

79

VTailLeft

80

VTailRight

82

Motor9

83

Motor10

84

Motor11

85

Motor12

86

DifferentialSpoilerLeft2

87

DifferentialSpoilerRight2

90

CameraISO

91

CameraAperture

92

CameraFocus

93

CameraShutterSpeed

94

Script1

95

Script2

96

Script3

97

Script4

98

Script5

99

Script6

100

Script7

101

Script8

102

Script9

103

Script10

104

Script11

105

Script12

106

Script13

107

Script14

108

Script15

109

Script16

120

NeoPixel1

121

NeoPixel2

122

NeoPixel3

123

NeoPixel4

124

RateRoll

125

RatePitch

126

RateThrust

127

RateYaw

129

ProfiLED1

130

ProfiLED2

131

ProfiLED3

132

ProfiLEDClock

134

SERVOn_MIN

135

SERVOn_TRIM

136

SERVOn_MAX

SERVO12_ Parameters

SERVO12_MIN: Minimum PWM

minimum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Increment

Range

Units

1

500 - 2200

PWM in microseconds

SERVO12_MAX: Maximum PWM

maximum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Increment

Range

Units

1

800 - 2200

PWM in microseconds

SERVO12_TRIM: Trim PWM

Trim PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Increment

Range

Units

1

800 - 2200

PWM in microseconds

SERVO12_REVERSED: Servo reverse

Reverse servo operation. Set to 0 for normal operation. Set to 1 to reverse this output channel.

Values

Value

Meaning

0

Normal

1

Reversed

SERVO12_FUNCTION: Servo output function

Function assigned to this servo. Setting this to Disabled(0) will setup this output for control by auto missions or MAVLink servo set commands. any other value will enable the corresponding function

Values

Value

Meaning

0

Disabled

1

RCPassThru

2

Flap

3

FlapAuto

4

Aileron

6

MountPan

7

MountTilt

8

MountRoll

9

MountOpen

10

CameraTrigger

12

Mount2Pan

13

Mount2Tilt

14

Mount2Roll

15

Mount2Open

16

DifferentialSpoilerLeft1

17

DifferentialSpoilerRight1

19

Elevator

21

Rudder

22

SprayerPump

23

SprayerSpinner

24

FlaperonLeft

25

FlaperonRight

26

GroundSteering

27

Parachute

28

Gripper

29

LandingGear

30

EngineRunEnable

33

Motor1

34

Motor2

35

Motor3

36

Motor4

37

Motor5

38

Motor6

39

Motor7/TailTiltServo

40

Motor8

41

TiltMotorsFront

45

TiltMotorsRear

46

TiltMotorRearLeft

47

TiltMotorRearRight

51

RCIN1

52

RCIN2

53

RCIN3

54

RCIN4

55

RCIN5

56

RCIN6

57

RCIN7

58

RCIN8

59

RCIN9

60

RCIN10

61

RCIN11

62

RCIN12

63

RCIN13

64

RCIN14

65

RCIN15

66

RCIN16

67

Ignition

69

Starter

70

Throttle

73

ThrottleLeft

74

ThrottleRight

75

TiltMotorFrontLeft

76

TiltMotorFrontRight

77

ElevonLeft

78

ElevonRight

79

VTailLeft

80

VTailRight

82

Motor9

83

Motor10

84

Motor11

85

Motor12

86

DifferentialSpoilerLeft2

87

DifferentialSpoilerRight2

90

CameraISO

91

CameraAperture

92

CameraFocus

93

CameraShutterSpeed

94

Script1

95

Script2

96

Script3

97

Script4

98

Script5

99

Script6

100

Script7

101

Script8

102

Script9

103

Script10

104

Script11

105

Script12

106

Script13

107

Script14

108

Script15

109

Script16

120

NeoPixel1

121

NeoPixel2

122

NeoPixel3

123

NeoPixel4

124

RateRoll

125

RatePitch

126

RateThrust

127

RateYaw

129

ProfiLED1

130

ProfiLED2

131

ProfiLED3

132

ProfiLEDClock

134

SERVOn_MIN

135

SERVOn_TRIM

136

SERVOn_MAX

SERVO13_ Parameters

SERVO13_MIN: Minimum PWM

minimum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Increment

Range

Units

1

500 - 2200

PWM in microseconds

SERVO13_MAX: Maximum PWM

maximum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Increment

Range

Units

1

800 - 2200

PWM in microseconds

SERVO13_TRIM: Trim PWM

Trim PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Increment

Range

Units

1

800 - 2200

PWM in microseconds

SERVO13_REVERSED: Servo reverse

Reverse servo operation. Set to 0 for normal operation. Set to 1 to reverse this output channel.

Values

Value

Meaning

0

Normal

1

Reversed

SERVO13_FUNCTION: Servo output function

Function assigned to this servo. Setting this to Disabled(0) will setup this output for control by auto missions or MAVLink servo set commands. any other value will enable the corresponding function

Values

Value

Meaning

0

Disabled

1

RCPassThru

2

Flap

3

FlapAuto

4

Aileron

6

MountPan

7

MountTilt

8

MountRoll

9

MountOpen

10

CameraTrigger

12

Mount2Pan

13

Mount2Tilt

14

Mount2Roll

15

Mount2Open

16

DifferentialSpoilerLeft1

17

DifferentialSpoilerRight1

19

Elevator

21

Rudder

22

SprayerPump

23

SprayerSpinner

24

FlaperonLeft

25

FlaperonRight

26

GroundSteering

27

Parachute

28

Gripper

29

LandingGear

30

EngineRunEnable

33

Motor1

34

Motor2

35

Motor3

36

Motor4

37

Motor5

38

Motor6

39

Motor7/TailTiltServo

40

Motor8

41

TiltMotorsFront

45

TiltMotorsRear

46

TiltMotorRearLeft

47

TiltMotorRearRight

51

RCIN1

52

RCIN2

53

RCIN3

54

RCIN4

55

RCIN5

56

RCIN6

57

RCIN7

58

RCIN8

59

RCIN9

60

RCIN10

61

RCIN11

62

RCIN12

63

RCIN13

64

RCIN14

65

RCIN15

66

RCIN16

67

Ignition

69

Starter

70

Throttle

73

ThrottleLeft

74

ThrottleRight

75

TiltMotorFrontLeft

76

TiltMotorFrontRight

77

ElevonLeft

78

ElevonRight

79

VTailLeft

80

VTailRight

82

Motor9

83

Motor10

84

Motor11

85

Motor12

86

DifferentialSpoilerLeft2

87

DifferentialSpoilerRight2

90

CameraISO

91

CameraAperture

92

CameraFocus

93

CameraShutterSpeed

94

Script1

95

Script2

96

Script3

97

Script4

98

Script5

99

Script6

100

Script7

101

Script8

102

Script9

103

Script10

104

Script11

105

Script12

106

Script13

107

Script14

108

Script15

109

Script16

120

NeoPixel1

121

NeoPixel2

122

NeoPixel3

123

NeoPixel4

124

RateRoll

125

RatePitch

126

RateThrust

127

RateYaw

129

ProfiLED1

130

ProfiLED2

131

ProfiLED3

132

ProfiLEDClock

134

SERVOn_MIN

135

SERVOn_TRIM

136

SERVOn_MAX

SERVO14_ Parameters

SERVO14_MIN: Minimum PWM

minimum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Increment

Range

Units

1

500 - 2200

PWM in microseconds

SERVO14_MAX: Maximum PWM

maximum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Increment

Range

Units

1

800 - 2200

PWM in microseconds

SERVO14_TRIM: Trim PWM

Trim PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Increment

Range

Units

1

800 - 2200

PWM in microseconds

SERVO14_REVERSED: Servo reverse

Reverse servo operation. Set to 0 for normal operation. Set to 1 to reverse this output channel.

Values

Value

Meaning

0

Normal

1

Reversed

SERVO14_FUNCTION: Servo output function

Function assigned to this servo. Setting this to Disabled(0) will setup this output for control by auto missions or MAVLink servo set commands. any other value will enable the corresponding function

Values

Value

Meaning

0

Disabled

1

RCPassThru

2

Flap

3

FlapAuto

4

Aileron

6

MountPan

7

MountTilt

8

MountRoll

9

MountOpen

10

CameraTrigger

12

Mount2Pan

13

Mount2Tilt

14

Mount2Roll

15

Mount2Open

16

DifferentialSpoilerLeft1

17

DifferentialSpoilerRight1

19

Elevator

21

Rudder

22

SprayerPump

23

SprayerSpinner

24

FlaperonLeft

25

FlaperonRight

26

GroundSteering

27

Parachute

28

Gripper

29

LandingGear

30

EngineRunEnable

33

Motor1

34

Motor2

35

Motor3

36

Motor4

37

Motor5

38

Motor6

39

Motor7/TailTiltServo

40

Motor8

41

TiltMotorsFront

45

TiltMotorsRear

46

TiltMotorRearLeft

47

TiltMotorRearRight

51

RCIN1

52

RCIN2

53

RCIN3

54

RCIN4

55

RCIN5

56

RCIN6

57

RCIN7

58

RCIN8

59

RCIN9

60

RCIN10

61

RCIN11

62

RCIN12

63

RCIN13

64

RCIN14

65

RCIN15

66

RCIN16

67

Ignition

69

Starter

70

Throttle

73

ThrottleLeft

74

ThrottleRight

75

TiltMotorFrontLeft

76

TiltMotorFrontRight

77

ElevonLeft

78

ElevonRight

79

VTailLeft

80

VTailRight

82

Motor9

83

Motor10

84

Motor11

85

Motor12

86

DifferentialSpoilerLeft2

87

DifferentialSpoilerRight2

90

CameraISO

91

CameraAperture

92

CameraFocus

93

CameraShutterSpeed

94

Script1

95

Script2

96

Script3

97

Script4

98

Script5

99

Script6

100

Script7

101

Script8

102

Script9

103

Script10

104

Script11

105

Script12

106

Script13

107

Script14

108

Script15

109

Script16

120

NeoPixel1

121

NeoPixel2

122

NeoPixel3

123

NeoPixel4

124

RateRoll

125

RatePitch

126

RateThrust

127

RateYaw

129

ProfiLED1

130

ProfiLED2

131

ProfiLED3

132

ProfiLEDClock

134

SERVOn_MIN

135

SERVOn_TRIM

136

SERVOn_MAX

SERVO15_ Parameters

SERVO15_MIN: Minimum PWM

minimum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Increment

Range

Units

1

500 - 2200

PWM in microseconds

SERVO15_MAX: Maximum PWM

maximum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Increment

Range

Units

1

800 - 2200

PWM in microseconds

SERVO15_TRIM: Trim PWM

Trim PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Increment

Range

Units

1

800 - 2200

PWM in microseconds

SERVO15_REVERSED: Servo reverse

Reverse servo operation. Set to 0 for normal operation. Set to 1 to reverse this output channel.

