Complete Parameter List

Full Parameter List of Copter stable V4.4.4

You can change and check the parameters for another version:

This is a complete list of the parameters which can be set (e.g. via the MAVLink protocol) to control vehicle behaviour. They are stored in persistent storage on the vehicle.

This list is automatically generated from the latest ardupilot source code, and so may contain parameters which are not yet in the stable released versions of the code.

ArduCopter Parameters

FORMAT_VERSION: Eeprom format version number

Note: This parameter is for advanced users

This value is incremented when changes are made to the eeprom format

ReadOnly

True

SYSID_MYGCS: My ground station number

Note: This parameter is for advanced users

Allows restricting radio overrides to only come from my ground station

Range

1 to 255

PILOT_THR_FILT: Throttle filter cutoff

Note: This parameter is for advanced users

Throttle filter cutoff (Hz) - active whenever altitude control is inactive - 0 to disable

Increment

Range

Units

.5

0 to 10

hertz

PILOT_TKOFF_ALT: Pilot takeoff altitude

Altitude that altitude control modes will climb to when a takeoff is triggered with the throttle stick.

Increment

Range

Units

10

0.0 to 1000.0

centimeters

PILOT_THR_BHV: Throttle stick behavior

Bitmask containing various throttle stick options. TX with sprung throttle can set PILOT_THR_BHV to "1" so motor feedback when landed starts from mid-stick instead of bottom of stick.

Bitmask

Values

Bit

Meaning

0

Feedback from mid stick

1

High throttle cancels landing

2

Disarm on land detection

Value

Meaning

0

None

1

Feedback from mid stick

2

High throttle cancels landing

4

Disarm on land detection

TELEM_DELAY: Telemetry startup delay

Note: This parameter is for advanced users

The amount of time (in seconds) to delay radio telemetry to prevent an Xbee bricking on power up

Increment

Range

Units

1

0 to 30

seconds

GCS_PID_MASK: GCS PID tuning mask

Note: This parameter is for advanced users

bitmask of PIDs to send MAVLink PID_TUNING messages for

Bitmask

Values

Bit

Meaning

0

Roll

1

Pitch

2

Yaw

3

AccelZ

Value

Meaning

0

None

1

Roll

2

Pitch

4

Yaw

8

AccelZ

RTL_ALT: RTL Altitude

The minimum alt above home the vehicle will climb to before returning. If the vehicle is flying higher than this value it will return at its current altitude.

Increment

Range

Units

1

200 to 300000

centimeters

RTL_CONE_SLOPE: RTL cone slope

Defines a cone above home which determines maximum climb

Increment

Range

Values

.1

0.5 to 10.0

Value

Meaning

0

Disabled

1

Shallow

3

Steep

RTL_SPEED: RTL speed

Defines the speed in cm/s which the aircraft will attempt to maintain horizontally while flying home. If this is set to zero, WPNAV_SPEED will be used instead.

Increment

Range

Units

50

0 to 2000

centimeters per second

RTL_ALT_FINAL: RTL Final Altitude

This is the altitude the vehicle will move to as the final stage of Returning to Launch or after completing a mission. Set to zero to land.

Increment

Range

Units

1

0 to 1000

centimeters

RTL_CLIMB_MIN: RTL minimum climb

The vehicle will climb this many cm during the initial climb portion of the RTL

Increment

Range

Units

10

0 to 3000

centimeters

RTL_LOIT_TIME: RTL loiter time

Time (in milliseconds) to loiter above home before beginning final descent

Increment

Range

Units

1000

0 to 60000

milliseconds

RTL_ALT_TYPE: RTL mode altitude type

RTL altitude type. Set to 1 for Terrain following during RTL and then set WPNAV_RFND_USE=1 to use rangefinder or WPNAV_RFND_USE=0 to use Terrain database

Values

Value

Meaning

0

Relative to Home

1

Terrain

FS_GCS_ENABLE: Ground Station Failsafe Enable

Controls whether failsafe will be invoked (and what action to take) when connection with Ground station is lost for at least 5 seconds. See FS_OPTIONS param for additional actions, or for cases allowing Mission continuation, when GCS failsafe is enabled.

Values

Value

Meaning

0

Disabled/NoAction

1

RTL

2

RTL or Continue with Mission in Auto Mode (Removed in 4.0+-see FS_OPTIONS)

3

SmartRTL or RTL

4

SmartRTL or Land

5

Land

6

Auto DO_LAND_START or RTL

GPS_HDOP_GOOD: GPS Hdop Good

Note: This parameter is for advanced users

GPS Hdop value at or below this value represent a good position. Used for pre-arm checks

Range

100 to 900

SUPER_SIMPLE: Super Simple Mode

Bitmask to enable Super Simple mode for some flight modes. Setting this to Disabled(0) will disable Super Simple Mode. The bitmask is for flight mode switch positions

Bitmask

Bit

Meaning

0

SwitchPos1

1

SwitchPos2

2

SwitchPos3

3

SwitchPos4

4

SwitchPos5

5

SwitchPos6

WP_YAW_BEHAVIOR: Yaw behaviour during missions

Determines how the autopilot controls the yaw during missions and RTL

Values

Value

Meaning

0

Never change yaw

1

Face next waypoint

2

Face next waypoint except RTL

3

Face along GPS course

LAND_SPEED: Land speed

The descent speed for the final stage of landing in cm/s

Increment

Range

Units

10

30 to 200

centimeters per second

LAND_SPEED_HIGH: Land speed high

The descent speed for the first stage of landing in cm/s. If this is zero then WPNAV_SPEED_DN is used

Increment

Range

Units

10

0 to 500

centimeters per second

PILOT_SPEED_UP: Pilot maximum vertical speed ascending

The maximum vertical ascending velocity the pilot may request in cm/s

Increment

Range

Units

10

50 to 500

centimeters per second

PILOT_ACCEL_Z: Pilot vertical acceleration

The vertical acceleration used when pilot is controlling the altitude

Increment

Range

Units

10

50 to 500

centimeters per square second

FS_THR_ENABLE: Throttle Failsafe Enable

The throttle failsafe allows you to configure a software failsafe activated by a setting on the throttle input channel

Values

Value

Meaning

0

Disabled

1

Enabled always RTL

2

Enabled Continue with Mission in Auto Mode (Removed in 4.0+)

3

Enabled always Land

4

Enabled always SmartRTL or RTL

5

Enabled always SmartRTL or Land

6

Enabled Auto DO_LAND_START or RTL

7

Enabled always Brake or Land

FS_THR_VALUE: Throttle Failsafe Value

The PWM level in microseconds on channel 3 below which throttle failsafe triggers

Increment

Range

Units

1

910 to 1100

PWM in microseconds

THR_DZ: Throttle deadzone

The deadzone above and below mid throttle in PWM microseconds. Used in AltHold, Loiter, PosHold flight modes

Increment

Range

Units

1

0 to 300

PWM in microseconds

FLTMODE1: Flight Mode 1

Flight mode when pwm of Flightmode channel(FLTMODE_CH) is <= 1230

Values

Value

Meaning

0

Stabilize

1

Acro

2

AltHold

3

Auto

4

Guided

5

Loiter

6

RTL

7

Circle

9

Land

11

Drift

13

Sport

14

Flip

15

AutoTune

16

PosHold

17

Brake

18

Throw

19

Avoid_ADSB

20

Guided_NoGPS

21

Smart_RTL

22

FlowHold

23

Follow

24

ZigZag

25

SystemID

26

Heli_Autorotate

27

Auto RTL

FLTMODE2: Flight Mode 2

Flight mode when pwm of Flightmode channel(FLTMODE_CH) is >1230, <= 1360

Values

Value

Meaning

0

Stabilize

1

Acro

2

AltHold

3

Auto

4

Guided

5

Loiter

6

RTL

7

Circle

9

Land

11

Drift

13

Sport

14

Flip

15

AutoTune

16

PosHold

17

Brake

18

Throw

19

Avoid_ADSB

20

Guided_NoGPS

21

Smart_RTL

22

FlowHold

23

Follow

24

ZigZag

25

SystemID

26

Heli_Autorotate

27

Auto RTL

FLTMODE3: Flight Mode 3

Flight mode when pwm of Flightmode channel(FLTMODE_CH) is >1360, <= 1490

Values

Value

Meaning

0

Stabilize

1

Acro

2

AltHold

3

Auto

4

Guided

5

Loiter

6

RTL

7

Circle

9

Land

11

Drift

13

Sport

14

Flip

15

AutoTune

16

PosHold

17

Brake

18

Throw

19

Avoid_ADSB

20

Guided_NoGPS

21

Smart_RTL

22

FlowHold

23

Follow

24

ZigZag

25

SystemID

26

Heli_Autorotate

27

Auto RTL

FLTMODE4: Flight Mode 4

Flight mode when pwm of Flightmode channel(FLTMODE_CH) is >1490, <= 1620

Values

Value

Meaning

0

Stabilize

1

Acro

2

AltHold

3

Auto

4

Guided

5

Loiter

6

RTL

7

Circle

9

Land

11

Drift

13

Sport

14

Flip

15

AutoTune

16

PosHold

17

Brake

18

Throw

19

Avoid_ADSB

20

Guided_NoGPS

21

Smart_RTL

22

FlowHold

23

Follow

24

ZigZag

25

SystemID

26

Heli_Autorotate

27

Auto RTL

FLTMODE5: Flight Mode 5

Flight mode when pwm of Flightmode channel(FLTMODE_CH) is >1620, <= 1749

Values

Value

Meaning

0

Stabilize

1

Acro

2

AltHold

3

Auto

4

Guided

5

Loiter

6

RTL

7

Circle

9

Land

11

Drift

13

Sport

14

Flip

15

AutoTune

16

PosHold

17

Brake

18

Throw

19

Avoid_ADSB

20

Guided_NoGPS

21

Smart_RTL

22

FlowHold

23

Follow

24

ZigZag

25

SystemID

26

Heli_Autorotate

27

Auto RTL

FLTMODE6: Flight Mode 6

Flight mode when pwm of Flightmode channel(FLTMODE_CH) is >=1750

Values

Value

Meaning

0

Stabilize

1

Acro

2

AltHold

3

Auto

4

Guided

5

Loiter

6

RTL

7

Circle

9

Land

11

Drift

13

Sport

14

Flip

15

AutoTune

16

PosHold

17

Brake

18

Throw

19

Avoid_ADSB

20

Guided_NoGPS

21

Smart_RTL

22

FlowHold

23

Follow

24

ZigZag

25

SystemID

26

Heli_Autorotate

27

Auto RTL

FLTMODE_CH: Flightmode channel

Note: This parameter is for advanced users

RC Channel to use for flight mode control

Values

Value

Meaning

0

Disabled

5

Channel5

6

Channel6

7

Channel7

8

Channel8

9

Channel9

10

Channel 10

11

Channel 11

12

Channel 12

13

Channel 13

14

Channel 14

15

Channel 15

INITIAL_MODE: Initial flight mode

Note: This parameter is for advanced users

This selects the mode to start in on boot. This is useful for when you want to start in AUTO mode on boot without a receiver.

Values

Value

Meaning

0

Stabilize

1

Acro

2

AltHold

3

Auto

4

Guided

5

Loiter

6

RTL

7

Circle

9

Land

11

Drift

13

Sport

14

Flip

15

AutoTune

16

PosHold

17

Brake

18

Throw

19

Avoid_ADSB

20

Guided_NoGPS

21

Smart_RTL

22

FlowHold

23

Follow

24

ZigZag

25

SystemID

26

Heli_Autorotate

SIMPLE: Simple mode bitmask

Note: This parameter is for advanced users

Bitmask which holds which flight modes use simple heading mode (eg bit 0 = 1 means Flight Mode 0 uses simple mode). The bitmask is for flightmode switch positions.

Bitmask

Bit

Meaning

0

SwitchPos1

1

SwitchPos2

2

SwitchPos3

3

SwitchPos4

4

SwitchPos5

5

SwitchPos6

LOG_BITMASK: Log bitmask

Bitmap of what on-board log types to enable. This value is made up of the sum of each of the log types you want to be saved. It is usually best just to enable all basiclog types by setting this to 65535.

Bitmask

Bit

Meaning

0

Fast Attitude

1

Medium Attitude

2

GPS

3

System Performance

4

Control Tuning

5

Navigation Tuning

6

RC input

7

IMU

8

Mission Commands

9

Battery Monitor

10

RC output

11

Optical Flow

12

PID

13

Compass

15

Camera

17

Motors

18

Fast IMU

19

Raw IMU

20

Video Stabilization

21

Fast harmonic notch logging

ESC_CALIBRATION: ESC Calibration

Note: This parameter is for advanced users

Controls whether ArduCopter will enter ESC calibration on the next restart. Do not adjust this parameter manually.

Values

Value

Meaning

0

Normal Start-up

1

Start-up in ESC Calibration mode if throttle high

2

Start-up in ESC Calibration mode regardless of throttle

3

Start-up and automatically calibrate ESCs

9

Disabled

TUNE: Channel 6 Tuning

Controls which parameters (normally PID gains) are being tuned with transmitter's channel 6 knob

Values

Value

Meaning

0

None

1

Stab Roll/Pitch kP

4

Rate Roll/Pitch kP

5

Rate Roll/Pitch kI

21

Rate Roll/Pitch kD

3

Stab Yaw kP

6

Rate Yaw kP

26

Rate Yaw kD

56

Rate Yaw Filter

55

Motor Yaw Headroom

14

AltHold kP

7

Throttle Rate kP

34

Throttle Accel kP

35

Throttle Accel kI

36

Throttle Accel kD

12

Loiter Pos kP

22

Velocity XY kP

28

Velocity XY kI

10

WP Speed

25

Acro Roll/Pitch deg/s

40

Acro Yaw deg/s

45

RC Feel

13

Heli Ext Gyro

38

Declination

39

Circle Rate

46

Rate Pitch kP

47

Rate Pitch kI

48

Rate Pitch kD

49

Rate Roll kP

50

Rate Roll kI

51

Rate Roll kD

52

Rate Pitch FF

53

Rate Roll FF

54

Rate Yaw FF

58

SysID Magnitude

59

PSC Angle Max

FRAME_TYPE: Frame Type (+, X, V, etc)

Note: Reboot required after change

Controls motor mixing for multicopters. Not used for Tri or Traditional Helicopters.

Values

Value

Meaning

0

Plus

1

X

2

V

3

H

4

V-Tail

5

A-Tail

10

Y6B

11

Y6F

12

BetaFlightX

13

DJIX

14

ClockwiseX

15

I

18

BetaFlightXReversed

19

Y4

DISARM_DELAY: Disarm delay

Note: This parameter is for advanced users

Delay before automatic disarm in seconds after landing touchdown detection. A value of zero disables auto disarm. If Emergency Motor stop active, delay time is half this value.

Range

Units

0 to 127

seconds

ANGLE_MAX: Angle Max

Note: This parameter is for advanced users

Maximum lean angle in all flight modes

Increment

Range

Units

10

1000 to 8000

centidegrees

PHLD_BRAKE_RATE: PosHold braking rate

Note: This parameter is for advanced users

PosHold flight mode's rotation rate during braking in deg/sec

Range

Units

4 to 12

degrees per second

PHLD_BRAKE_ANGLE: PosHold braking angle max

Note: This parameter is for advanced users

PosHold flight mode's max lean angle during braking in centi-degrees

Increment

Range

Units

10

2000 to 4500

centidegrees

LAND_REPOSITION: Land repositioning

Note: This parameter is for advanced users

Enables user input during LAND mode, the landing phase of RTL, and auto mode landings.

Values

Value

Meaning

0

No repositioning

1

Repositioning

FS_EKF_ACTION: EKF Failsafe Action

Note: This parameter is for advanced users

Controls the action that will be taken when an EKF failsafe is invoked

Values

Value

Meaning

1

Land

2

AltHold

3

Land even in Stabilize

FS_EKF_THRESH: EKF failsafe variance threshold

Note: This parameter is for advanced users

Allows setting the maximum acceptable compass, velocity, position and height variances. Used in arming check and EKF failsafe.

Values

Value

Meaning

0.6

Strict

0.8

Default

1.0

Relaxed

FS_CRASH_CHECK: Crash check enable

Note: This parameter is for advanced users

This enables automatic crash checking. When enabled the motors will disarm if a crash is detected.

Values

Value

Meaning

0

Disabled

1

Enabled

RC_SPEED: ESC Update Speed

Note: This parameter is for advanced users

This is the speed in Hertz that your ESCs will receive updates

Increment

Range

Units

1

50 to 490

hertz

ACRO_BAL_ROLL: Acro Balance Roll

Note: This parameter is for advanced users

rate at which roll angle returns to level in acro and sport mode. A higher value causes the vehicle to return to level faster. For helicopter sets the decay rate of the virtual flybar in the roll axis. A higher value causes faster decay of desired to actual attitude.

Increment

Range

0.1

0 to 3

ACRO_BAL_PITCH: Acro Balance Pitch

Note: This parameter is for advanced users

rate at which pitch angle returns to level in acro and sport mode. A higher value causes the vehicle to return to level faster. For helicopter sets the decay rate of the virtual flybar in the pitch axis. A higher value causes faster decay of desired to actual attitude.

Increment

Range

0.1

0 to 3

ACRO_TRAINER: Acro Trainer

Note: This parameter is for advanced users

Type of trainer used in acro mode

Values

Value

Meaning

0

Disabled

1

Leveling

2

Leveling and Limited

THROW_MOT_START: Start motors before throwing is detected

Used by Throw mode. Controls whether motors will run at the speed set by MOT_SPIN_MIN or will be stopped when armed and waiting for the throw.

Values

Value

Meaning

0

Stopped

1

Running

THROW_NEXTMODE: Throw mode's follow up mode

Vehicle will switch to this mode after the throw is successfully completed. Default is to stay in throw mode (18)

Values

Value

Meaning

3

Auto

4

Guided

5

LOITER

6

RTL

9

Land

17

Brake

18

Throw

THROW_TYPE: Type of Type

Used by Throw mode. Specifies whether Copter is thrown upward or dropped.

Values

Value

Meaning

0

Upward Throw

1

Drop

GND_EFFECT_COMP: Ground Effect Compensation Enable/Disable

Note: This parameter is for advanced users

Ground Effect Compensation Enable/Disable

Values

Value

Meaning

0

Disabled

1

Enabled

DEV_OPTIONS: Development options

Note: This parameter is for advanced users

Bitmask of developer options. The meanings of the bit fields in this parameter may vary at any time. Developers should check the source code for current meaning

Bitmask

Bit

Meaning

0

ADSBMavlinkProcessing

1

DevOptionVFR_HUDRelativeAlt

ACRO_THR_MID: Acro Thr Mid

Note: This parameter is for advanced users

Acro Throttle Mid

Range

0 to 1

SYSID_ENFORCE: GCS sysid enforcement

Note: This parameter is for advanced users

This controls whether packets from other than the expected GCS system ID will be accepted

Values

Value

Meaning

0

NotEnforced

1

Enforced

FRAME_CLASS: Frame Class

Note: Reboot required after change

Controls major frame class for multicopter component

Values

Value

Meaning

0

Undefined

1

Quad

2

Hexa

3

Octa

4

OctaQuad

5

Y6

6

Heli

7

Tri

8

SingleCopter

9

CoaxCopter

10

BiCopter

11

Heli_Dual

12

DodecaHexa

13

HeliQuad

14

Deca

15

Scripting Matrix

16

6DoF Scripting

17

Dynamic Scripting Matrix

PILOT_SPEED_DN: Pilot maximum vertical speed descending

The maximum vertical descending velocity the pilot may request in cm/s. If 0 PILOT_SPEED_UP value is used.

Increment

Range

Units

10

0 to 500

centimeters per second

LAND_ALT_LOW: Land alt low

Note: This parameter is for advanced users

Altitude during Landing at which vehicle slows to LAND_SPEED

Increment

Range

Units

10

100 to 10000

centimeters

TUNE_MIN: Tuning minimum

Minimum value that the parameter currently being tuned with the transmitter's channel 6 knob will be set to

TUNE_MAX: Tuning maximum

Maximum value that the parameter currently being tuned with the transmitter's channel 6 knob will be set to

FS_VIBE_ENABLE: Vibration Failsafe enable

This enables the vibration failsafe which will use modified altitude estimation and control during high vibrations

Values

Value

Meaning

0

Disabled

1

Enabled

FS_OPTIONS: Failsafe options bitmask

Note: This parameter is for advanced users

Bitmask of additional options for battery, radio, & GCS failsafes. 0 (default) disables all options.