Values

Value

Meaning

0

Normal

1

Reversed

SERVO15_FUNCTION: Servo output function

Function assigned to this servo. Setting this to Disabled(0) will setup this output for control by auto missions or MAVLink servo set commands. any other value will enable the corresponding function

Values

Value

Meaning

0

Disabled

1

RCPassThru

2

Flap

3

FlapAuto

4

Aileron

6

MountPan

7

MountTilt

8

MountRoll

9

MountOpen

10

CameraTrigger

12

Mount2Pan

13

Mount2Tilt

14

Mount2Roll

15

Mount2Open

16

DifferentialSpoilerLeft1

17

DifferentialSpoilerRight1

19

Elevator

21

Rudder

22

SprayerPump

23

SprayerSpinner

24

FlaperonLeft

25

FlaperonRight

26

GroundSteering

27

Parachute

28

Gripper

29

LandingGear

30

EngineRunEnable

33

Motor1

34

Motor2

35

Motor3

36

Motor4

37

Motor5

38

Motor6

39

Motor7/TailTiltServo

40

Motor8

41

TiltMotorsFront

45

TiltMotorsRear

46

TiltMotorRearLeft

47

TiltMotorRearRight

51

RCIN1

52

RCIN2

53

RCIN3

54

RCIN4

55

RCIN5

56

RCIN6

57

RCIN7

58

RCIN8

59

RCIN9

60

RCIN10

61

RCIN11

62

RCIN12

63

RCIN13

64

RCIN14

65

RCIN15

66

RCIN16

67

Ignition

69

Starter

70

Throttle

73

ThrottleLeft

74

ThrottleRight

75

TiltMotorFrontLeft

76

TiltMotorFrontRight

77

ElevonLeft

78

ElevonRight

79

VTailLeft

80

VTailRight

82

Motor9

83

Motor10

84

Motor11

85

Motor12

86

DifferentialSpoilerLeft2

87

DifferentialSpoilerRight2

90

CameraISO

91

CameraAperture

92

CameraFocus

93

CameraShutterSpeed

94

Script1

95

Script2

96

Script3

97

Script4

98

Script5

99

Script6

100

Script7

101

Script8

102

Script9

103

Script10

104

Script11

105

Script12

106

Script13

107

Script14

108

Script15

109

Script16

120

NeoPixel1

121

NeoPixel2

122

NeoPixel3

123

NeoPixel4

124

RateRoll

125

RatePitch

126

RateThrust

127

RateYaw

129

ProfiLED1

130

ProfiLED2

131

ProfiLED3

132

ProfiLEDClock

134

SERVOn_MIN

135

SERVOn_TRIM

136

SERVOn_MAX

SERVO16_ Parameters

SERVO16_MIN: Minimum PWM

minimum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Increment

Range

Units

1

500 - 2200

PWM in microseconds

SERVO16_MAX: Maximum PWM

maximum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Increment

Range

Units

1

800 - 2200

PWM in microseconds

SERVO16_TRIM: Trim PWM

Trim PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Increment

Range

Units

1

800 - 2200

PWM in microseconds

SERVO16_REVERSED: Servo reverse

Reverse servo operation. Set to 0 for normal operation. Set to 1 to reverse this output channel.

Values

Value

Meaning

0

Normal

1

Reversed

SERVO16_FUNCTION: Servo output function

Function assigned to this servo. Setting this to Disabled(0) will setup this output for control by auto missions or MAVLink servo set commands. any other value will enable the corresponding function

Values

Value

Meaning

0

Disabled

1

RCPassThru

2

Flap

3

FlapAuto

4

Aileron

6

MountPan

7

MountTilt

8

MountRoll

9

MountOpen

10

CameraTrigger

12

Mount2Pan

13

Mount2Tilt

14

Mount2Roll

15

Mount2Open

16

DifferentialSpoilerLeft1

17

DifferentialSpoilerRight1

19

Elevator

21

Rudder

22

SprayerPump

23

SprayerSpinner

24

FlaperonLeft

25

FlaperonRight

26

GroundSteering

27

Parachute

28

Gripper

29

LandingGear

30

EngineRunEnable

33

Motor1

34

Motor2

35

Motor3

36

Motor4

37

Motor5

38

Motor6

39

Motor7/TailTiltServo

40

Motor8

41

TiltMotorsFront

45

TiltMotorsRear

46

TiltMotorRearLeft

47

TiltMotorRearRight

51

RCIN1

52

RCIN2

53

RCIN3

54

RCIN4

55

RCIN5

56

RCIN6

57

RCIN7

58

RCIN8

59

RCIN9

60

RCIN10

61

RCIN11

62

RCIN12

63

RCIN13

64

RCIN14

65

RCIN15

66

RCIN16

67

Ignition

69

Starter

70

Throttle

73

ThrottleLeft

74

ThrottleRight

75

TiltMotorFrontLeft

76

TiltMotorFrontRight

77

ElevonLeft

78

ElevonRight

79

VTailLeft

80

VTailRight

82

Motor9

83

Motor10

84

Motor11

85

Motor12

86

DifferentialSpoilerLeft2

87

DifferentialSpoilerRight2

90

CameraISO

91

CameraAperture

92

CameraFocus

93

CameraShutterSpeed

94

Script1

95

Script2

96

Script3

97

Script4

98

Script5

99

Script6

100

Script7

101

Script8

102

Script9

103

Script10

104

Script11

105

Script12

106

Script13

107

Script14

108

Script15

109

Script16

120

NeoPixel1

121

NeoPixel2

122

NeoPixel3

123

NeoPixel4

124

RateRoll

125

RatePitch

126

RateThrust

127

RateYaw

129

ProfiLED1

130

ProfiLED2

131

ProfiLED3

132

ProfiLEDClock

134

SERVOn_MIN

135

SERVOn_TRIM

136

SERVOn_MAX

SERVO1_ Parameters

SERVO1_MIN: Minimum PWM

minimum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Increment

Range

Units

1

500 - 2200

PWM in microseconds

SERVO1_MAX: Maximum PWM

maximum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Increment

Range

Units

1

800 - 2200

PWM in microseconds

SERVO1_TRIM: Trim PWM

Trim PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Increment

Range

Units

1

800 - 2200

PWM in microseconds

SERVO1_REVERSED: Servo reverse

Reverse servo operation. Set to 0 for normal operation. Set to 1 to reverse this output channel.

Values

Value

Meaning

0

Normal

1

Reversed

SERVO1_FUNCTION: Servo output function

Function assigned to this servo. Setting this to Disabled(0) will setup this output for control by auto missions or MAVLink servo set commands. any other value will enable the corresponding function

Values

Value

Meaning

0

Disabled

1

RCPassThru

2

Flap

3

FlapAuto

4

Aileron

6

MountPan

7

MountTilt

8

MountRoll

9

MountOpen

10

CameraTrigger

12

Mount2Pan

13

Mount2Tilt

14

Mount2Roll

15

Mount2Open

16

DifferentialSpoilerLeft1

17

DifferentialSpoilerRight1

19

Elevator

21

Rudder

22

SprayerPump

23

SprayerSpinner

24

FlaperonLeft

25

FlaperonRight

26

GroundSteering

27

Parachute

28

Gripper

29

LandingGear

30

EngineRunEnable

33

Motor1

34

Motor2

35

Motor3

36

Motor4

37

Motor5

38

Motor6

39

Motor7/TailTiltServo

40

Motor8

41

TiltMotorsFront

45

TiltMotorsRear

46

TiltMotorRearLeft

47

TiltMotorRearRight

51

RCIN1

52

RCIN2

53

RCIN3

54

RCIN4

55

RCIN5

56

RCIN6

57

RCIN7

58

RCIN8

59

RCIN9

60

RCIN10

61

RCIN11

62

RCIN12

63

RCIN13

64

RCIN14

65

RCIN15

66

RCIN16

67

Ignition

69

Starter

70

Throttle

73

ThrottleLeft

74

ThrottleRight

75

TiltMotorFrontLeft

76

TiltMotorFrontRight

77

ElevonLeft

78

ElevonRight

79

VTailLeft

80

VTailRight

82

Motor9

83

Motor10

84

Motor11

85

Motor12

86

DifferentialSpoilerLeft2

87

DifferentialSpoilerRight2

90

CameraISO

91

CameraAperture

92

CameraFocus

93

CameraShutterSpeed

94

Script1

95

Script2

96

Script3

97

Script4

98

Script5

99

Script6

100

Script7

101

Script8

102

Script9

103

Script10

104

Script11

105

Script12

106

Script13

107

Script14

108

Script15

109

Script16

120

NeoPixel1

121

NeoPixel2

122

NeoPixel3

123

NeoPixel4

124

RateRoll

125

RatePitch

126

RateThrust

127

RateYaw

129

ProfiLED1

130

ProfiLED2

131

ProfiLED3

132

ProfiLEDClock

134

SERVOn_MIN

135

SERVOn_TRIM

136

SERVOn_MAX

SERVO2_ Parameters

SERVO2_MIN: Minimum PWM

minimum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Increment

Range

Units

1

500 - 2200

PWM in microseconds

SERVO2_MAX: Maximum PWM

maximum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Increment

Range

Units

1

800 - 2200

PWM in microseconds

SERVO2_TRIM: Trim PWM

Trim PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Increment

Range

Units

1

800 - 2200

PWM in microseconds

SERVO2_REVERSED: Servo reverse

Reverse servo operation. Set to 0 for normal operation. Set to 1 to reverse this output channel.

Values

Value

Meaning

0

Normal

1

Reversed

SERVO2_FUNCTION: Servo output function

Function assigned to this servo. Setting this to Disabled(0) will setup this output for control by auto missions or MAVLink servo set commands. any other value will enable the corresponding function

Values

Value

Meaning

0

Disabled

1

RCPassThru

2

Flap

3

FlapAuto

4

Aileron

6

MountPan

7

MountTilt

8

MountRoll

9

MountOpen

10

CameraTrigger

12

Mount2Pan

13

Mount2Tilt

14

Mount2Roll

15

Mount2Open

16

DifferentialSpoilerLeft1

17

DifferentialSpoilerRight1

19

Elevator

21

Rudder

22

SprayerPump

23

SprayerSpinner

24

FlaperonLeft

25

FlaperonRight

26

GroundSteering

27

Parachute

28

Gripper

29

LandingGear

30

EngineRunEnable

33

Motor1

34

Motor2

35

Motor3

36

Motor4

37

Motor5

38

Motor6

39

Motor7/TailTiltServo

40

Motor8

41

TiltMotorsFront

45

TiltMotorsRear

46

TiltMotorRearLeft

47

TiltMotorRearRight

51

RCIN1

52

RCIN2

53

RCIN3

54

RCIN4

55

RCIN5

56

RCIN6

57

RCIN7

58

RCIN8

59

RCIN9

60

RCIN10

61

RCIN11

62

RCIN12

63

RCIN13

64

RCIN14

65

RCIN15

66

RCIN16

67

Ignition

69

Starter

70

Throttle

73

ThrottleLeft

74

ThrottleRight

75

TiltMotorFrontLeft

76

TiltMotorFrontRight

77

ElevonLeft

78

ElevonRight

79

VTailLeft

80

VTailRight

82

Motor9

83

Motor10

84

Motor11

85

Motor12

86

DifferentialSpoilerLeft2

87

DifferentialSpoilerRight2

90

CameraISO

91

CameraAperture

92

CameraFocus

93

CameraShutterSpeed

94

Script1

95

Script2

96

Script3

97

Script4

98

Script5

99

Script6

100

Script7

101

Script8

102

Script9

103

Script10

104

Script11

105

Script12

106

Script13

107

Script14

108

Script15

109

Script16

120

NeoPixel1

121

NeoPixel2

122

NeoPixel3

123

NeoPixel4

124

RateRoll

125

RatePitch

126

RateThrust

127

RateYaw

129

ProfiLED1

130

ProfiLED2

131

ProfiLED3

132

ProfiLEDClock

134

SERVOn_MIN

135

SERVOn_TRIM

136

SERVOn_MAX

SERVO3_ Parameters

SERVO3_MIN: Minimum PWM

minimum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Increment

Range

Units

1

500 - 2200

PWM in microseconds

SERVO3_MAX: Maximum PWM

maximum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Increment

Range

Units

1

800 - 2200

PWM in microseconds

SERVO3_TRIM: Trim PWM

Trim PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Increment

Range

Units

1

800 - 2200

PWM in microseconds

SERVO3_REVERSED: Servo reverse

Reverse servo operation. Set to 0 for normal operation. Set to 1 to reverse this output channel.