Bitmask

Values

Bit

Meaning

0

Continue if in Auto on RC failsafe

1

Continue if in Auto on GCS failsafe

2

Continue if in Guided on RC failsafe

3

Continue if landing on any failsafe

4

Continue if in pilot controlled modes on GCS failsafe

5

Release Gripper

Value

Meaning

0

Disabled

1

Continue if in Auto on RC failsafe only

2

Continue if in Auto on GCS failsafe only

3

Continue if in Auto on RC and/or GCS failsafe

4

Continue if in Guided on RC failsafe only

8

Continue if landing on any failsafe

16

Continue if in pilot controlled modes on GCS failsafe

19

Continue if in Auto on RC and/or GCS failsafe and continue if in pilot controlled modes on GCS failsafe

ACRO_OPTIONS: Acro mode options

Note: This parameter is for advanced users

A range of options that can be applied to change acro mode behaviour. Air-mode enables ATC_THR_MIX_MAN at all times (air-mode has no effect on helicopters). Rate Loop Only disables the use of angle stabilization and uses angular rate stabilization only.

Bitmask

Bit

Meaning

0

Air-mode

1

Rate Loop Only

AUTO_OPTIONS: Auto mode options

Note: This parameter is for advanced users

A range of options that can be applied to change auto mode behaviour. Allow Arming allows the copter to be armed in Auto. Allow Takeoff Without Raising Throttle allows takeoff without the pilot having to raise the throttle. Ignore pilot yaw overrides the pilot's yaw stick being used while in auto.

Bitmask

Bit

Meaning

0

Allow Arming

1

Allow Takeoff Without Raising Throttle

2

Ignore pilot yaw

7

Allow weathervaning

GUID_OPTIONS: Guided mode options

Note: This parameter is for advanced users

Options that can be applied to change guided mode behaviour

Bitmask

Bit

Meaning

0

Allow Arming from Transmitter

2

Ignore pilot yaw

3

SetAttitudeTarget interprets Thrust As Thrust

4

Do not stabilize PositionXY

5

Do not stabilize VelocityXY

6

Waypoint navigation used for position targets

7

Allow weathervaning

FS_GCS_TIMEOUT: GCS failsafe timeout

Timeout before triggering the GCS failsafe

Increment

Range

Units

1

2 to 120

seconds

RTL_OPTIONS: RTL mode options

Note: This parameter is for advanced users

Options that can be applied to change RTL mode behaviour

Bitmask

Bit

Meaning

2

Ignore pilot yaw

FLIGHT_OPTIONS: Flight mode options

Note: This parameter is for advanced users

Flight mode specific options

Bitmask

Bit

Meaning

0

Disable thrust loss check

1

Disable yaw imbalance warning

2

Release gripper on thrust loss

RNGFND_FILT: Rangefinder filter

Note: Reboot required after change

Rangefinder filter to smooth distance. Set to zero to disable filtering

Increment

Range

Units

0.05

0 to 5

hertz

GUID_TIMEOUT: Guided mode timeout

Note: This parameter is for advanced users

Guided mode timeout after which vehicle will stop or return to level if no updates are received from caller. Only applicable during any combination of velocity, acceleration, angle control, and/or angular rate control

Range

Units

0.1 to 5

seconds

SURFTRAK_MODE: Surface Tracking Mode

Note: This parameter is for advanced users

set which surface to track in surface tracking

Values

Value

Meaning

0

Do not track

1

Ground

2

Ceiling

FS_DR_ENABLE: DeadReckon Failsafe Action

Failsafe action taken immediately as deadreckoning starts. Deadreckoning starts when EKF loses position and velocity source and relies only on wind estimates

Values

Value

Meaning

0

Disabled/NoAction

1

Land

2

RTL

3

SmartRTL or RTL

4

SmartRTL or Land

6

Auto DO_LAND_START or RTL

FS_DR_TIMEOUT: DeadReckon Failsafe Timeout

DeadReckoning is available for this many seconds after losing position and/or velocity source. After this timeout elapses the EKF failsafe will trigger in modes requiring a position estimate

Range

0 to 120

ACRO_RP_RATE: Acro Roll and Pitch Rate

Acro mode maximum roll and pitch rate. Higher values mean faster rate of rotation

Range

Units

1 to 1080

degrees per second

ACRO_RP_EXPO: Acro Roll/Pitch Expo

Note: This parameter is for advanced users

Acro roll/pitch Expo to allow faster rotation when stick at edges

Range

Values

-0.5 to 0.95

Value

Meaning

0

Disabled

0.1

Very Low

0.2

Low

0.3

Medium

0.4

High

0.5

Very High

ACRO_RP_RATE_TC: Acro roll/pitch rate control input time constant

Acro roll and pitch rate control input time constant. Low numbers lead to sharper response, higher numbers to softer response

Increment

Range

Units

Values

0.01

0 to 1

seconds

Value

Meaning

0.5

Very Soft

0.2

Soft

0.15

Medium

0.1

Crisp

0.05

Very Crisp

ACRO_Y_RATE: Acro Yaw Rate

Acro mode maximum yaw rate. Higher value means faster rate of rotation

Range

Units

1 to 360

degrees per second

ACRO_Y_EXPO: Acro Yaw Expo

Note: This parameter is for advanced users

Acro yaw expo to allow faster rotation when stick at edges

Range

Values

-1.0 to 0.95

Value

Meaning

0

Disabled

0.1

Very Low

0.2

Low

0.3

Medium

0.4

High

0.5

Very High

ACRO_Y_RATE_TC: Acro yaw rate control input time constant

Acro yaw rate control input time constant. Low numbers lead to sharper response, higher numbers to softer response

Increment

Range

Units

Values

0.01

0 to 1

seconds

Value

Meaning

0.5

Very Soft

0.2

Soft

0.15

Medium

0.1

Crisp

0.05

Very Crisp

PILOT_Y_RATE: Pilot controlled yaw rate

Pilot controlled yaw rate max. Used in all pilot controlled modes except Acro

Range

Units

1 to 360

degrees per second

PILOT_Y_EXPO: Pilot controlled yaw expo

Note: This parameter is for advanced users

Pilot controlled yaw expo to allow faster rotation when stick at edges

Range

Values

-0.5 to 1.0

Value

Meaning

0

Disabled

0.1

Very Low

0.2

Low

0.3

Medium

0.4

High

0.5

Very High

PILOT_Y_RATE_TC: Pilot yaw rate control input time constant

Pilot yaw rate control input time constant. Low numbers lead to sharper response, higher numbers to softer response

Increment

Range

Units

Values

0.01

0 to 1

seconds

Value

Meaning

0.5

Very Soft

0.2

Soft

0.15

Medium

0.1

Crisp

0.05

Very Crisp

TKOFF_SLEW_TIME: Slew time of throttle during take-off

Time to slew the throttle from minimum to maximum while checking for a succsessful takeoff.

Range

Units

0.25 to 5.0

seconds

TKOFF_RPM_MIN: Takeoff Check RPM minimum

Takeoff is not permitted until motors report at least this RPM. Set to zero to disable check

Range

0 to 10000

PLDP_THRESH: Payload Place thrust ratio threshold

Ratio of vertical thrust during decent below which payload touchdown will trigger.

Range

0.5 to 0.9

PLDP_RNG_MIN: Payload Place minimum range finder altitude

Minimum range finder altitude in m to trigger payload touchdown, set to zero to disable.

Range

Units

0 to 100

meters

PLDP_DELAY: Payload Place climb delay

Delay after release, in seconds, before aircraft starts to climb back to starting altitude.

Range

Units

0 to 120

seconds

PLDP_SPEED_DN: Payload Place decent speed

The maximum vertical decent velocity in m/s. If 0 LAND_SPEED value is used.

Range

Units

0 to 5

meters per second

SURFTRAK_TC: Surface Tracking Filter Time Constant

Note: This parameter is for advanced users

Time to achieve 63.2% of the surface altitude measurement change. If 0 filtering is disabled

Range

Units

0 to 5

seconds

ADSB_ Parameters

ADSB_TYPE: ADSB Type

Note: Reboot required after change

Type of ADS-B hardware for ADSB-in and ADSB-out configuration and operation. If any type is selected then MAVLink based ADSB-in messages will always be enabled

Values

Value

Meaning

0

Disabled

1

uAvionix-MAVLink

2

Sagetech

3

uAvionix-UCP

4

Sagetech MX Series

ADSB_LIST_MAX: ADSB vehicle list size

Note: This parameter is for advanced users
Note: Reboot required after change

ADSB list size of nearest vehicles. Longer lists take longer to refresh with lower SRx_ADSB values.

Range

1 to 100

ADSB_LIST_RADIUS: ADSB vehicle list radius filter

Note: This parameter is for advanced users

ADSB vehicle list radius filter. Vehicles detected outside this radius will be completely ignored. They will not show up in the SRx_ADSB stream to the GCS and will not be considered in any avoidance calculations. A value of 0 will disable this filter.

Range

Units

0 to 100000

meters

ADSB_ICAO_ID: ICAO_ID vehicle identification number

Note: This parameter is for advanced users

ICAO_ID unique vehicle identification number of this aircraft. This is an integer limited to 24bits. If set to 0 then one will be randomly generated. If set to -1 then static information is not sent, transceiver is assumed pre-programmed.

Range

-1 to 16777215

ADSB_EMIT_TYPE: Emitter type

Note: This parameter is for advanced users

ADSB classification for the type of vehicle emitting the transponder signal. Default value is 14 (UAV).