Values

Value

Meaning

0

Normal

1

Reversed

SERVO3_FUNCTION: Servo output function

Function assigned to this servo. Setting this to Disabled(0) will setup this output for control by auto missions or MAVLink servo set commands. any other value will enable the corresponding function

Values

Value

Meaning

0

Disabled

1

RCPassThru

2

Flap

3

FlapAuto

4

Aileron

6

MountPan

7

MountTilt

8

MountRoll

9

MountOpen

10

CameraTrigger

12

Mount2Pan

13

Mount2Tilt

14

Mount2Roll

15

Mount2Open

16

DifferentialSpoilerLeft1

17

DifferentialSpoilerRight1

19

Elevator

21

Rudder

22

SprayerPump

23

SprayerSpinner

24

FlaperonLeft

25

FlaperonRight

26

GroundSteering

27

Parachute

28

Gripper

29

LandingGear

30

EngineRunEnable

33

Motor1

34

Motor2

35

Motor3

36

Motor4

37

Motor5

38

Motor6

39

Motor7/TailTiltServo

40

Motor8

41

TiltMotorsFront

45

TiltMotorsRear

46

TiltMotorRearLeft

47

TiltMotorRearRight

51

RCIN1

52

RCIN2

53

RCIN3

54

RCIN4

55

RCIN5

56

RCIN6

57

RCIN7

58

RCIN8

59

RCIN9

60

RCIN10

61

RCIN11

62

RCIN12

63

RCIN13

64

RCIN14

65

RCIN15

66

RCIN16

67

Ignition

69

Starter

70

Throttle

73

ThrottleLeft

74

ThrottleRight

75

TiltMotorFrontLeft

76

TiltMotorFrontRight

77

ElevonLeft

78

ElevonRight

79

VTailLeft

80

VTailRight

82

Motor9

83

Motor10

84

Motor11

85

Motor12

86

DifferentialSpoilerLeft2

87

DifferentialSpoilerRight2

90

CameraISO

91

CameraAperture

92

CameraFocus

93

CameraShutterSpeed

94

Script1

95

Script2

96

Script3

97

Script4

98

Script5

99

Script6

100

Script7

101

Script8

102

Script9

103

Script10

104

Script11

105

Script12

106

Script13

107

Script14

108

Script15

109

Script16

120

NeoPixel1

121

NeoPixel2

122

NeoPixel3

123

NeoPixel4

124

RateRoll

125

RatePitch

126

RateThrust

127

RateYaw

129

ProfiLED1

130

ProfiLED2

131

ProfiLED3

132

ProfiLEDClock

134

SERVOn_MIN

135

SERVOn_TRIM

136

SERVOn_MAX

SERVO4_ Parameters

SERVO4_MIN: Minimum PWM

minimum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Increment

Range

Units

1

500 - 2200

PWM in microseconds

SERVO4_MAX: Maximum PWM

maximum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Increment

Range

Units

1

800 - 2200

PWM in microseconds

SERVO4_TRIM: Trim PWM

Trim PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Increment

Range

Units

1

800 - 2200

PWM in microseconds

SERVO4_REVERSED: Servo reverse

Reverse servo operation. Set to 0 for normal operation. Set to 1 to reverse this output channel.

Values

Value

Meaning

0

Normal

1

Reversed

SERVO4_FUNCTION: Servo output function

Function assigned to this servo. Setting this to Disabled(0) will setup this output for control by auto missions or MAVLink servo set commands. any other value will enable the corresponding function

Values

Value

Meaning

0

Disabled

1

RCPassThru

2

Flap

3

FlapAuto

4

Aileron

6

MountPan

7

MountTilt

8

MountRoll

9

MountOpen

10

CameraTrigger

12

Mount2Pan

13

Mount2Tilt

14

Mount2Roll

15

Mount2Open

16

DifferentialSpoilerLeft1

17

DifferentialSpoilerRight1

19

Elevator

21

Rudder

22

SprayerPump

23

SprayerSpinner

24

FlaperonLeft

25

FlaperonRight

26

GroundSteering

27

Parachute

28

Gripper

29

LandingGear

30

EngineRunEnable

33

Motor1

34

Motor2

35

Motor3

36

Motor4

37

Motor5

38

Motor6

39

Motor7/TailTiltServo

40

Motor8

41

TiltMotorsFront

45

TiltMotorsRear

46

TiltMotorRearLeft

47

TiltMotorRearRight

51

RCIN1

52

RCIN2

53

RCIN3

54

RCIN4

55

RCIN5

56

RCIN6

57

RCIN7

58

RCIN8

59

RCIN9

60

RCIN10

61

RCIN11

62

RCIN12

63

RCIN13

64

RCIN14

65

RCIN15

66

RCIN16

67

Ignition

69

Starter

70

Throttle

73

ThrottleLeft

74

ThrottleRight

75

TiltMotorFrontLeft

76

TiltMotorFrontRight

77

ElevonLeft

78

ElevonRight

79

VTailLeft

80

VTailRight

82

Motor9

83

Motor10

84

Motor11

85

Motor12

86

DifferentialSpoilerLeft2

87

DifferentialSpoilerRight2

90

CameraISO

91

CameraAperture

92

CameraFocus

93

CameraShutterSpeed

94

Script1

95

Script2

96

Script3

97

Script4

98

Script5

99

Script6

100

Script7

101

Script8

102

Script9

103

Script10

104

Script11

105

Script12

106

Script13

107

Script14

108

Script15

109

Script16

120

NeoPixel1

121

NeoPixel2

122

NeoPixel3

123

NeoPixel4

124

RateRoll

125

RatePitch

126

RateThrust

127

RateYaw

129

ProfiLED1

130

ProfiLED2

131

ProfiLED3

132

ProfiLEDClock

134

SERVOn_MIN

135

SERVOn_TRIM

136

SERVOn_MAX

SERVO5_ Parameters

SERVO5_MIN: Minimum PWM

minimum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Increment

Range

Units

1

500 - 2200

PWM in microseconds

SERVO5_MAX: Maximum PWM

maximum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Increment

Range

Units

1

800 - 2200

PWM in microseconds

SERVO5_TRIM: Trim PWM

Trim PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Increment

Range

Units

1

800 - 2200

PWM in microseconds

SERVO5_REVERSED: Servo reverse

Reverse servo operation. Set to 0 for normal operation. Set to 1 to reverse this output channel.

Values

Value

Meaning

0

Normal

1

Reversed

SERVO5_FUNCTION: Servo output function

Function assigned to this servo. Setting this to Disabled(0) will setup this output for control by auto missions or MAVLink servo set commands. any other value will enable the corresponding function

Values

Value

Meaning

0

Disabled

1

RCPassThru

2

Flap

3

FlapAuto

4

Aileron

6

MountPan

7

MountTilt

8

MountRoll

9

MountOpen

10

CameraTrigger

12

Mount2Pan

13

Mount2Tilt

14

Mount2Roll

15

Mount2Open

16

DifferentialSpoilerLeft1

17

DifferentialSpoilerRight1

19

Elevator

21

Rudder

22

SprayerPump

23

SprayerSpinner

24

FlaperonLeft

25

FlaperonRight

26

GroundSteering

27

Parachute

28

Gripper

29

LandingGear

30

EngineRunEnable

33

Motor1

34

Motor2

35

Motor3

36

Motor4

37

Motor5

38

Motor6

39

Motor7/TailTiltServo

40

Motor8

41

TiltMotorsFront

45

TiltMotorsRear

46

TiltMotorRearLeft

47

TiltMotorRearRight

51

RCIN1

52

RCIN2

53

RCIN3

54

RCIN4

55

RCIN5

56

RCIN6

57

RCIN7

58

RCIN8

59

RCIN9

60

RCIN10

61

RCIN11

62

RCIN12

63

RCIN13

64

RCIN14

65

RCIN15

66

RCIN16

67

Ignition

69

Starter

70

Throttle

73

ThrottleLeft

74

ThrottleRight

75

TiltMotorFrontLeft

76

TiltMotorFrontRight

77

ElevonLeft

78

ElevonRight

79

VTailLeft

80

VTailRight

82

Motor9

83

Motor10

84

Motor11

85

Motor12

86

DifferentialSpoilerLeft2

87

DifferentialSpoilerRight2

90

CameraISO

91

CameraAperture

92

CameraFocus

93

CameraShutterSpeed

94

Script1

95

Script2

96

Script3

97

Script4

98

Script5

99

Script6

100

Script7

101

Script8

102

Script9

103

Script10

104

Script11

105

Script12

106

Script13

107

Script14

108

Script15

109

Script16

120

NeoPixel1

121

NeoPixel2

122

NeoPixel3

123

NeoPixel4

124

RateRoll

125

RatePitch

126

RateThrust

127

RateYaw

129

ProfiLED1

130

ProfiLED2

131

ProfiLED3

132

ProfiLEDClock

134

SERVOn_MIN

135

SERVOn_TRIM

136

SERVOn_MAX

SERVO6_ Parameters

SERVO6_MIN: Minimum PWM

minimum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Increment

Range

Units

1

500 - 2200

PWM in microseconds

SERVO6_MAX: Maximum PWM

maximum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Increment

Range

Units

1

800 - 2200

PWM in microseconds

SERVO6_TRIM: Trim PWM

Trim PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Increment

Range

Units

1

800 - 2200

PWM in microseconds

SERVO6_REVERSED: Servo reverse

Reverse servo operation. Set to 0 for normal operation. Set to 1 to reverse this output channel.

Values

Value

Meaning

0

Normal

1

Reversed

SERVO6_FUNCTION: Servo output function

Function assigned to this servo. Setting this to Disabled(0) will setup this output for control by auto missions or MAVLink servo set commands. any other value will enable the corresponding function

Values

Value

Meaning

0

Disabled

1

RCPassThru

2

Flap

3

FlapAuto

4

Aileron

6

MountPan

7

MountTilt

8

MountRoll

9

MountOpen

10

CameraTrigger

12

Mount2Pan

13

Mount2Tilt

14

Mount2Roll

15

Mount2Open

16

DifferentialSpoilerLeft1

17

DifferentialSpoilerRight1

19

Elevator

21

Rudder

22

SprayerPump

23

SprayerSpinner

24

FlaperonLeft

25

FlaperonRight

26

GroundSteering

27

Parachute

28

Gripper

29

LandingGear

30

EngineRunEnable

33

Motor1

34

Motor2

35

Motor3

36

Motor4

37

Motor5

38

Motor6

39

Motor7/TailTiltServo

40

Motor8

41

TiltMotorsFront

45

TiltMotorsRear

46

TiltMotorRearLeft

47

TiltMotorRearRight

51

RCIN1

52

RCIN2

53

RCIN3

54

RCIN4

55

RCIN5

56

RCIN6

57

RCIN7

58

RCIN8

59

RCIN9

60

RCIN10

61

RCIN11

62

RCIN12

63

RCIN13

64

RCIN14

65

RCIN15

66

RCIN16

67

Ignition

69

Starter

70

Throttle

73

ThrottleLeft

74

ThrottleRight

75

TiltMotorFrontLeft

76

TiltMotorFrontRight

77

ElevonLeft

78

ElevonRight

79

VTailLeft

80

VTailRight

82

Motor9

83

Motor10

84

Motor11

85

Motor12

86

DifferentialSpoilerLeft2

87

DifferentialSpoilerRight2

90

CameraISO

91

CameraAperture

92

CameraFocus

93

CameraShutterSpeed

94

Script1

95

Script2

96

Script3

97

Script4

98

Script5

99

Script6

100

Script7

101

Script8

102

Script9

103

Script10

104

Script11

105

Script12

106

Script13

107

Script14

108

Script15

109

Script16

120

NeoPixel1

121

NeoPixel2

122

NeoPixel3

123

NeoPixel4

124

RateRoll

125

RatePitch

126

RateThrust

127

RateYaw

129

ProfiLED1

130

ProfiLED2

131

ProfiLED3

132

ProfiLEDClock

134

SERVOn_MIN

135

SERVOn_TRIM

136

SERVOn_MAX

SERVO7_ Parameters

SERVO7_MIN: Minimum PWM

minimum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Increment

Range

Units

1

500 - 2200

PWM in microseconds

SERVO7_MAX: Maximum PWM

maximum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Increment

Range

Units

1

800 - 2200

PWM in microseconds

SERVO7_TRIM: Trim PWM

Trim PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Increment

Range

Units

1

800 - 2200

PWM in microseconds

SERVO7_REVERSED: Servo reverse

Reverse servo operation. Set to 0 for normal operation. Set to 1 to reverse this output channel.