Values

Value

Meaning

0

NoInfo

1

Light

2

Small

3

Large

4

HighVortexlarge

5

Heavy

6

HighlyManuv

7

Rotocraft

8

RESERVED

9

Glider

10

LightAir

11

Parachute

12

UltraLight

13

RESERVED

14

UAV

15

Space

16

RESERVED

17

EmergencySurface

18

ServiceSurface

19

PointObstacle

ADSB_LEN_WIDTH: Aircraft length and width

Note: This parameter is for advanced users

Aircraft length and width dimension options in Length and Width in meters. In most cases, use a value of 1 for smallest size.

Values

Value

Meaning

0

NO_DATA

1

L15W23

2

L25W28P5

3

L25W34

4

L35W33

5

L35W38

6

L45W39P5

7

L45W45

8

L55W45

9

L55W52

10

L65W59P5

11

L65W67

12

L75W72P5

13

L75W80

14

L85W80

15

L85W90

ADSB_OFFSET_LAT: GPS antenna lateral offset

Note: This parameter is for advanced users

GPS antenna lateral offset. This describes the physical location offest from center of the GPS antenna on the aircraft.

Values

Value

Meaning

0

NoData

1

Left2m

2

Left4m

3

Left6m

4

Center

5

Right2m

6

Right4m

7

Right6m

ADSB_OFFSET_LON: GPS antenna longitudinal offset

Note: This parameter is for advanced users

GPS antenna longitudinal offset. This is usually set to 1, Applied By Sensor

Values

Value

Meaning

0

NO_DATA

1

AppliedBySensor

ADSB_RF_SELECT: Transceiver RF selection

Note: This parameter is for advanced users

Transceiver RF selection for Rx enable and/or Tx enable. This only effects devices that can Tx and/or Rx. Rx-only devices should override this to always be Rx-only.

Bitmask

Bit

Meaning

0

Rx

1

Tx

ADSB_SQUAWK: Squawk code

Note: This parameter is for advanced users

VFR squawk (Mode 3/A) code is a pre-programmed default code when the pilot is flying VFR and not in contact with ATC. In the USA, the VFR squawk code is octal 1200 (hex 0x280, decimal 640) and in most parts of Europe the VFR squawk code is octal 7000. If an invalid octal number is set then it will be reset to 1200.

Range

Units

0 to 7777

octal

ADSB_RF_CAPABLE: RF capabilities

Note: This parameter is for advanced users

Describes your hardware RF In/Out capabilities.

Bitmask

Bit

Meaning

0

UAT_in

1

1090ES_in

2

UAT_out

3

1090ES_out

ADSB_LIST_ALT: ADSB vehicle list altitude filter

Note: This parameter is for advanced users

ADSB vehicle list altitude filter. Vehicles detected above this altitude will be completely ignored. They will not show up in the SRx_ADSB stream to the GCS and will not be considered in any avoidance calculations. A value of 0 will disable this filter.

Range

Units

0 to 32767

meters

ADSB_ICAO_SPECL: ICAO_ID of special vehicle

Note: This parameter is for advanced users

ICAO_ID of special vehicle that ignores ADSB_LIST_RADIUS and ADSB_LIST_ALT. The vehicle is always tracked. Use 0 to disable.

ADSB_LOG: ADS-B logging

Note: This parameter is for advanced users

0: no logging, 1: log only special ID, 2:log all

Values

Value

Meaning

0

no logging

1

log only special ID

2

log all

ADSB_OPTIONS: ADS-B Options

Note: This parameter is for advanced users

Options for emergency failsafe codes and device capabilities

Bitmask

Bit

Meaning

0

Ping200X Send GPS

1

Squawk 7400 on RC failsafe

2

Squawk 7400 on GCS failsafe

3

Sagetech MXS use External Config

AFS_ Parameters

AFS_ENABLE: Enable Advanced Failsafe

Note: This parameter is for advanced users

This enables the advanced failsafe system. If this is set to zero (disable) then all the other AFS options have no effect

AFS_MAN_PIN: Manual Pin

Note: This parameter is for advanced users

This sets a digital output pin to set high when in manual mode. See the Wiki's "GPIOs" page for how to determine the pin number for a given autopilot.

AFS_HB_PIN: Heartbeat Pin

Note: This parameter is for advanced users

This sets a digital output pin which is cycled at 10Hz when termination is not activated. Note that if a FS_TERM_PIN is set then the heartbeat pin will continue to cycle at 10Hz when termination is activated, to allow the termination board to distinguish between autopilot crash and termination. Some common values are given, but see the Wiki's "GPIOs" page for how to determine the pin number for a given autopilot.

Values

Value

Meaning

-1

Disabled

49

BB Blue GP0 pin 4

50

AUXOUT1

51

AUXOUT2

52

AUXOUT3

53

AUXOUT4

54

AUXOUT5

55

AUXOUT6

57

BB Blue GP0 pin 3

113

BB Blue GP0 pin 6

116

BB Blue GP0 pin 5

AFS_WP_COMMS: Comms Waypoint

Note: This parameter is for advanced users

Waypoint number to navigate to on comms loss

AFS_WP_GPS_LOSS: GPS Loss Waypoint

Note: This parameter is for advanced users

Waypoint number to navigate to on GPS lock loss

AFS_TERMINATE: Force Terminate

Note: This parameter is for advanced users

Can be set in flight to force termination of the heartbeat signal

AFS_TERM_ACTION: Terminate action

Note: This parameter is for advanced users

This can be used to force an action on flight termination. Normally this is handled by an external failsafe board, but you can setup ArduPilot to handle it here. Please consult the wiki for more information on the possible values of the parameter

AFS_TERM_PIN: Terminate Pin

Note: This parameter is for advanced users

This sets a digital output pin to set high on flight termination. Some common values are given, but see the Wiki's "GPIOs" page for how to determine the pin number for a given autopilot.

Values

Value

Meaning

-1

Disabled

49

BB Blue GP0 pin 4

50

AUXOUT1

51

AUXOUT2

52

AUXOUT3

53

AUXOUT4

54

AUXOUT5

55

AUXOUT6

57

BB Blue GP0 pin 3

113

BB Blue GP0 pin 6

116

BB Blue GP0 pin 5

AFS_AMSL_LIMIT: AMSL limit

Note: This parameter is for advanced users

This sets the AMSL (above mean sea level) altitude limit. If the pressure altitude determined by QNH exceeds this limit then flight termination will be forced. Note that this limit is in meters, whereas pressure altitude limits are often quoted in feet. A value of zero disables the pressure altitude limit.

Units

meters

AFS_AMSL_ERR_GPS: Error margin for GPS based AMSL limit

Note: This parameter is for advanced users

This sets margin for error in GPS derived altitude limit. This error margin is only used if the barometer has failed. If the barometer fails then the GPS will be used to enforce the AMSL_LIMIT, but this margin will be subtracted from the AMSL_LIMIT first, to ensure that even with the given amount of GPS altitude error the pressure altitude is not breached. OBC users should set this to comply with their D2 safety case. A value of -1 will mean that barometer failure will lead to immediate termination.

Units

meters

AFS_QNH_PRESSURE: QNH pressure

Note: This parameter is for advanced users

This sets the QNH pressure in millibars to be used for pressure altitude in the altitude limit. A value of zero disables the altitude limit.

Units

hectopascal

AFS_MAX_GPS_LOSS: Maximum number of GPS loss events

Note: This parameter is for advanced users

Maximum number of GPS loss events before the aircraft stops returning to mission on GPS recovery. Use zero to allow for any number of GPS loss events.

AFS_MAX_COM_LOSS: Maximum number of comms loss events

Note: This parameter is for advanced users

Maximum number of comms loss events before the aircraft stops returning to mission on comms recovery. Use zero to allow for any number of comms loss events.

AFS_GEOFENCE: Enable geofence Advanced Failsafe

Note: This parameter is for advanced users

This enables the geofence part of the AFS. Will only be in effect if AFS_ENABLE is also 1

AFS_RC: Enable RC Advanced Failsafe

Note: This parameter is for advanced users

This enables the RC part of the AFS. Will only be in effect if AFS_ENABLE is also 1

AFS_RC_MAN_ONLY: Enable RC Termination only in manual control modes

Note: This parameter is for advanced users

If this parameter is set to 1, then an RC loss will only cause the plane to terminate in manual control modes. If it is 0, then the plane will terminate in any flight mode.

AFS_DUAL_LOSS: Enable dual loss terminate due to failure of both GCS and GPS simultaneously

Note: This parameter is for advanced users

This enables the dual loss termination part of the AFS system. If this parameter is 1 and both GPS and the ground control station fail simultaneously, this will be considered a "dual loss" and cause termination.

AFS_RC_FAIL_TIME: RC failure time

Note: This parameter is for advanced users

This is the time in seconds in manual mode that failsafe termination will activate if RC input is lost. For the OBC rules this should be (1.5). Use 0 to disable.

Units

seconds

AFS_MAX_RANGE: Max allowed range

Note: This parameter is for advanced users

This is the maximum range of the vehicle in kilometers from first arming. If the vehicle goes beyond this range then the TERM_ACTION is performed. A value of zero disables this feature.

Units

kilometers

AHRS_ Parameters

AHRS_GPS_GAIN: AHRS GPS gain

Note: This parameter is for advanced users

This controls how much to use the GPS to correct the attitude. This should never be set to zero for a plane as it would result in the plane losing control in turns. For a plane please use the default value of 1.0.

Increment

Range

.01

0.0 to 1.0

AHRS_GPS_USE: AHRS use GPS for DCM navigation and position-down

Note: This parameter is for advanced users

This controls whether to use dead-reckoning or GPS based navigation. If set to 0 then the GPS won't be used for navigation, and only dead reckoning will be used. A value of zero should never be used for normal flight. Currently this affects only the DCM-based AHRS: the EKF uses GPS according to its own parameters. A value of 2 means to use GPS for height as well as position - both in DCM estimation and when determining altitude-above-home.

Values

Value

Meaning

0

Disabled

1

Use GPS for DCM position

2

Use GPS for DCM position and height

AHRS_YAW_P: Yaw P

Note: This parameter is for advanced users

This controls the weight the compass or GPS has on the heading. A higher value means the heading will track the yaw source (GPS or compass) more rapidly.