Values

Value

Meaning

0

Normal

1

Reversed

SERVO7_FUNCTION: Servo output function

Function assigned to this servo. Setting this to Disabled(0) will setup this output for control by auto missions or MAVLink servo set commands. any other value will enable the corresponding function

Values

Value

Meaning

0

Disabled

1

RCPassThru

2

Flap

3

FlapAuto

4

Aileron

6

MountPan

7

MountTilt

8

MountRoll

9

MountOpen

10

CameraTrigger

12

Mount2Pan

13

Mount2Tilt

14

Mount2Roll

15

Mount2Open

16

DifferentialSpoilerLeft1

17

DifferentialSpoilerRight1

19

Elevator

21

Rudder

22

SprayerPump

23

SprayerSpinner

24

FlaperonLeft

25

FlaperonRight

26

GroundSteering

27

Parachute

28

Gripper

29

LandingGear

30

EngineRunEnable

33

Motor1

34

Motor2

35

Motor3

36

Motor4

37

Motor5

38

Motor6

39

Motor7/TailTiltServo

40

Motor8

41

TiltMotorsFront

45

TiltMotorsRear

46

TiltMotorRearLeft

47

TiltMotorRearRight

51

RCIN1

52

RCIN2

53

RCIN3

54

RCIN4

55

RCIN5

56

RCIN6

57

RCIN7

58

RCIN8

59

RCIN9

60

RCIN10

61

RCIN11

62

RCIN12

63

RCIN13

64

RCIN14

65

RCIN15

66

RCIN16

67

Ignition

69

Starter

70

Throttle

73

ThrottleLeft

74

ThrottleRight

75

TiltMotorFrontLeft

76

TiltMotorFrontRight

77

ElevonLeft

78

ElevonRight

79

VTailLeft

80

VTailRight

82

Motor9

83

Motor10

84

Motor11

85

Motor12

86

DifferentialSpoilerLeft2

87

DifferentialSpoilerRight2

90

CameraISO

91

CameraAperture

92

CameraFocus

93

CameraShutterSpeed

94

Script1

95

Script2

96

Script3

97

Script4

98

Script5

99

Script6

100

Script7

101

Script8

102

Script9

103

Script10

104

Script11

105

Script12

106

Script13

107

Script14

108

Script15

109

Script16

120

NeoPixel1

121

NeoPixel2

122

NeoPixel3

123

NeoPixel4

124

RateRoll

125

RatePitch

126

RateThrust

127

RateYaw

129

ProfiLED1

130

ProfiLED2

131

ProfiLED3

132

ProfiLEDClock

134

SERVOn_MIN

135

SERVOn_TRIM

136

SERVOn_MAX

SERVO8_ Parameters

SERVO8_MIN: Minimum PWM

minimum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Increment

Range

Units

1

500 - 2200

PWM in microseconds

SERVO8_MAX: Maximum PWM

maximum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Increment

Range

Units

1

800 - 2200

PWM in microseconds

SERVO8_TRIM: Trim PWM

Trim PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Increment

Range

Units

1

800 - 2200

PWM in microseconds

SERVO8_REVERSED: Servo reverse

Reverse servo operation. Set to 0 for normal operation. Set to 1 to reverse this output channel.

Values

Value

Meaning

0

Normal

1

Reversed

SERVO8_FUNCTION: Servo output function

Function assigned to this servo. Setting this to Disabled(0) will setup this output for control by auto missions or MAVLink servo set commands. any other value will enable the corresponding function

Values

Value

Meaning

0

Disabled

1

RCPassThru

2

Flap

3

FlapAuto

4

Aileron

6

MountPan

7

MountTilt

8

MountRoll

9

MountOpen

10

CameraTrigger

12

Mount2Pan

13

Mount2Tilt

14

Mount2Roll

15

Mount2Open

16

DifferentialSpoilerLeft1

17

DifferentialSpoilerRight1

19

Elevator

21

Rudder

22

SprayerPump

23

SprayerSpinner

24

FlaperonLeft

25

FlaperonRight

26

GroundSteering

27

Parachute

28

Gripper

29

LandingGear

30

EngineRunEnable

33

Motor1

34

Motor2

35

Motor3

36

Motor4

37

Motor5

38

Motor6

39

Motor7/TailTiltServo

40

Motor8

41

TiltMotorsFront

45

TiltMotorsRear

46

TiltMotorRearLeft

47

TiltMotorRearRight

51

RCIN1

52

RCIN2

53

RCIN3

54

RCIN4

55

RCIN5

56

RCIN6

57

RCIN7

58

RCIN8

59

RCIN9

60

RCIN10

61

RCIN11

62

RCIN12

63

RCIN13

64

RCIN14

65

RCIN15

66

RCIN16

67

Ignition

69

Starter

70

Throttle

73

ThrottleLeft

74

ThrottleRight

75

TiltMotorFrontLeft

76

TiltMotorFrontRight

77

ElevonLeft

78

ElevonRight

79

VTailLeft

80

VTailRight

82

Motor9

83

Motor10

84

Motor11

85

Motor12

86

DifferentialSpoilerLeft2

87

DifferentialSpoilerRight2

90

CameraISO

91

CameraAperture

92

CameraFocus

93

CameraShutterSpeed

94

Script1

95

Script2

96

Script3

97

Script4

98

Script5

99

Script6

100

Script7

101

Script8

102

Script9

103

Script10

104

Script11

105

Script12

106

Script13

107

Script14

108

Script15

109

Script16

120

NeoPixel1

121

NeoPixel2

122

NeoPixel3

123

NeoPixel4

124

RateRoll

125

RatePitch

126

RateThrust

127

RateYaw

129

ProfiLED1

130

ProfiLED2

131

ProfiLED3

132

ProfiLEDClock

134

SERVOn_MIN

135

SERVOn_TRIM

136

SERVOn_MAX

SERVO9_ Parameters

SERVO9_MIN: Minimum PWM

minimum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Increment

Range

Units

1

500 - 2200

PWM in microseconds

SERVO9_MAX: Maximum PWM

maximum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Increment

Range

Units

1

800 - 2200

PWM in microseconds

SERVO9_TRIM: Trim PWM

Trim PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Increment

Range

Units

1

800 - 2200

PWM in microseconds

SERVO9_REVERSED: Servo reverse

Reverse servo operation. Set to 0 for normal operation. Set to 1 to reverse this output channel.

Values

Value

Meaning

0

Normal

1

Reversed

SERVO9_FUNCTION: Servo output function

Function assigned to this servo. Setting this to Disabled(0) will setup this output for control by auto missions or MAVLink servo set commands. any other value will enable the corresponding function

Values

Value

Meaning

0

Disabled

1

RCPassThru

2

Flap

3

FlapAuto

4

Aileron

6

MountPan

7

MountTilt

8

MountRoll

9

MountOpen

10

CameraTrigger

12

Mount2Pan

13

Mount2Tilt

14

Mount2Roll

15

Mount2Open

16

DifferentialSpoilerLeft1

17

DifferentialSpoilerRight1

19

Elevator

21

Rudder

22

SprayerPump

23

SprayerSpinner

24

FlaperonLeft

25

FlaperonRight

26

GroundSteering

27

Parachute

28

Gripper

29

LandingGear

30

EngineRunEnable

33

Motor1

34

Motor2

35

Motor3

36

Motor4

37

Motor5

38

Motor6

39

Motor7/TailTiltServo

40

Motor8

41

TiltMotorsFront

45

TiltMotorsRear

46

TiltMotorRearLeft

47

TiltMotorRearRight

51

RCIN1

52

RCIN2

53

RCIN3

54

RCIN4

55

RCIN5

56

RCIN6

57

RCIN7

58

RCIN8

59

RCIN9

60

RCIN10

61

RCIN11

62

RCIN12

63

RCIN13

64

RCIN14

65

RCIN15

66

RCIN16

67

Ignition

69

Starter

70

Throttle

73

ThrottleLeft

74

ThrottleRight

75

TiltMotorFrontLeft

76

TiltMotorFrontRight

77

ElevonLeft

78

ElevonRight

79

VTailLeft

80

VTailRight

82

Motor9

83

Motor10

84

Motor11

85

Motor12

86

DifferentialSpoilerLeft2

87

DifferentialSpoilerRight2

90

CameraISO

91

CameraAperture

92

CameraFocus

93

CameraShutterSpeed

94

Script1

95

Script2

96

Script3

97

Script4

98

Script5

99

Script6

100

Script7

101

Script8

102

Script9

103

Script10

104

Script11

105

Script12

106

Script13

107

Script14

108

Script15

109

Script16

120

NeoPixel1

121

NeoPixel2

122

NeoPixel3

123

NeoPixel4

124

RateRoll

125

RatePitch

126

RateThrust

127

RateYaw

129

ProfiLED1

130

ProfiLED2

131

ProfiLED3

132

ProfiLEDClock

134

SERVOn_MIN

135

SERVOn_TRIM

136

SERVOn_MAX

SERVO_BLH_ Parameters

SERVO_BLH_MASK: BLHeli Channel Bitmask

Note: This parameter is for advanced users

Enable of BLHeli pass-thru servo protocol support to specific channels. This mask is in addition to motors enabled using SERVO_BLH_AUTO (if any)

Bitmask

Bit

Meaning

0

Channel1

1

Channel2

2

Channel3

3

Channel4

4

Channel5

5

Channel6

6

Channel7

7

Channel8

8

Channel9

9

Channel10

10

Channel11

11

Channel12

12

Channel13

13

Channel14

14

Channel15

15

Channel16

SERVO_BLH_AUTO: BLHeli pass-thru auto-enable for multicopter motors

If set to 1 this auto-enables BLHeli pass-thru support for all multicopter motors

Values

Value

Meaning

0

Disabled

1

Enabled

SERVO_BLH_TEST: BLHeli internal interface test

Note: This parameter is for advanced users

Setting SERVO_BLH_TEST to a motor number enables an internal test of the BLHeli ESC protocol to the corresponding ESC. The debug output is displayed on the USB console.

Values

Value

Meaning

0

Disabled

1

TestMotor1

2

TestMotor2

3

TestMotor3

4

TestMotor4

5

TestMotor5

6

TestMotor6

7

TestMotor7

8

TestMotor8

SERVO_BLH_TMOUT: BLHeli protocol timeout

This sets the inactivity timeout for the BLHeli protocol in seconds. If no packets are received in this time normal MAVLink operations are resumed. A value of 0 means no timeout

Range

Units

0 - 300

seconds

SERVO_BLH_TRATE: BLHeli telemetry rate

This sets the rate in Hz for requesting telemetry from ESCs. It is the rate per ESC. Setting to zero disables telemetry requests

Range

Units

0 - 500

hertz

SERVO_BLH_DEBUG: BLHeli debug level

When set to 1 this enabled verbose debugging output over MAVLink when the blheli protocol is active. This can be used to diagnose failures.

Values

Value

Meaning

0

Disabled

1

Enabled

SERVO_BLH_OTYPE: BLHeli output type override

Note: This parameter is for advanced users

When set to a non-zero value this overrides the output type for the output channels given by SERVO_BLH_MASK. This can be used to enable DShot on outputs that are not part of the multicopter motors group.

Values

Value

Meaning

0

None

1

OneShot

2

OneShot125

3

Brushed

4

DShot150

5

DShot300

6

DShot600

7

DShot1200

SERVO_BLH_PORT: Control port

Note: This parameter is for advanced users

This sets the serial port to use for blheli pass-thru

Values

Value

Meaning

0

Console

1

Serial1

2

Serial2

3

Serial3

4

Serial4

5

Serial5

SERVO_BLH_POLES: BLHeli Motor Poles

Note: This parameter is for advanced users

This allows calculation of true RPM from ESC's eRPM. The default is 14.

Range

1 - 127

SERVO_BLH_3DMASK: BLHeli bitmask of 3D channels

Note: This parameter is for advanced users

Mask of channels which are dynamically reversible. This is used to configure ESCs in '3D' mode, allowing for the motor to spin in either direction

Bitmask

Bit

Meaning

0

Channel1

1

Channel2

2

Channel3

3

Channel4

4

Channel5

5

Channel6

6

Channel7

7

Channel8

8

Channel9

9

Channel10

10

Channel11

11

Channel12

12

Channel13

13

Channel14

14

Channel15

15

Channel16

SERVO_BLH_BDMASK: BLHeli bitmask of bi-directional dshot channels

Note: This parameter is for advanced users

Mask of channels which support bi-directional dshot. This is used for ESCs which have firmware that supports bi-directional dshot allowing fast rpm telemetry values to be returned for the harmonic notch.

Bitmask

Bit

Meaning

0

Channel1

1

Channel2

2

Channel3

3

Channel4

4

Channel5

5

Channel6

6

Channel7

7

Channel8

8

Channel9

9

Channel10

10

Channel11

11

Channel12

12

Channel13

13

Channel14

14

Channel15

15

Channel16

SERVO_BLH_RVMASK: BLHeli bitmask of reversed channels

Note: This parameter is for advanced users

Mask of channels which are reversed. This is used to configure ESCs in reversed mode

Bitmask

Bit

Meaning

0

Channel1

1

Channel2

2

Channel3

3

Channel4

4

Channel5

5

Channel6

6

Channel7

7

Channel8

8

Channel9

9

Channel10

10

Channel11

11

Channel12

12

Channel13

13

Channel14

14

Channel15

15

Channel16

SERVO_FTW_ Parameters

SERVO_FTW_MASK: Servo channel output bitmask

Servo channel mask specifying FETtec ESC output.

Bitmask

RebootRequired

Bit

Meaning

0

SERVO1

1

SERVO2

2

SERVO3

3

SERVO4

4

SERVO5

5

SERVO6

6

SERVO7

7

SERVO8

8

SERVO9

9

SERVO10

10

SERVO11

11

SERVO12

True

SERVO_FTW_RVMASK: Servo channel reverse rotation bitmask

Servo channel mask to reverse rotation of FETtec ESC outputs.

Bitmask

Bit

Meaning

0

SERVO1

1

SERVO2

2

SERVO3

3

SERVO4

4

SERVO5

5

SERVO6

6

SERVO7

7

SERVO8

8

SERVO9

9

SERVO10

10

SERVO11

11

SERVO12

SERVO_FTW_POLES: Nr. electrical poles

Number of motor electrical poles

Range

2 - 50

SERVO_ROB_ Parameters

SERVO_ROB_POSMIN: Robotis servo position min

Position minimum at servo min value. This should be within the position control range of the servos, normally 0 to 4095

Range

0 - 4095

SERVO_ROB_POSMAX: Robotis servo position max

Position maximum at servo max value. This should be within the position control range of the servos, normally 0 to 4095

Range

0 - 4095

SERVO_SBUS_ Parameters

SERVO_SBUS_RATE: SBUS default output rate

Note: This parameter is for advanced users

This sets the SBUS output frame rate in Hz.

Range

Units

25 - 250

hertz

SERVO_VOLZ_ Parameters

SERVO_VOLZ_MASK: Channel Bitmask

Enable of volz servo protocol to specific channels

Bitmask

Bit

Meaning

0

Channel1

1

Channel2

2

Channel3

3

Channel4

4

Channel5

5

Channel6

6

Channel7

7

Channel8

8

Channel9

9

Channel10

10

Channel11

11

Channel12

12

Channel13

13

Channel14

14

Channel15

15

Channel16

SOAR_ Parameters

SOAR_ENABLE: Is the soaring mode enabled or not

Note: This parameter is for advanced users

Toggles the soaring mode on and off

Values

Value

Meaning

0

Disable

1

Enable

SOAR_VSPEED: Vertical v-speed

Note: This parameter is for advanced users

Rate of climb to trigger themalling speed

Range

Units

0 - 10

meters per second

SOAR_Q1: Process noise

Note: This parameter is for advanced users

Standard deviation of noise in process for strength

Range

0.0001 - 0.01

SOAR_Q2: Process noise

Note: This parameter is for advanced users

Standard deviation of noise in process for position and radius

Range

0.01 - 1

SOAR_R: Measurement noise

Note: This parameter is for advanced users

Standard deviation of noise in measurement

Range

0.01 - 1

SOAR_DIST_AHEAD: Distance to thermal center

Note: This parameter is for advanced users

Initial guess of the distance to the thermal center

Range

Units

0 - 100

meters

SOAR_MIN_THML_S: Minimum thermalling time

Note: This parameter is for advanced users

Minimum number of seconds to spend thermalling

Range

Units

0 - 600

seconds

SOAR_MIN_CRSE_S: Minimum cruising time

Note: This parameter is for advanced users

Minimum number of seconds to spend cruising

Range

Units

0 - 600

seconds

SOAR_POLAR_CD0: Zero lift drag coef.

Note: This parameter is for advanced users

Zero lift drag coefficient

Range

0.005 - 0.5

SOAR_POLAR_B: Induced drag coeffient

Note: This parameter is for advanced users

Induced drag coeffient

Range

0.005 - 0.05

SOAR_POLAR_K: Cl factor

Note: This parameter is for advanced users

Cl factor 2*m*g/(rho*S)

Range

Units

20 - 400

square meter per square second

SOAR_ALT_MAX: Maximum soaring altitude, relative to the home location

Note: This parameter is for advanced users

Don't thermal any higher than this.

Range

Units

0 - 5000.0

meters

SOAR_ALT_MIN: Minimum soaring altitude, relative to the home location

Note: This parameter is for advanced users

Don't get any lower than this.

Range

Units

0 - 1000.0

meters

SOAR_ALT_CUTOFF: Maximum power altitude, relative to the home location

Note: This parameter is for advanced users

Cut off throttle at this alt.

Range

Units

0 - 5000.0

meters

SOAR_MAX_DRIFT: (Optional) Maximum drift distance to allow when thermalling.

Note: This parameter is for advanced users

The previous mode will be restored if the horizontal distance to the thermalling start location exceeds this value. -1 to disable.

Range

0 - 1000

SOAR_MAX_RADIUS: (Optional) Maximum distance from home

Note: This parameter is for advanced users

RTL will be entered when a thermal is exited and the plane is more than this distance from home. -1 to disable.

Range

0 - 1000

SOAR_THML_BANK: Thermalling bank angle

Note: This parameter is for advanced users

This parameter sets the bank angle to use when thermalling. Typically 30 - 45 degrees works well.