Increment

Range

.01

0.1 to 0.4

AHRS_RP_P: AHRS RP_P

Note: This parameter is for advanced users

This controls how fast the accelerometers correct the attitude

Increment

Range

.01

0.1 to 0.4

AHRS_WIND_MAX: Maximum wind

Note: This parameter is for advanced users

This sets the maximum allowable difference between ground speed and airspeed. This allows the plane to cope with a failing airspeed sensor. A value of zero means to use the airspeed as is. See ARSPD_OPTIONS and ARSPD_MAX_WIND to disable airspeed sensors.

Increment

Range

Units

1

0 to 127

meters per second

AHRS_TRIM_X: AHRS Trim Roll

Compensates for the roll angle difference between the control board and the frame. Positive values make the vehicle roll right.

Increment

Range

Units

0.01

-0.1745 to +0.1745

radians

AHRS_TRIM_Y: AHRS Trim Pitch

Compensates for the pitch angle difference between the control board and the frame. Positive values make the vehicle pitch up/back.

Increment

Range

Units

0.01

-0.1745 to +0.1745

radians

AHRS_TRIM_Z: AHRS Trim Yaw

Note: This parameter is for advanced users

Not Used

Increment

Range

Units

0.01

-0.1745 to +0.1745

radians

AHRS_ORIENTATION: Board Orientation

Note: This parameter is for advanced users

Overall board orientation relative to the standard orientation for the board type. This rotates the IMU and compass readings to allow the board to be oriented in your vehicle at any 90 or 45 degree angle. The label for each option is specified in the order of rotations for that orientation. This option takes affect on next boot. After changing you will need to re-level your vehicle. Firmware versions 4.2 and prior can use a CUSTOM (100) rotation to set the AHRS_CUSTOM_ROLL/PIT/YAW angles for AHRS orientation. Later versions provide two general custom rotations which can be used, Custom 1 and Custom 2, with CUST_ROT1_ROLL/PIT/YAW or CUST_ROT2_ROLL/PIT/YAW angles.

Values

Value

Meaning

0

None

1

Yaw45

2

Yaw90

3

Yaw135

4

Yaw180

5

Yaw225

6

Yaw270

7

Yaw315

8

Roll180

9

Yaw45Roll180

10

Yaw90Roll180

11

Yaw135Roll180

12

Pitch180

13

Yaw225Roll180

14

Yaw270Roll180

15

Yaw315Roll180

16

Roll90

17

Yaw45Roll90

18

Yaw90Roll90

19

Yaw135Roll90

20

Roll270

21

Yaw45Roll270

22

Yaw90Roll270

23

Yaw135Roll270

24

Pitch90

25

Pitch270

26

Yaw90Pitch180

27

Yaw270Pitch180

28

Pitch90Roll90

29

Pitch90Roll180

30

Pitch90Roll270

31

Pitch180Roll90

32

Pitch180Roll270

33

Pitch270Roll90

34

Pitch270Roll180

35

Pitch270Roll270

36

Yaw90Pitch180Roll90

37

Yaw270Roll90

38

Yaw293Pitch68Roll180

39

Pitch315

40

Pitch315Roll90

42

Roll45

43

Roll315

100

Custom 4.1 and older

101

Custom 1

102

Custom 2

AHRS_COMP_BETA: AHRS Velocity Complementary Filter Beta Coefficient

Note: This parameter is for advanced users

This controls the time constant for the cross-over frequency used to fuse AHRS (airspeed and heading) and GPS data to estimate ground velocity. Time constant is 0.1/beta. A larger time constant will use GPS data less and a small time constant will use air data less.

Increment

Range

.01

0.001 to 0.5

AHRS_GPS_MINSATS: AHRS GPS Minimum satellites

Note: This parameter is for advanced users

Minimum number of satellites visible to use GPS for velocity based corrections attitude correction. This defaults to 6, which is about the point at which the velocity numbers from a GPS become too unreliable for accurate correction of the accelerometers.

Increment

Range

1

0 to 10

AHRS_EKF_TYPE: Use NavEKF Kalman filter for attitude and position estimation

Note: This parameter is for advanced users

This controls which NavEKF Kalman filter version is used for attitude and position estimation

Values

Value

Meaning

0

Disabled

2

Enable EKF2

3

Enable EKF3

11

ExternalAHRS

AHRS_CUSTOM_ROLL: Board orientation roll offset

Note: This parameter is for advanced users

Autopilot mounting position roll offset. Positive values = roll right, negative values = roll left. This parameter is only used when AHRS_ORIENTATION is set to CUSTOM.

Increment

Range

Units

1

-180 to 180

degrees

AHRS_CUSTOM_PIT: Board orientation pitch offset

Note: This parameter is for advanced users

Autopilot mounting position pitch offset. Positive values = pitch up, negative values = pitch down. This parameter is only used when AHRS_ORIENTATION is set to CUSTOM.

Increment

Range

Units

1

-180 to 180

degrees

AHRS_CUSTOM_YAW: Board orientation yaw offset

Note: This parameter is for advanced users

Autopilot mounting position yaw offset. Positive values = yaw right, negative values = yaw left. This parameter is only used when AHRS_ORIENTATION is set to CUSTOM.

Increment

Range

Units

1

-180 to 180

degrees

AIS_ Parameters

AIS_TYPE: AIS receiver type

Note: Reboot required after change

AIS receiver type

Values

Value

Meaning

0

None

1

NMEA AIVDM message

AIS_LIST_MAX: AIS vessel list size

Note: This parameter is for advanced users

AIS list size of nearest vessels. Longer lists take longer to refresh with lower SRx_ADSB values.

Range

1 to 100

AIS_TIME_OUT: AIS vessel time out

Note: This parameter is for advanced users

if no updates are received in this time a vessel will be removed from the list

Range

Units

1 to 2000

seconds

AIS_LOGGING: AIS logging options

Note: This parameter is for advanced users

Bitmask of AIS logging options

Bitmask

Bit

Meaning

0

Log all AIVDM messages

1

Log only unsupported AIVDM messages

2

Log decoded messages

ARMING_ Parameters

ARMING_ACCTHRESH: Accelerometer error threshold

Note: This parameter is for advanced users

Accelerometer error threshold used to determine inconsistent accelerometers. Compares this error range to other accelerometers to detect a hardware or calibration error. Lower value means tighter check and harder to pass arming check. Not all accelerometers are created equal.

Range

Units

0.25 to 3.0

meters per square second

ARMING_RUDDER: Arming with Rudder enable/disable

Note: This parameter is for advanced users

Allow arm/disarm by rudder input. When enabled arming can be done with right rudder, disarming with left rudder. Rudder arming only works with throttle at zero +- deadzone (RCx_DZ). Depending on vehicle type, arming in certain modes is prevented. See the wiki for each vehicle. Caution is recommended when arming if it is allowed in an auto-throttle mode!

Values

Value

Meaning

0

Disabled

1

ArmingOnly

2

ArmOrDisarm

ARMING_MIS_ITEMS: Required mission items

Note: This parameter is for advanced users

Bitmask of mission items that are required to be planned in order to arm the aircraft

Bitmask

Bit

Meaning

0

Land

1

VTOL Land

2

DO_LAND_START

3

Takeoff

4

VTOL Takeoff

5

Rallypoint

6

RTL

ARMING_CHECK: Arm Checks to Perform (bitmask)

Checks prior to arming motor. This is a bitmask of checks that will be performed before allowing arming. For most users it is recommended to leave this at the default of 1 (all checks enabled). You can select whatever checks you prefer by adding together the values of each check type to set this parameter. For example, to only allow arming when you have GPS lock and no RC failsafe you would set ARMING_CHECK to 72.

Bitmask

Bit

Meaning

0

All

1

Barometer

2

Compass

3

GPS lock

4

INS

5

Parameters

6

RC Channels

7

Board voltage

8

Battery Level

10

Logging Available

11

Hardware safety switch

12

GPS Configuration

13

System

14

Mission

15

Rangefinder

16

Camera

17

AuxAuth

18

VisualOdometry

19

FFT

ARMING_OPTIONS: Arming options

Note: This parameter is for advanced users

Options that can be applied to change arming behaviour

Values

Value

Meaning

0

None

1

Disable prearm display

AROT_ Parameters

AROT_ENABLE: Enable settings for RSC Setpoint

Note: This parameter is for advanced users

Allows you to enable (1) or disable (0) the autonomous autorotation capability.

Values

Value

Meaning

0

Disabled

1

Enabled

AROT_HS_P: P gain for head speed controller

Note: This parameter is for advanced users

Increase value to increase sensitivity of head speed controller during autonomous autorotation.

Increment

Range

0.01

0.3 to 1

AROT_HS_SET_PT: Target Head Speed

Note: This parameter is for advanced users

The target head speed in RPM during autorotation. Start by setting to desired hover speed and tune from there as necessary.

Increment

Range

Units

1

1000 to 2800

Revolutions Per Minute

AROT_TARG_SP: Target Glide Ground Speed

Note: This parameter is for advanced users

Target ground speed in cm/s for the autorotation controller to try and achieve/ maintain during the glide phase.

Increment

Range

Units

50

800 to 2000

centimeters per second

AROT_COL_FILT_E: Entry Phase Collective Filter

Note: This parameter is for advanced users

Cut-off frequency for collective low pass filter. For the entry phase. Acts as a following trim. Must be higher than AROT_COL_FILT_G.

Increment

Range

Units

0.01

0.2 to 0.5

hertz

AROT_COL_FILT_G: Glide Phase Collective Filter

Note: This parameter is for advanced users

Cut-off frequency for collective low pass filter. For the glide phase. Acts as a following trim. Must be lower than AROT_COL_FILT_E.

Increment

Range

Units

0.01

0.03 to 0.15

hertz

AROT_AS_ACC_MAX: Forward Acceleration Limit

Note: This parameter is for advanced users

Maximum forward acceleration to apply in speed controller.

Increment

Range

Units

10

30 to 60

centimeters per square second

AROT_BAIL_TIME: Bail Out Timer

Note: This parameter is for advanced users

Time in seconds from bail out initiated to the exit of autorotation flight mode.

Increment

Range

Units

0.1

0.5 to 4

seconds

AROT_HS_SENSOR: Main Rotor RPM Sensor

Note: This parameter is for advanced users

Allocate the RPM sensor instance to use for measuring head speed. RPM1 = 0. RPM2 = 1.