Range

Units

20 - 50

degrees

SR0_ Parameters

SR0_RAW_SENS: Raw sensor stream rate

Note: This parameter is for advanced users

Raw sensor stream rate to ground station

Increment

Range

Units

1

0 - 50

hertz

SR0_EXT_STAT: Extended status stream rate to ground station

Note: This parameter is for advanced users

Extended status stream rate to ground station

Increment

Range

Units

1

0 - 50

hertz

SR0_RC_CHAN: RC Channel stream rate to ground station

Note: This parameter is for advanced users

RC Channel stream rate to ground station

Increment

Range

Units

1

0 - 50

hertz

SR0_RAW_CTRL: Raw Control stream rate to ground station

Note: This parameter is for advanced users

Raw Control stream rate to ground station

Increment

Range

Units

1

0 - 50

hertz

SR0_POSITION: Position stream rate to ground station

Note: This parameter is for advanced users

Position stream rate to ground station

Increment

Range

Units

1

0 - 50

hertz

SR0_EXTRA1: Extra data type 1 stream rate to ground station

Note: This parameter is for advanced users

Extra data type 1 stream rate to ground station

Increment

Range

Units

1

0 - 50

hertz

SR0_EXTRA2: Extra data type 2 stream rate to ground station

Note: This parameter is for advanced users

Extra data type 2 stream rate to ground station

Increment

Range

Units

1

0 - 50

hertz

SR0_EXTRA3: Extra data type 3 stream rate to ground station

Note: This parameter is for advanced users

Extra data type 3 stream rate to ground station

Increment

Range

Units

1

0 - 50

hertz

SR0_PARAMS: Parameter stream rate to ground station

Note: This parameter is for advanced users

Parameter stream rate to ground station

Increment

Range

Units

1

0 - 50

hertz

SR0_ADSB: ADSB stream rate to ground station

Note: This parameter is for advanced users

ADSB stream rate to ground station

Increment

Range

Units

1

0 - 50

hertz

SR1_ Parameters

SR1_RAW_SENS: Raw sensor stream rate

Note: This parameter is for advanced users

Raw sensor stream rate to ground station

Increment

Range

Units

1

0 - 50

hertz

SR1_EXT_STAT: Extended status stream rate to ground station

Note: This parameter is for advanced users

Extended status stream rate to ground station

Increment

Range

Units

1

0 - 50

hertz

SR1_RC_CHAN: RC Channel stream rate to ground station

Note: This parameter is for advanced users

RC Channel stream rate to ground station

Increment

Range

Units

1

0 - 50

hertz

SR1_RAW_CTRL: Raw Control stream rate to ground station

Note: This parameter is for advanced users

Raw Control stream rate to ground station

Increment

Range

Units

1

0 - 50

hertz

SR1_POSITION: Position stream rate to ground station

Note: This parameter is for advanced users

Position stream rate to ground station

Increment

Range

Units

1

0 - 50

hertz

SR1_EXTRA1: Extra data type 1 stream rate to ground station

Note: This parameter is for advanced users

Extra data type 1 stream rate to ground station

Increment

Range

Units

1

0 - 50

hertz

SR1_EXTRA2: Extra data type 2 stream rate to ground station

Note: This parameter is for advanced users

Extra data type 2 stream rate to ground station

Increment

Range

Units

1

0 - 50

hertz

SR1_EXTRA3: Extra data type 3 stream rate to ground station

Note: This parameter is for advanced users

Extra data type 3 stream rate to ground station

Increment

Range

Units

1

0 - 50

hertz

SR1_PARAMS: Parameter stream rate to ground station

Note: This parameter is for advanced users

Parameter stream rate to ground station

Increment

Range

Units

1

0 - 50

hertz

SR1_ADSB: ADSB stream rate to ground station

Note: This parameter is for advanced users

ADSB stream rate to ground station

Increment

Range

Units

1

0 - 50

hertz

SR2_ Parameters

SR2_RAW_SENS: Raw sensor stream rate

Note: This parameter is for advanced users

Raw sensor stream rate to ground station

Increment

Range

Units

1

0 - 50

hertz

SR2_EXT_STAT: Extended status stream rate to ground station

Note: This parameter is for advanced users

Extended status stream rate to ground station

Increment

Range

Units

1

0 - 50

hertz

SR2_RC_CHAN: RC Channel stream rate to ground station

Note: This parameter is for advanced users

RC Channel stream rate to ground station

Increment

Range

Units

1

0 - 50

hertz

SR2_RAW_CTRL: Raw Control stream rate to ground station

Note: This parameter is for advanced users

Raw Control stream rate to ground station

Increment

Range

Units

1

0 - 50

hertz

SR2_POSITION: Position stream rate to ground station

Note: This parameter is for advanced users

Position stream rate to ground station

Increment

Range

Units

1

0 - 50

hertz

SR2_EXTRA1: Extra data type 1 stream rate to ground station

Note: This parameter is for advanced users

Extra data type 1 stream rate to ground station

Increment

Range

Units

1

0 - 50

hertz

SR2_EXTRA2: Extra data type 2 stream rate to ground station

Note: This parameter is for advanced users

Extra data type 2 stream rate to ground station

Increment

Range

Units

1

0 - 50

hertz

SR2_EXTRA3: Extra data type 3 stream rate to ground station

Note: This parameter is for advanced users

Extra data type 3 stream rate to ground station

Increment

Range

Units

1

0 - 50

hertz

SR2_PARAMS: Parameter stream rate to ground station

Note: This parameter is for advanced users

Parameter stream rate to ground station

Increment

Range

Units

1

0 - 50

hertz

SR2_ADSB: ADSB stream rate to ground station

Note: This parameter is for advanced users

ADSB stream rate to ground station

Increment

Range

Units

1

0 - 50

hertz

SR3_ Parameters

SR3_RAW_SENS: Raw sensor stream rate

Note: This parameter is for advanced users

Raw sensor stream rate to ground station

Increment

Range

Units

1

0 - 50

hertz

SR3_EXT_STAT: Extended status stream rate to ground station

Note: This parameter is for advanced users

Extended status stream rate to ground station

Increment

Range

Units

1

0 - 50

hertz

SR3_RC_CHAN: RC Channel stream rate to ground station

Note: This parameter is for advanced users

RC Channel stream rate to ground station

Increment

Range

Units

1

0 - 50

hertz

SR3_RAW_CTRL: Raw Control stream rate to ground station

Note: This parameter is for advanced users

Raw Control stream rate to ground station

Increment

Range

Units

1

0 - 50

hertz

SR3_POSITION: Position stream rate to ground station

Note: This parameter is for advanced users

Position stream rate to ground station

Increment

Range

Units

1

0 - 50

hertz

SR3_EXTRA1: Extra data type 1 stream rate to ground station

Note: This parameter is for advanced users

Extra data type 1 stream rate to ground station

Increment

Range

Units

1

0 - 50

hertz

SR3_EXTRA2: Extra data type 2 stream rate to ground station

Note: This parameter is for advanced users

Extra data type 2 stream rate to ground station

Increment

Range

Units

1

0 - 50

hertz

SR3_EXTRA3: Extra data type 3 stream rate to ground station

Note: This parameter is for advanced users

Extra data type 3 stream rate to ground station

Increment

Range

Units

1

0 - 50

hertz

SR3_PARAMS: Parameter stream rate to ground station

Note: This parameter is for advanced users

Parameter stream rate to ground station

Increment

Range

Units

1

0 - 50

hertz

SR3_ADSB: ADSB stream rate to ground station

Note: This parameter is for advanced users

ADSB stream rate to ground station

Increment

Range

Units

1

0 - 50

hertz

SR4_ Parameters

SR4_RAW_SENS: Raw sensor stream rate

Note: This parameter is for advanced users

Raw sensor stream rate to ground station

Increment

Range

Units

1

0 - 50

hertz

SR4_EXT_STAT: Extended status stream rate to ground station

Note: This parameter is for advanced users

Extended status stream rate to ground station

Increment

Range

Units

1

0 - 50

hertz

SR4_RC_CHAN: RC Channel stream rate to ground station

Note: This parameter is for advanced users

RC Channel stream rate to ground station

Increment

Range

Units

1

0 - 50

hertz

SR4_RAW_CTRL: Raw Control stream rate to ground station

Note: This parameter is for advanced users

Raw Control stream rate to ground station

Increment

Range

Units

1

0 - 50

hertz

SR4_POSITION: Position stream rate to ground station

Note: This parameter is for advanced users

Position stream rate to ground station

Increment

Range

Units

1

0 - 50

hertz

SR4_EXTRA1: Extra data type 1 stream rate to ground station

Note: This parameter is for advanced users

Extra data type 1 stream rate to ground station

Increment

Range

Units

1

0 - 50

hertz

SR4_EXTRA2: Extra data type 2 stream rate to ground station

Note: This parameter is for advanced users

Extra data type 2 stream rate to ground station

Increment

Range

Units

1

0 - 50

hertz

SR4_EXTRA3: Extra data type 3 stream rate to ground station

Note: This parameter is for advanced users

Extra data type 3 stream rate to ground station

Increment

Range

Units

1

0 - 50

hertz

SR4_PARAMS: Parameter stream rate to ground station

Note: This parameter is for advanced users

Parameter stream rate to ground station

Increment

Range

Units

1

0 - 50

hertz

SR4_ADSB: ADSB stream rate to ground station

Note: This parameter is for advanced users

ADSB stream rate to ground station

Increment

Range

Units

1

0 - 50

hertz

SR5_ Parameters

SR5_RAW_SENS: Raw sensor stream rate

Note: This parameter is for advanced users

Raw sensor stream rate to ground station

Increment

Range

Units

1

0 - 50

hertz

SR5_EXT_STAT: Extended status stream rate to ground station

Note: This parameter is for advanced users

Extended status stream rate to ground station

Increment

Range

Units

1

0 - 50

hertz

SR5_RC_CHAN: RC Channel stream rate to ground station

Note: This parameter is for advanced users

RC Channel stream rate to ground station

Increment

Range

Units

1

0 - 50

hertz

SR5_RAW_CTRL: Raw Control stream rate to ground station

Note: This parameter is for advanced users

Raw Control stream rate to ground station

Increment

Range

Units

1

0 - 50

hertz

SR5_POSITION: Position stream rate to ground station

Note: This parameter is for advanced users

Position stream rate to ground station

Increment

Range

Units

1

0 - 50

hertz

SR5_EXTRA1: Extra data type 1 stream rate to ground station

Note: This parameter is for advanced users

Extra data type 1 stream rate to ground station

Increment

Range

Units

1

0 - 50

hertz

SR5_EXTRA2: Extra data type 2 stream rate to ground station

Note: This parameter is for advanced users

Extra data type 2 stream rate to ground station

Increment

Range

Units

1

0 - 50

hertz

SR5_EXTRA3: Extra data type 3 stream rate to ground station

Note: This parameter is for advanced users

Extra data type 3 stream rate to ground station

Increment

Range

Units

1

0 - 50

hertz

SR5_PARAMS: Parameter stream rate to ground station

Note: This parameter is for advanced users

Parameter stream rate to ground station

Increment

Range

Units

1

0 - 50

hertz

SR5_ADSB: ADSB stream rate to ground station

Note: This parameter is for advanced users

ADSB stream rate to ground station

Increment

Range

Units

1

0 - 50

hertz

SR6_ Parameters

SR6_RAW_SENS: Raw sensor stream rate

Note: This parameter is for advanced users

Raw sensor stream rate to ground station

Increment

Range

Units

1

0 - 50

hertz

SR6_EXT_STAT: Extended status stream rate to ground station

Note: This parameter is for advanced users

Extended status stream rate to ground station

Increment

Range

Units

1

0 - 50

hertz

SR6_RC_CHAN: RC Channel stream rate to ground station

Note: This parameter is for advanced users

RC Channel stream rate to ground station

Increment

Range

Units

1

0 - 50

hertz

SR6_RAW_CTRL: Raw Control stream rate to ground station

Note: This parameter is for advanced users

Raw Control stream rate to ground station

Increment

Range

Units

1

0 - 50

hertz

SR6_POSITION: Position stream rate to ground station

Note: This parameter is for advanced users

Position stream rate to ground station

Increment

Range

Units

1

0 - 50

hertz

SR6_EXTRA1: Extra data type 1 stream rate to ground station

Note: This parameter is for advanced users

Extra data type 1 stream rate to ground station

Increment

Range

Units

1

0 - 50

hertz

SR6_EXTRA2: Extra data type 2 stream rate to ground station

Note: This parameter is for advanced users

Extra data type 2 stream rate to ground station

Increment

Range

Units

1

0 - 50

hertz

SR6_EXTRA3: Extra data type 3 stream rate to ground station

Note: This parameter is for advanced users

Extra data type 3 stream rate to ground station

Increment

Range

Units

1

0 - 50

hertz

SR6_PARAMS: Parameter stream rate to ground station

Note: This parameter is for advanced users

Parameter stream rate to ground station

Increment

Range

Units

1

0 - 50

hertz

SR6_ADSB: ADSB stream rate to ground station

Note: This parameter is for advanced users

ADSB stream rate to ground station

Increment

Range

Units

1

0 - 50

hertz

STAT Parameters

STAT_BOOTCNT: Boot Count

Number of times board has been booted

ReadOnly

True

STAT_FLTTIME: Total FlightTime

Total FlightTime (seconds)

ReadOnly

Units

True

seconds

STAT_RUNTIME: Total RunTime

Total time autopilot has run

ReadOnly

Units

True

seconds

STAT_RESET: Statistics Reset Time

Seconds since January 1st 2016 (Unix epoch+1451606400) since statistics reset (set to 0 to reset statistics)

ReadOnly

Units

True

seconds

STEER2SRV_ Parameters

STEER2SRV_TCONST: Steering Time Constant

Note: This parameter is for advanced users

This controls the time constant in seconds from demanded to achieved steering angle. A value of 0.75 is a good default and will work with nearly all rovers. Ground steering in aircraft needs a bit smaller time constant, and a value of 0.5 is recommended for best ground handling in fixed wing aircraft. A value of 0.75 means that the controller will try to correct any deviation between the desired and actual steering angle in 0.75 seconds. Advanced users may want to reduce this time to obtain a faster response but there is no point setting a time less than the vehicle can achieve.

Increment

Range

Units

0.1

0.4 - 1.0

seconds

STEER2SRV_P: Steering turning gain

The proportional gain for steering. This should be approximately equal to the diameter of the turning circle of the vehicle at low speed and maximum steering angle

Increment

Range

0.1

0.1 - 10.0

STEER2SRV_I: Integrator Gain

This is the gain from the integral of steering angle. Increasing this gain causes the controller to trim out steady offsets due to an out of trim vehicle.

Increment

Range

0.05

0 - 1.0

STEER2SRV_D: Damping Gain

This adjusts the damping of the steering control loop. This gain helps to reduce steering jitter with vibration. It should be increased in 0.01 increments as too high a value can lead to a high frequency steering oscillation that could overstress the vehicle.

Increment

Range

0.01

0 - 0.1

STEER2SRV_IMAX: Integrator limit

Note: This parameter is for advanced users

This limits the number of degrees of steering in centi-degrees over which the integrator will operate. At the default setting of 1500 centi-degrees, the integrator will be limited to +- 15 degrees of servo travel. The maximum servo deflection is +- 45 centi-degrees, so the default value represents a 1/3rd of the total control throw which is adequate unless the vehicle is severely out of trim.