Increment

Range

Units

0.1

0.5 to 3

seconds

AROT_FW_V_P: Velocity (horizontal) P gain

Note: This parameter is for advanced users

Velocity (horizontal) P gain. Determines the propotion of the target acceleration based on the velocity error.

Increment

Range

0.1

0.1 to 6.0

AROT_FW_V_FF: Velocity (horizontal) feed forward

Note: This parameter is for advanced users

Velocity (horizontal) input filter. Corrects the target acceleration proportionally to the desired velocity.

Increment

Range

0.01

0 to 1

ARSPD Parameters

ARSPD_ENABLE: Airspeed Enable

Enable airspeed sensor support

Values

Value

Meaning

0

Disable

1

Enable

ARSPD_TUBE_ORDER: Control pitot tube order

Note: This parameter is for advanced users

This parameter allows you to control whether the order in which the tubes are attached to your pitot tube matters. If you set this to 0 then the first (often the top) connector on the sensor needs to be the stagnation pressure (the pressure at the tip of the pitot tube). If set to 1 then the second (often the bottom) connector needs to be the stagnation pressure. If set to 2 (the default) then the airspeed driver will accept either order. The reason you may wish to specify the order is it will allow your airspeed sensor to detect if the aircraft is receiving excessive pressure on the static port compared to the stagnation port such as during a stall, which would otherwise be seen as a positive airspeed.

Values

Value

Meaning

0

Normal

1

Swapped

2

Auto Detect

ARSPD_PRIMARY: Primary airspeed sensor

Note: This parameter is for advanced users

This selects which airspeed sensor will be the primary if multiple sensors are found

Values

Value

Meaning

0

FirstSensor

1

2ndSensor

ARSPD_OPTIONS: Airspeed options bitmask

Note: This parameter is for advanced users

This parameter and function is not used by this vehicle. Always set to 0.

Bitmask

Bit

Meaning

0

SpeedMismatchDisable

1

AllowSpeedMismatchRecovery

2

DisableVoltageCorrection

3

UseEkf3Consistency

ARSPD_WIND_MAX: Maximum airspeed and ground speed difference

Note: This parameter is for advanced users

This parameter and function is not used by this vehicle. Always set to 0.

Units

meters per second

ARSPD_WIND_WARN: Airspeed and ground speed difference that gives a warning

Note: This parameter is for advanced users

This parameter and function is not used by this vehicle. Always set to 0.

Units

meters per second

ARSPD_WIND_GATE: Re-enable Consistency Check Gate Size

Note: This parameter is for advanced users

This parameter and function is not used by this vehicle.

Range

0.0 to 10.0

ARSPD_OFF_PCNT: Maximum offset cal speed error

Note: This parameter is for advanced users

The maximum percentage speed change in airspeed reports that is allowed due to offset changes between calibraions before a warning is issued. This potential speed error is in percent of ASPD_FBW_MIN. 0 disables. Helps warn of calibrations without pitot being covered.

Range

Units

0.0 to 10.0

percent

ARSPD2_ Parameters

ARSPD2_TYPE: Airspeed type

Type of airspeed sensor

Values

Value

Meaning

0

None

1

I2C-MS4525D0

2

Analog

3

I2C-MS5525

4

I2C-MS5525 (0x76)

5

I2C-MS5525 (0x77)

6

I2C-SDP3X

7

I2C-DLVR-5in

8

DroneCAN

9

I2C-DLVR-10in

10

I2C-DLVR-20in

11

I2C-DLVR-30in

12

I2C-DLVR-60in

13

NMEA water speed

14

MSP

15

ASP5033

100

SITL

ARSPD2_USE: Airspeed use

This parameter is not used by this vehicle. Always set to 0.

Values

Value

Meaning

0

DoNotUse

1

Use

2

UseWhenZeroThrottle

ARSPD2_OFFSET: Airspeed offset

Note: This parameter is for advanced users

Airspeed calibration offset

Increment

0.1

ARSPD2_RATIO: Airspeed ratio

Note: This parameter is for advanced users

Calibrates pitot tube pressure to velocity. Increasing this value will indicate a higher airspeed at any given dynamic pressure.

Increment

0.1

ARSPD2_PIN: Airspeed pin

Note: This parameter is for advanced users

The pin number that the airspeed sensor is connected to for analog sensors. Set to 15 on the Pixhawk for the analog airspeed port.

ARSPD2_AUTOCAL: This parameter and function is not used by this vehicle. Always set to 0.

Note: This parameter is for advanced users

Enables automatic adjustment of airspeed ratio during a calibration flight based on estimation of ground speed and true airspeed. New ratio saved every 2 minutes if change is > 5%. Should not be left enabled.

ARSPD2_TUBE_ORDR: Control pitot tube order

Note: This parameter is for advanced users

This parameter allows you to control whether the order in which the tubes are attached to your pitot tube matters. If you set this to 0 then the first (often the top) connector on the sensor needs to be the stagnation pressure (the pressure at the tip of the pitot tube). If set to 1 then the second (often the bottom) connector needs to be the stagnation pressure. If set to 2 (the default) then the airspeed driver will accept either order. The reason you may wish to specify the order is it will allow your airspeed sensor to detect if the aircraft is receiving excessive pressure on the static port compared to the stagnation port such as during a stall, which would otherwise be seen as a positive airspeed.

Values

Value

Meaning

0

Normal

1

Swapped

2

Auto Detect

ARSPD2_SKIP_CAL: Skip airspeed offset calibration on startup

Note: This parameter is for advanced users

This parameter allows you to skip airspeed offset calibration on startup, instead using the offset from the last calibration. This may be desirable if the offset variance between flights for your sensor is low and you want to avoid having to cover the pitot tube on each boot.

Values

Value

Meaning

0

Disable

1

Enable

ARSPD2_PSI_RANGE: The PSI range of the device

Note: This parameter is for advanced users

This parameter allows you to set the PSI (pounds per square inch) range for your sensor. You should not change this unless you examine the datasheet for your device

ARSPD2_BUS: Airspeed I2C bus

Note: This parameter is for advanced users
Note: Reboot required after change

Bus number of the I2C bus where the airspeed sensor is connected. May not correspond to board's I2C bus number labels. Retry another bus and reboot if airspeed sensor fails to initialize.

Values

Value

Meaning

0

Bus0

1

Bus1

2

Bus2

ARSPD2_DEVID: Airspeed ID

Note: This parameter is for advanced users

Airspeed sensor ID, taking into account its type, bus and instance

ReadOnly

True

ARSPD_ Parameters

ARSPD_TYPE: Airspeed type

Type of airspeed sensor

Values

Value

Meaning

0

None

1

I2C-MS4525D0

2

Analog

3

I2C-MS5525

4

I2C-MS5525 (0x76)

5

I2C-MS5525 (0x77)

6

I2C-SDP3X

7

I2C-DLVR-5in

8

DroneCAN

9

I2C-DLVR-10in

10

I2C-DLVR-20in

11

I2C-DLVR-30in

12

I2C-DLVR-60in

13

NMEA water speed

14

MSP

15

ASP5033

100

SITL

ARSPD_USE: Airspeed use

This parameter is not used by this vehicle. Always set to 0.

Values

Value

Meaning

0

DoNotUse

1

Use

2

UseWhenZeroThrottle

ARSPD_OFFSET: Airspeed offset

Note: This parameter is for advanced users

Airspeed calibration offset

Increment

0.1

ARSPD_RATIO: Airspeed ratio

Note: This parameter is for advanced users

Calibrates pitot tube pressure to velocity. Increasing this value will indicate a higher airspeed at any given dynamic pressure.

Increment

0.1

ARSPD_PIN: Airspeed pin

Note: This parameter is for advanced users

The pin number that the airspeed sensor is connected to for analog sensors. Set to 15 on the Pixhawk for the analog airspeed port.

ARSPD_AUTOCAL: This parameter and function is not used by this vehicle. Always set to 0.

Note: This parameter is for advanced users

Enables automatic adjustment of airspeed ratio during a calibration flight based on estimation of ground speed and true airspeed. New ratio saved every 2 minutes if change is > 5%. Should not be left enabled.

ARSPD_TUBE_ORDR: Control pitot tube order

Note: This parameter is for advanced users

This parameter allows you to control whether the order in which the tubes are attached to your pitot tube matters. If you set this to 0 then the first (often the top) connector on the sensor needs to be the stagnation pressure (the pressure at the tip of the pitot tube). If set to 1 then the second (often the bottom) connector needs to be the stagnation pressure. If set to 2 (the default) then the airspeed driver will accept either order. The reason you may wish to specify the order is it will allow your airspeed sensor to detect if the aircraft is receiving excessive pressure on the static port compared to the stagnation port such as during a stall, which would otherwise be seen as a positive airspeed.

Values

Value

Meaning

0

Normal

1

Swapped

2

Auto Detect

ARSPD_SKIP_CAL: Skip airspeed offset calibration on startup

Note: This parameter is for advanced users

This parameter allows you to skip airspeed offset calibration on startup, instead using the offset from the last calibration. This may be desirable if the offset variance between flights for your sensor is low and you want to avoid having to cover the pitot tube on each boot.

Values

Value

Meaning

0

Disable

1

Enable

ARSPD_PSI_RANGE: The PSI range of the device

Note: This parameter is for advanced users

This parameter allows you to set the PSI (pounds per square inch) range for your sensor. You should not change this unless you examine the datasheet for your device

ARSPD_BUS: Airspeed I2C bus

Note: This parameter is for advanced users
Note: Reboot required after change

Bus number of the I2C bus where the airspeed sensor is connected. May not correspond to board's I2C bus number labels. Retry another bus and reboot if airspeed sensor fails to initialize.

Values

Value

Meaning

0

Bus0

1

Bus1

2

Bus2

ARSPD_DEVID: Airspeed ID

Note: This parameter is for advanced users

Airspeed sensor ID, taking into account its type, bus and instance

ReadOnly

True

ATC_ Parameters

ATC_SLEW_YAW: Yaw target slew rate

Note: This parameter is for advanced users

Maximum rate the yaw target can be updated in Loiter, RTL, Auto flight modes

Increment

Range

Units

100

500 to 18000

centidegrees per second

ATC_ACCEL_Y_MAX: Acceleration Max for Yaw

Note: This parameter is for advanced users

Maximum acceleration in yaw axis

Increment

Range

Units

Values

1000

0 to 72000

centidegrees per square second

Value

Meaning

0

Disabled

9000

VerySlow

18000

Slow

36000

Medium

54000

Fast

ATC_RATE_FF_ENAB: Rate Feedforward Enable

Note: This parameter is for advanced users

Controls whether body-frame rate feedfoward is enabled or disabled

Values

Value

Meaning

0

Disabled

1

Enabled

ATC_ACCEL_R_MAX: Acceleration Max for Roll

Note: This parameter is for advanced users

Maximum acceleration in roll axis

Increment

Range

Units

Values

1000

0 to 180000

centidegrees per square second

Value

Meaning

0

Disabled

30000

VerySlow

72000

Slow

108000

Medium

162000

Fast

ATC_ACCEL_P_MAX: Acceleration Max for Pitch

Note: This parameter is for advanced users

Maximum acceleration in pitch axis

Increment

Range

Units

Values

1000

0 to 180000

centidegrees per square second

Value

Meaning

0

Disabled

30000

VerySlow

72000

Slow

108000

Medium

162000

Fast

ATC_ANGLE_BOOST: Angle Boost

Note: This parameter is for advanced users

Angle Boost increases output throttle as the vehicle leans to reduce loss of altitude

Values

Value

Meaning

0

Disabled

1

Enabled

ATC_ANG_RLL_P: Roll axis angle controller P gain

Roll axis angle controller P gain. Converts the error between the desired roll angle and actual angle to a desired roll rate

Range

3.000 to 12.000

ATC_ANG_PIT_P: Pitch axis angle controller P gain

Pitch axis angle controller P gain. Converts the error between the desired pitch angle and actual angle to a desired pitch rate

Range

3.000 to 12.000

ATC_ANG_YAW_P: Yaw axis angle controller P gain

Yaw axis angle controller P gain. Converts the error between the desired yaw angle and actual angle to a desired yaw rate

Range

3.000 to 12.000

ATC_ANG_LIM_TC: Angle Limit (to maintain altitude) Time Constant

Note: This parameter is for advanced users

Angle Limit (to maintain altitude) Time Constant

Range

0.5 to 10.0

ATC_RATE_R_MAX: Angular Velocity Max for Roll

Note: This parameter is for advanced users

Maximum angular velocity in roll axis

Increment

Range

Units

Values

1

0 to 1080

degrees per second

Value

Meaning

0

Disabled

60

Slow

180

Medium

360

Fast

ATC_RATE_P_MAX: Angular Velocity Max for Pitch

Note: This parameter is for advanced users

Maximum angular velocity in pitch axis

Increment

Range

Units

Values

1

0 to 1080

degrees per second

Value

Meaning

0

Disabled

60

Slow

180

Medium

360

Fast

ATC_RATE_Y_MAX: Angular Velocity Max for Yaw

Note: This parameter is for advanced users

Maximum angular velocity in yaw axis

Increment

Range

Units

Values

1

0 to 1080

degrees per second

Value

Meaning

0

Disabled

60

Slow

180

Medium

360

Fast

ATC_INPUT_TC: Attitude control input time constant

Attitude control input time constant. Low numbers lead to sharper response, higher numbers to softer response

Increment

Range

Units

Values

0.01

0 to 1

seconds

Value

Meaning

0.5

Very Soft

0.2

Soft

0.15

Medium

0.1

Crisp

0.05

Very Crisp

ATC_RAT_RLL_P (AC_AttitudeControl_Multi): Roll axis rate controller P gain

Roll axis rate controller P gain. Corrects in proportion to the difference between the desired roll rate vs actual roll rate

Increment

Range

0.005

0.01 to 0.5

ATC_RAT_RLL_I (AC_AttitudeControl_Multi): Roll axis rate controller I gain

Roll axis rate controller I gain. Corrects long-term difference in desired roll rate vs actual roll rate

Increment

Range

0.01

0.01 to 2.0

ATC_RAT_RLL_IMAX (AC_AttitudeControl_Multi): Roll axis rate controller I gain maximum

Roll axis rate controller I gain maximum. Constrains the maximum that the I term will output

Increment

Range

0.01

0 to 1

ATC_RAT_RLL_D (AC_AttitudeControl_Multi): Roll axis rate controller D gain

Roll axis rate controller D gain. Compensates for short-term change in desired roll rate vs actual roll rate

Increment

Range

0.001

0.0 to 0.05

ATC_RAT_RLL_FF (AC_AttitudeControl_Multi): Roll axis rate controller feed forward

Roll axis rate controller feed forward

Increment

Range

0.001

0 to 0.5

ATC_RAT_RLL_FLTT (AC_AttitudeControl_Multi): Roll axis rate controller target frequency in Hz

Roll axis rate controller target frequency in Hz

Increment

Range

Units

1

5 to 100

hertz

ATC_RAT_RLL_FLTE (AC_AttitudeControl_Multi): Roll axis rate controller error frequency in Hz

Roll axis rate controller error frequency in Hz

Increment

Range

Units

1

0 to 100

hertz

ATC_RAT_RLL_FLTD (AC_AttitudeControl_Multi): Roll axis rate controller derivative frequency in Hz

Roll axis rate controller derivative frequency in Hz

Increment

Range

Units

1

5 to 100

hertz

ATC_RAT_RLL_SMAX (AC_AttitudeControl_Multi): Roll slew rate limit

Note: This parameter is for advanced users

Sets an upper limit on the slew rate produced by the combined P and D gains. If the amplitude of the control action produced by the rate feedback exceeds this value, then the D+P gain is reduced to respect the limit. This limits the amplitude of high frequency oscillations caused by an excessive gain. The limit should be set to no more than 25% of the actuators maximum slew rate to allow for load effects. Note: The gain will not be reduced to less than 10% of the nominal value. A value of zero will disable this feature.

Increment

Range

0.5

0 to 200

ATC_RAT_PIT_P (AC_AttitudeControl_Multi): Pitch axis rate controller P gain

Pitch axis rate controller P gain. Corrects in proportion to the difference between the desired pitch rate vs actual pitch rate output

Increment

Range

0.005

0.01 to 0.50

ATC_RAT_PIT_I (AC_AttitudeControl_Multi): Pitch axis rate controller I gain

Pitch axis rate controller I gain. Corrects long-term difference in desired pitch rate vs actual pitch rate

Increment

Range

0.01

0.01 to 2.0

ATC_RAT_PIT_IMAX (AC_AttitudeControl_Multi): Pitch axis rate controller I gain maximum

Pitch axis rate controller I gain maximum. Constrains the maximum that the I term will output

Increment

Range

0.01

0 to 1

ATC_RAT_PIT_D (AC_AttitudeControl_Multi): Pitch axis rate controller D gain

Pitch axis rate controller D gain. Compensates for short-term change in desired pitch rate vs actual pitch rate

Increment

Range

0.001

0.0 to 0.05

ATC_RAT_PIT_FF (AC_AttitudeControl_Multi): Pitch axis rate controller feed forward

Pitch axis rate controller feed forward

Increment

Range

0.001

0 to 0.5

ATC_RAT_PIT_FLTT (AC_AttitudeControl_Multi): Pitch axis rate controller target frequency in Hz

Pitch axis rate controller target frequency in Hz

Increment

Range

Units

1

5 to 100

hertz

ATC_RAT_PIT_FLTE (AC_AttitudeControl_Multi): Pitch axis rate controller error frequency in Hz

Pitch axis rate controller error frequency in Hz

Increment

Range

Units

1

0 to 100

hertz

ATC_RAT_PIT_FLTD (AC_AttitudeControl_Multi): Pitch axis rate controller derivative frequency in Hz

Pitch axis rate controller derivative frequency in Hz

Increment

Range

Units

1

5 to 100

hertz

ATC_RAT_PIT_SMAX (AC_AttitudeControl_Multi): Pitch slew rate limit

Note: This parameter is for advanced users

Sets an upper limit on the slew rate produced by the combined P and D gains. If the amplitude of the control action produced by the rate feedback exceeds this value, then the D+P gain is reduced to respect the limit. This limits the amplitude of high frequency oscillations caused by an excessive gain. The limit should be set to no more than 25% of the actuators maximum slew rate to allow for load effects. Note: The gain will not be reduced to less than 10% of the nominal value. A value of zero will disable this feature.

Increment

Range

0.5

0 to 200

ATC_RAT_YAW_P (AC_AttitudeControl_Multi): Yaw axis rate controller P gain

Yaw axis rate controller P gain. Corrects in proportion to the difference between the desired yaw rate vs actual yaw rate

Increment

Range

0.005

0.10 to 2.50

ATC_RAT_YAW_I (AC_AttitudeControl_Multi): Yaw axis rate controller I gain

Yaw axis rate controller I gain. Corrects long-term difference in desired yaw rate vs actual yaw rate

Increment

Range

0.01

0.010 to 1.0

ATC_RAT_YAW_IMAX (AC_AttitudeControl_Multi): Yaw axis rate controller I gain maximum

Yaw axis rate controller I gain maximum. Constrains the maximum that the I term will output

Increment

Range

0.01

0 to 1

ATC_RAT_YAW_D (AC_AttitudeControl_Multi): Yaw axis rate controller D gain

Yaw axis rate controller D gain. Compensates for short-term change in desired yaw rate vs actual yaw rate

Increment

Range

0.001

0.000 to 0.02

ATC_RAT_YAW_FF (AC_AttitudeControl_Multi): Yaw axis rate controller feed forward

Yaw axis rate controller feed forward

Increment

Range

0.001

0 to 0.5

ATC_RAT_YAW_FLTT (AC_AttitudeControl_Multi): Yaw axis rate controller target frequency in Hz

Yaw axis rate controller target frequency in Hz

Increment

Range

Units

1

1 to 50

hertz

ATC_RAT_YAW_FLTE (AC_AttitudeControl_Multi): Yaw axis rate controller error frequency in Hz

Yaw axis rate controller error frequency in Hz

Increment

Range

Units

1

0 to 20

hertz

ATC_RAT_YAW_FLTD (AC_AttitudeControl_Multi): Yaw axis rate controller derivative frequency in Hz

Yaw axis rate controller derivative frequency in Hz

Increment

Range

Units

1

5 to 50

hertz

ATC_RAT_YAW_SMAX (AC_AttitudeControl_Multi): Yaw slew rate limit

Note: This parameter is for advanced users

Sets an upper limit on the slew rate produced by the combined P and D gains. If the amplitude of the control action produced by the rate feedback exceeds this value, then the D+P gain is reduced to respect the limit. This limits the amplitude of high frequency oscillations caused by an excessive gain. The limit should be set to no more than 25% of the actuators maximum slew rate to allow for load effects. Note: The gain will not be reduced to less than 10% of the nominal value. A value of zero will disable this feature.