Increment

Range

Units

10

0 - 4500

centidegrees

STEER2SRV_MINSPD: Minimum speed

This is the minimum assumed ground speed in meters/second for steering. Having a minimum speed prevents oscillations when the vehicle first starts moving. The vehicle can still drive slower than this limit, but the steering calculations will be done based on this minimum speed.

Increment

Range

Units

0.1

0 - 5

meters per second

STEER2SRV_FF: Steering feed forward

The feed forward gain for steering this is the ratio of the achieved turn rate to applied steering. A value of 1 means that the vehicle would yaw at a rate of 45 degrees per second with full steering deflection at 1m/s ground speed.

Increment

Range

0.1

0.0 - 10.0

STEER2SRV_DRTSPD: Derating speed

Note: This parameter is for advanced users

Speed after that the maximum degree of steering will start to derate. Set this speed to a maximum speed that a plane can do controlled turn at maximum angle of steering wheel without rolling to wing. If 0 then no derating is used.

Increment

Range

Units

0.1

0.0 - 30.0

meters per second

STEER2SRV_DRTFCT: Derating factor

Note: This parameter is for advanced users

Degrees of steering wheel to derate at each additional m/s of speed above "Derating speed". Should be set so that at higher speeds the plane does not roll to the wing in turns.

Increment

Range

Units

0.1

0.0 - 50.0

degrees per meter per second

STEER2SRV_DRTMIN: Minimum angle of wheel

Note: This parameter is for advanced users

The angle that limits smallest angle of steering wheel at maximum speed. Even if it should derate below, it will stop derating at this angle.

Increment

Range

Units

10

0 - 4500

centidegrees

TECS_ Parameters

TECS_CLMB_MAX: Maximum Climb Rate (metres/sec)

Maximum demanded climb rate. Do not set higher than the climb speed at THR_MAX at TRIM_ARSPD_CM when the battery is at low voltage. Reduce value if airspeed cannot be maintained on ascent. Increase value if throttle does not increase significantly to ascend.

Increment

Range

0.1

0.1 - 20.0

TECS_SINK_MIN: Minimum Sink Rate (metres/sec)

Minimum sink rate when at THR_MIN and TRIM_ARSPD_CM.

Increment

Range

0.1

0.1 - 10.0

TECS_TIME_CONST: Controller time constant (sec)

Note: This parameter is for advanced users

Time constant of the TECS control algorithm. Small values make faster altitude corrections but can cause overshoot and aggressive behavior.

Increment

Range

0.2

3.0 - 10.0

TECS_THR_DAMP: Controller throttle damping

Note: This parameter is for advanced users

Damping gain for throttle demand loop. Increase to add throttle activity to dampen oscillations in speed and height.

Increment

Range

0.1

0.1 - 1.0

TECS_INTEG_GAIN: Controller integrator

Note: This parameter is for advanced users

Integrator gain to trim out long-term speed and height errors.

Increment

Range

0.02

0.0 - 0.5

TECS_VERT_ACC: Vertical Acceleration Limit (metres/sec^2)

Note: This parameter is for advanced users

Maximum vertical acceleration used to correct speed or height errors.

Increment

Range

0.5

1.0 - 10.0

TECS_HGT_OMEGA: Height complementary filter frequency (radians/sec)

Note: This parameter is for advanced users

This is the cross-over frequency of the complementary filter used to fuse vertical acceleration and baro alt to obtain an estimate of height rate and height.

Increment

Range

0.05

1.0 - 5.0

TECS_SPD_OMEGA: Speed complementary filter frequency (radians/sec)

Note: This parameter is for advanced users

This is the cross-over frequency of the complementary filter used to fuse longitudinal acceleration and airspeed to obtain a lower noise and lag estimate of airspeed.

Increment

Range

0.05

0.5 - 2.0

TECS_RLL2THR: Bank angle compensation gain

Note: This parameter is for advanced users

Gain from bank angle to throttle to compensate for loss of airspeed from drag in turns. Set to approximately 10x the sink rate in m/s caused by a 45-degree turn. High efficiency models may need less while less efficient aircraft may need more. Should be tuned in an automatic mission with waypoints and turns greater than 90 degrees. Tune with PTCH2SRV_RLL and KFF_RDDRMIX to achieve constant airspeed, constant altitude turns.

Increment

Range

1.0

5.0 - 30.0

TECS_SPDWEIGHT: Weighting applied to speed control

Note: This parameter is for advanced users

Mixing of pitch and throttle correction for height and airspeed errors. Pitch controls altitude and throttle controls airspeed if set to 0. Pitch controls airspeed and throttle controls altitude if set to 2 (good for gliders). Blended if set to 1.

Increment

Range

0.1

0.0 - 2.0

TECS_PTCH_DAMP: Controller pitch damping

Note: This parameter is for advanced users

Damping gain for pitch control from TECS control. Increasing may correct for oscillations in speed and height, but too much may cause additional oscillation and degraded control.

Increment

Range

0.1

0.1 - 1.0

TECS_SINK_MAX: Maximum Descent Rate (metres/sec)

Maximum demanded descent rate. Do not set higher than the vertical speed the aircraft can maintain at THR_MIN, TECS_PITCH_MIN, and ARSPD_FBW_MAX.

Increment

Range

0.1

0.0 - 20.0

TECS_LAND_ARSPD: Airspeed during landing approach (m/s)

When performing an autonomus landing, this value is used as the goal airspeed during approach. Note that this parameter is not useful if your platform does not have an airspeed sensor (use TECS_LAND_THR instead). If negative then this value is not used during landing.

Increment

Range

1

-1 - 127

TECS_LAND_THR: Cruise throttle during landing approach (percentage)

Use this parameter instead of LAND_ARSPD if your platform does not have an airspeed sensor. It is the cruise throttle during landing approach. If this value is negative then it is disabled and TECS_LAND_ARSPD is used instead.

Increment

Range

0.1

-1 - 100

TECS_LAND_SPDWGT: Weighting applied to speed control during landing.

Note: This parameter is for advanced users

Same as SPDWEIGHT parameter, with the exception that this parameter is applied during landing flight stages. A value closer to 2 will result in the plane ignoring height error during landing and our experience has been that the plane will therefore keep the nose up -- sometimes good for a glider landing (with the side effect that you will likely glide a ways past the landing point). A value closer to 0 results in the plane ignoring speed error -- use caution when lowering the value below 1 -- ignoring speed could result in a stall. Values between 0 and 2 are valid values for a fixed landing weight. When using -1 the weight will be scaled during the landing. At the start of the landing approach it starts with TECS_SPDWEIGHT and scales down to 0 by the time you reach the land point. Example: Halfway down the landing approach you'll effectively have a weight of TECS_SPDWEIGHT/2.

Increment

Range

0.1

-1.0 - 2.0

TECS_PITCH_MAX: Maximum pitch in auto flight

Note: This parameter is for advanced users

Overrides LIM_PITCH_MAX in automatic throttle modes to reduce climb rates. Uses LIM_PITCH_MAX if set to 0. For proper TECS tuning, set to the angle that the aircraft can climb at TRIM_ARSPD_CM and THR_MAX.

Increment

Range

1

0 - 45

TECS_PITCH_MIN: Minimum pitch in auto flight

Note: This parameter is for advanced users

Overrides LIM_PITCH_MIN in automatic throttle modes to reduce descent rates. Uses LIM_PITCH_MIN if set to 0. For proper TECS tuning, set to the angle that the aircraft can descend at without overspeeding.

Increment

Range

1

-45 - 0

TECS_LAND_SINK: Sink rate for final landing stage

Note: This parameter is for advanced users

The sink rate in meters/second for the final stage of landing.

Increment

Range

0.1

0.0 - 2.0

TECS_LAND_TCONST: Land controller time constant (sec)

Note: This parameter is for advanced users

This is the time constant of the TECS control algorithm when in final landing stage of flight. It should be smaller than TECS_TIME_CONST to allow for faster flare

Increment

Range

0.2

1.0 - 5.0

TECS_LAND_DAMP: Controller sink rate to pitch gain during flare

Note: This parameter is for advanced users

This is the sink rate gain for the pitch demand loop when in final landing stage of flight. It should be larger than TECS_PTCH_DAMP to allow for better sink rate control during flare.

Increment

Range

0.1

0.1 - 1.0

TECS_LAND_PMAX: Maximum pitch during final stage of landing

Note: This parameter is for advanced users

This limits the pitch used during the final stage of automatic landing. During the final landing stage most planes need to keep their pitch small to avoid stalling. A maximum of 10 degrees is usually good. A value of zero means to use the normal pitch limits.

Increment

Range

1

-5 - 40

TECS_APPR_SMAX: Sink rate max for landing approach stage

Note: This parameter is for advanced users

The sink rate max for the landing approach stage of landing. This will need to be large for steep landing approaches especially when using reverse thrust. If 0, then use TECS_SINK_MAX.

Increment

Range

Units

0.1

0.0 - 20.0

meters per second

TECS_LAND_SRC: Land sink rate change

Note: This parameter is for advanced users

When zero, the flare sink rate (TECS_LAND_SINK) is a fixed sink demand. With this enabled the flare sinkrate will increase/decrease the flare sink demand as you get further beyond the LAND waypoint. Has no effect before the waypoint. This value is added to TECS_LAND_SINK proportional to distance traveled after wp. With an increasing sink rate you can still land in a given distance if you're traveling too fast and cruise passed the land point. A positive value will force the plane to land sooner proportional to distance passed land point. A negative number will tell the plane to slowly climb allowing for a pitched-up stall landing. Recommend 0.2 as initial value.

Increment

Range

Units

0.1

-2.0 - 2.0

meters per second per meter

TECS_LAND_TDAMP: Controller throttle damping when landing

Note: This parameter is for advanced users

Damping gain for the throttle demand loop during an auto-landing. Same as TECS_THR_DAMP but only in effect during an auto-land. Increase to add throttle activity to dampen oscillations in speed and height. When set to 0 landing throttle damping is controlled by TECS_THR_DAMP.

Increment

Range

0.1

0.1 - 1.0

TECS_LAND_IGAIN: Controller integrator during landing

Note: This parameter is for advanced users

This is the integrator gain on the control loop during landing. When set to 0 then TECS_INTEG_GAIN is used. Increase to increase the rate at which speed and height offsets are trimmed out. Typically values lower than TECS_INTEG_GAIN work best

Increment

Range

0.02

0.0 - 0.5

TECS_TKOFF_IGAIN: Controller integrator during takeoff

Note: This parameter is for advanced users

This is the integrator gain on the control loop during takeoff. When set to 0 then TECS_INTEG_GAIN is used. Increase to increase the rate at which speed and height offsets are trimmed out. Typically values higher than TECS_INTEG_GAIN work best

Increment

Range

0.02

0.0 - 0.5

TECS_LAND_PDAMP: Pitch damping gain when landing

Note: This parameter is for advanced users

This is the damping gain for the pitch demand loop during landing. Increase to add damping to correct for oscillations in speed and height. If set to 0 then TECS_PTCH_DAMP will be used instead.

Increment

Range

0.1

0.1 - 1.0

TECS_SYNAIRSPEED: Enable the use of synthetic airspeed

Note: This parameter is for advanced users

This enable the use of synthetic airspeed for aircraft that don't have a real airspeed sensor. This is useful for development testing where the user is aware of the considerable limitations of the synthetic airspeed system, such as very poor estimates when a wind estimate is not accurate. Do not enable this option unless you fully understand the limitations of a synthetic airspeed estimate.

Values

Value

Meaning

0

Disable

1

Enable

TECS_OPTIONS: Extra TECS options

Note: This parameter is for advanced users

This allows the enabling of special features in the speed/height controller

Bitmask

Bit

Meaning

0

GliderOnly

TECS_PTCH_FF_V0: Baseline airspeed for pitch feed-forward.

Note: This parameter is for advanced users

This parameter sets the airspeed at which no feed-forward is applied between demanded airspeed and pitch. It should correspond to the airspeed in metres per second at which the plane glides at neutral pitch including STAB_PITCH_DOWN.

Range

5.0 - 50.0

TECS_PTCH_FF_K: Gain for pitch feed-forward.

Note: This parameter is for advanced users

This parameter sets the gain between demanded airspeed and pitch. It has units of radians per metre per second and should generally be negative. A good starting value is -0.04 for gliders and -0.08 for draggy airframes. The default (0.0) disables this feed-forward.

Range

-5.0 - 0.0

TERRAIN_ Parameters

TERRAIN_ENABLE: Terrain data enable

Note: This parameter is for advanced users

enable terrain data. This enables the vehicle storing a database of terrain data on the SD card. The terrain data is requested from the ground station as needed, and stored for later use on the SD card. To be useful the ground station must support TERRAIN_REQUEST messages and have access to a terrain database, such as the SRTM database.

Values

Value

Meaning

0

Disable

1

Enable

TERRAIN_SPACING: Terrain grid spacing

Note: This parameter is for advanced users

Distance between terrain grid points in meters. This controls the horizontal resolution of the terrain data that is stored on te SD card and requested from the ground station. If your GCS is using the ArduPilot SRTM database like Mission Planner or MAVProxy, then a resolution of 100 meters is appropriate. Grid spacings lower than 100 meters waste SD card space if the GCS cannot provide that resolution. The grid spacing also controls how much data is kept in memory during flight. A larger grid spacing will allow for a larger amount of data in memory. A grid spacing of 100 meters results in the vehicle keeping 12 grid squares in memory with each grid square having a size of 2.7 kilometers by 3.2 kilometers. Any additional grid squares are stored on the SD once they are fetched from the GCS and will be loaded as needed.

Increment

Units

1

meters

TERRAIN_OPTIONS: Terrain options

Note: This parameter is for advanced users

Options to change behaviour of terrain system

Bitmask

Bit

Meaning

0

Disable Download

TKOFF_ Parameters

TKOFF_ALT: Takeoff mode altitude

This is the target altitude for TAKEOFF mode

Increment

Range

Units

1

0 - 200

meters

TKOFF_LVL_ALT: Takeoff mode altitude level altitude

This is the altitude below which wings are held level for TAKEOFF mode

Increment

Range

Units

1

0 - 50

meters

TKOFF_LVL_PITCH: Takeoff mode altitude initial pitch

This is the target pitch for the initial climb to TKOFF_LVL_ALT

Increment

Range

Units

1

0 - 30

degrees

TKOFF_DIST: Takeoff mode distance

This is the distance from the takeoff location where the plane will loiter. The loiter point will be in the direction of takeoff (the direction the plane is facing when the motor starts)

Increment

Range

Units

1

0 - 500

meters

TUNE_ Parameters

TUNE_PARAM: Transmitter tuning parameter or set of parameters

This sets which parameter or set of parameters will be tuned. Values greater than 100 indicate a set of parameters rather than a single parameter. Parameters less than 50 are for QuadPlane vertical lift motors only.

Values

Value

Meaning

0

None

1

RateRollPI

2

RateRollP

3

RateRollI

4

RateRollD

5

RatePitchPI

6

RatePitchP

7

RatePitchI

8

RatePitchD

9

RateYawPI

10

RateYawP

11

RateYawI

12

RateYawD

13

AngleRollP

14

AnglePitchP

15

AngleYawP

16

PosXYP

17

PosZP

18

VelXYP

19

VelXYI

20

VelZP

21

AccelZP

22

AccelZI

23

AccelZD

50

FixedWingRollP

51

FixedWingRollI

52

FixedWingRollD

53

FixedWingRollFF

54

FixedWingPitchP

55

FixedWingPitchI

56

FixedWingPitchD

57

FixedWingPitchFF

101

Set_RateRollPitch

102

Set_RateRoll

103

Set_RatePitch

104

Set_RateYaw

105

Set_AngleRollPitch

106

Set_VelXY

107

Set_AccelZ

TUNE_CHAN: Transmitter tuning channel

This sets the channel for transmitter tuning. This should be connected to a knob or slider on your transmitter. It needs to be setup to use the PWM range given by TUNE_CHAN_MIN to TUNE_CHAN_MAX

Values

Value

Meaning

0

Disable

5

Chan5

6

Chan6

7

Chan7

8

Chan8

9

Chan9

10

Chan10

11

Chan11

12

Chan12

13

Chan13

14

Chan14

15

Chan15

16

Chan16

TUNE_CHAN_MIN: Transmitter tuning channel minimum pwm

This sets the PWM lower limit for the tuning channel

Range

900 - 2100

TUNE_CHAN_MAX: Transmitter tuning channel maximum pwm

This sets the PWM upper limit for the tuning channel

Range

900 - 2100

TUNE_SELECTOR: Transmitter tuning selector channel

This sets the channel for the transmitter tuning selector switch. This should be a 2 position switch, preferably spring loaded. A PWM above 1700 means high, below 1300 means low. If no selector is set then you won't be able to switch between parameters during flight or re-center the tuning knob

Values

Value

Meaning

0

Disable

1

Chan1

2

Chan3

3

Chan3

4

Chan4

5

Chan5

6

Chan6

7

Chan7

8

Chan8

9

Chan9

10

Chan10

11

Chan11

12

Chan12

13

Chan13

14

Chan14

15

Chan15

16

Chan16

TUNE_RANGE: Transmitter tuning range

This sets the range over which tuning will change a parameter. A value of 2 means the tuning parameter will go from 0.5 times the start value to 2x the start value over the range of the tuning channel

TUNE_MODE_REVERT: Revert on mode change

This controls whether tuning values will revert on a flight mode change.

Values

Value

Meaning

0

Disable

1

Enable

TUNE_ERR_THRESH: Controller error threshold

This sets the controller error threshold above which an alarm will sound and a message will be sent to the GCS to warn of controller instability

Range

0 - 1

VISO Parameters

VISO_TYPE: Visual odometry camera connection type

Note: This parameter is for advanced users

Visual odometry camera connection type

RebootRequired

Values

True

Value

Meaning

0

None

1

MAVLink

2

IntelT265

VISO_POS_X: Visual odometry camera X position offset

Note: This parameter is for advanced users

X position of the camera in body frame. Positive X is forward of the origin.

Increment

Range

Units

0.01

-5 - 5

meters

VISO_POS_Y: Visual odometry camera Y position offset

Note: This parameter is for advanced users

Y position of the camera in body frame. Positive Y is to the right of the origin.

Increment

Range

Units

0.01

-5 - 5

meters

VISO_POS_Z: Visual odometry camera Z position offset

Note: This parameter is for advanced users

Z position of the camera in body frame. Positive Z is down from the origin.

Increment

Range

Units

0.01

-5 - 5

meters

VISO_ORIENT: Visual odometery camera orientation

Note: This parameter is for advanced users

Visual odometery camera orientation

Values

Value

Meaning

0

Forward

2

Right

4

Back

6

Left

24

Up

25

Down

VISO_SCALE: Visual odometry scaling factor

Note: This parameter is for advanced users

Visual odometry scaling factor applied to position estimates from sensor

VISO_DELAY_MS: Visual odometry sensor delay

Note: This parameter is for advanced users

Visual odometry sensor delay relative to inertial measurements

Range

Units

0 - 250

milliseconds

VISO_VEL_M_NSE: Visual odometry velocity measurement noise

Note: This parameter is for advanced users

Visual odometry velocity measurement noise in m/s

Range

Units

0.05 - 5.0

meters per second

VISO_POS_M_NSE: Visual odometry position measurement noise

Note: This parameter is for advanced users

Visual odometry position measurement noise minimum (meters). This value will be used if the sensor provides a lower noise value (or no noise value)

Range

Units

0.1 - 10.0

meters

VISO_YAW_M_NSE: Visual odometry yaw measurement noise

Note: This parameter is for advanced users

Visual odometry yaw measurement noise minimum (radians), This value will be used if the sensor provides a lower noise value (or no noise value)

Range

Units

0.05 - 1.0

radians

VTX_ Parameters

VTX_ENABLE: Is the Video Transmitter enabled or not

Toggles the Video Transmitter on and off

Values

Value

Meaning

0

Disable

1

Enable

VTX_POWER: Video Transmitter Power Level

Video Transmitter Power Level. Different VTXs support different power levels, the power level chosen will be rounded down to the nearest supported power level

Range

1 - 1000

VTX_CHANNEL: Video Transmitter Channel

Video Transmitter Channel

Range

0 - 7

VTX_BAND: Video Transmitter Band

Video Transmitter Band

Values

Value

Meaning

0

Band A

1

Band B

2

Band E

3

Airwave

4

RaceBand

5

Low RaceBand

VTX_FREQ: Video Transmitter Frequency

Video Transmitter Frequency. The frequency is derived from the setting of BAND and CHANNEL

Range

ReadOnly

5000 - 6000

True

VTX_OPTIONS: Video Transmitter Options

Note: This parameter is for advanced users

Video Transmitter Options. Pitmode puts the VTX in a low power state. Unlocked enables certain restricted frequencies and power levels. Do not enable the Unlocked option unless you have appropriate permissions in your jurisdiction to transmit at high power levels.

Bitmask

Bit

Meaning

0

Pitmode

1

Pitmode until armed

2

Pitmode when disarmed

3

Unlocked

4

Add leading zero byte to requests

VTX_MAX_POWER: Video Transmitter Max Power Level

Video Transmitter Maximum Power Level. Different VTXs support different power levels, this prevents the power aux switch from requesting too high a power level. The switch supports 6 power levels and the selected power will be a subdivision between 0 and this setting.

Range

25 - 1000

YAW2SRV_ Parameters

YAW2SRV_SLIP: Sideslip control gain

Note: This parameter is for advanced users

Gain from lateral acceleration to demanded yaw rate for aircraft with enough fuselage area to detect lateral acceleration and sideslips. Do not enable for flying wings and gliders. Actively coordinates flight more than just yaw damping. Set after YAW2SRV_DAMP and YAW2SRV_INT are tuned.

Increment

Range

0.25

0 - 4

YAW2SRV_INT: Sideslip control integrator

Note: This parameter is for advanced users

Integral gain from lateral acceleration error. Effectively trims rudder to eliminate long-term sideslip.

Increment

Range

0.25

0 - 2

YAW2SRV_DAMP: Yaw damping

Note: This parameter is for advanced users

Gain from yaw rate to rudder. Most effective at yaw damping and should be tuned after KFF_RDDRMIX. Also disables YAW2SRV_INT if set to 0.

Increment

Range

0.25

0 - 2

YAW2SRV_RLL: Yaw coordination gain

Note: This parameter is for advanced users

Gain to the yaw rate required to keep it consistent with the turn rate in a coordinated turn. Corrects for yaw tendencies after the turn is established. Increase yaw into the turn by raising. Increase yaw out of the turn by decreasing. Values outside of 0.9-1.1 range indicate airspeed calibration problems.

Increment

Range

0.05

0.8 - 1.2

YAW2SRV_IMAX: Integrator limit

Note: This parameter is for advanced users

Limit of yaw integrator gain in centi-degrees of servo travel. Servos are assumed to have +/- 4500 centi-degrees of travel, so a value of 1500 allows trim of up to 1/3 of servo travel range.

Increment

Range

1

0 - 4500