Increment

Range

0.5

0 to 200

ATC_THR_MIX_MIN: Throttle Mix Minimum

Note: This parameter is for advanced users

Throttle vs attitude control prioritisation used when landing (higher values mean we prioritise attitude control over throttle)

Range

0.1 to 0.25

ATC_THR_MIX_MAX: Throttle Mix Maximum

Note: This parameter is for advanced users

Throttle vs attitude control prioritisation used during active flight (higher values mean we prioritise attitude control over throttle)

Range

0.5 to 0.9

ATC_THR_MIX_MAN: Throttle Mix Manual

Note: This parameter is for advanced users

Throttle vs attitude control prioritisation used during manual flight (higher values mean we prioritise attitude control over throttle)

Range

0.1 to 0.9

ATC_THR_G_BOOST: Throttle-gain boost

Note: This parameter is for advanced users

Throttle-gain boost ratio. A value of 0 means no boosting is applied, a value of 1 means full boosting is applied. Describes the ratio increase that is applied to angle P and PD on pitch and roll.

Range

0 to 1

ATC_HOVR_ROL_TRM: Hover Roll Trim

Note: This parameter is for advanced users

Trim the hover roll angle to counter tail rotor thrust in a hover

Increment

Range

Units

10

0 to 1000

centidegrees

ATC_RAT_RLL_P (AC_AttitudeControl_Heli): Roll axis rate controller P gain

Roll axis rate controller P gain. Corrects in proportion to the difference between the desired roll rate vs actual roll rate

Increment

Range

0.005

0.0 to 0.35

ATC_RAT_RLL_I (AC_AttitudeControl_Heli): Roll axis rate controller I gain

Roll axis rate controller I gain. Corrects long-term difference in desired roll rate vs actual roll rate

Increment

Range

0.01

0.0 to 0.6

ATC_RAT_RLL_IMAX (AC_AttitudeControl_Heli): Roll axis rate controller I gain maximum

Roll axis rate controller I gain maximum. Constrains the maximum that the I term will output

Increment

Range

0.01

0 to 1

ATC_RAT_RLL_ILMI: Roll axis rate controller I-term leak minimum

Note: This parameter is for advanced users

Point below which I-term will not leak down

Range

0 to 1

ATC_RAT_RLL_D (AC_AttitudeControl_Heli): Roll axis rate controller D gain

Roll axis rate controller D gain. Compensates for short-term change in desired roll rate vs actual roll rate

Increment

Range

0.001

0.0 to 0.03

ATC_RAT_RLL_FF (AC_AttitudeControl_Heli): Roll axis rate controller feed forward

Roll axis rate controller feed forward

Increment

Range

0.001

0.05 to 0.5

ATC_RAT_RLL_FLTT (AC_AttitudeControl_Heli): Roll axis rate controller target frequency in Hz

Roll axis rate controller target frequency in Hz

Increment

Range

Units

1

5 to 50

hertz

ATC_RAT_RLL_FLTE (AC_AttitudeControl_Heli): Roll axis rate controller error frequency in Hz

Roll axis rate controller error frequency in Hz

Increment

Range

Units

1

5 to 50

hertz

ATC_RAT_RLL_FLTD (AC_AttitudeControl_Heli): Roll axis rate controller derivative frequency in Hz

Roll axis rate controller derivative frequency in Hz

Increment

Range

Units

1

0 to 50

hertz

ATC_RAT_RLL_SMAX (AC_AttitudeControl_Heli): Roll slew rate limit

Note: This parameter is for advanced users

Sets an upper limit on the slew rate produced by the combined P and D gains. If the amplitude of the control action produced by the rate feedback exceeds this value, then the D+P gain is reduced to respect the limit. This limits the amplitude of high frequency oscillations caused by an excessive gain. The limit should be set to no more than 25% of the actuators maximum slew rate to allow for load effects. Note: The gain will not be reduced to less than 10% of the nominal value. A value of zero will disable this feature.

Increment

Range

0.5

0 to 200

ATC_RAT_PIT_P (AC_AttitudeControl_Heli): Pitch axis rate controller P gain

Pitch axis rate controller P gain. Corrects in proportion to the difference between the desired pitch rate vs actual pitch rate

Increment

Range

0.005

0.0 to 0.35

ATC_RAT_PIT_I (AC_AttitudeControl_Heli): Pitch axis rate controller I gain

Pitch axis rate controller I gain. Corrects long-term difference in desired pitch rate vs actual pitch rate

Increment

Range

0.01

0.0 to 0.6

ATC_RAT_PIT_IMAX (AC_AttitudeControl_Heli): Pitch axis rate controller I gain maximum

Pitch axis rate controller I gain maximum. Constrains the maximum that the I term will output

Increment

Range

0.01

0 to 1

ATC_RAT_PIT_ILMI: Pitch axis rate controller I-term leak minimum

Note: This parameter is for advanced users

Point below which I-term will not leak down

Range

0 to 1

ATC_RAT_PIT_D (AC_AttitudeControl_Heli): Pitch axis rate controller D gain

Pitch axis rate controller D gain. Compensates for short-term change in desired pitch rate vs actual pitch rate

Increment

Range

0.001

0.0 to 0.03

ATC_RAT_PIT_FF (AC_AttitudeControl_Heli): Pitch axis rate controller feed forward

Pitch axis rate controller feed forward

Increment

Range

0.001

0.05 to 0.5

ATC_RAT_PIT_FLTT (AC_AttitudeControl_Heli): Pitch axis rate controller target frequency in Hz

Pitch axis rate controller target frequency in Hz

Increment

Range

Units

1

5 to 50

hertz

ATC_RAT_PIT_FLTE (AC_AttitudeControl_Heli): Pitch axis rate controller error frequency in Hz

Pitch axis rate controller error frequency in Hz

Increment

Range

Units

1

5 to 50

hertz

ATC_RAT_PIT_FLTD (AC_AttitudeControl_Heli): Pitch axis rate controller derivative frequency in Hz

Pitch axis rate controller derivative frequency in Hz

Increment

Range

Units

1

0 to 50

hertz

ATC_RAT_PIT_SMAX (AC_AttitudeControl_Heli): Pitch slew rate limit

Note: This parameter is for advanced users

Sets an upper limit on the slew rate produced by the combined P and D gains. If the amplitude of the control action produced by the rate feedback exceeds this value, then the D+P gain is reduced to respect the limit. This limits the amplitude of high frequency oscillations caused by an excessive gain. The limit should be set to no more than 25% of the actuators maximum slew rate to allow for load effects. Note: The gain will not be reduced to less than 10% of the nominal value. A value of zero will disable this feature.

Increment

Range

0.5

0 to 200

ATC_RAT_YAW_P (AC_AttitudeControl_Heli): Yaw axis rate controller P gain

Yaw axis rate controller P gain. Corrects in proportion to the difference between the desired yaw rate vs actual yaw rate

Increment

Range

0.005

0.180 to 0.60

ATC_RAT_YAW_I (AC_AttitudeControl_Heli): Yaw axis rate controller I gain

Yaw axis rate controller I gain. Corrects long-term difference in desired yaw rate vs actual yaw rate

Increment

Range

0.01

0.01 to 0.2

ATC_RAT_YAW_IMAX (AC_AttitudeControl_Heli): Yaw axis rate controller I gain maximum

Yaw axis rate controller I gain maximum. Constrains the maximum that the I term will output

Increment

Range

0.01

0 to 1

ATC_RAT_YAW_ILMI: Yaw axis rate controller I-term leak minimum

Note: This parameter is for advanced users

Point below which I-term will not leak down

Range

0 to 1

ATC_RAT_YAW_D (AC_AttitudeControl_Heli): Yaw axis rate controller D gain

Yaw axis rate controller D gain. Compensates for short-term change in desired yaw rate vs actual yaw rate

Increment

Range

0.001

0.000 to 0.02

ATC_RAT_YAW_FF (AC_AttitudeControl_Heli): Yaw axis rate controller feed forward

Yaw axis rate controller feed forward

Increment

Range

0.001

0 to 0.5

ATC_RAT_YAW_FLTT (AC_AttitudeControl_Heli): Yaw axis rate controller target frequency in Hz

Yaw axis rate controller target frequency in Hz

Increment

Range

Units

1

5 to 50

hertz

ATC_RAT_YAW_FLTE (AC_AttitudeControl_Heli): Yaw axis rate controller error frequency in Hz

Yaw axis rate controller error frequency in Hz

Increment

Range

Units

1

5 to 50

hertz

ATC_RAT_YAW_FLTD (AC_AttitudeControl_Heli): Yaw axis rate controller derivative frequency in Hz

Yaw axis rate controller derivative frequency in Hz

Increment

Range

Units

1

0 to 50

hertz

ATC_RAT_YAW_SMAX (AC_AttitudeControl_Heli): Yaw slew rate limit

Note: This parameter is for advanced users

Sets an upper limit on the slew rate produced by the combined P and D gains. If the amplitude of the control action produced by the rate feedback exceeds this value, then the D+P gain is reduced to respect the limit. This limits the amplitude of high frequency oscillations caused by an excessive gain. The limit should be set to no more than 25% of the actuators maximum slew rate to allow for load effects. Note: The gain will not be reduced to less than 10% of the nominal value. A value of zero will disable this feature.

Increment

Range

0.5

0 to 200

ATC_PIRO_COMP: Piro Comp Enable

Note: This parameter is for advanced users

Pirouette compensation enabled

Values

Value

Meaning

0

Disabled

1

Enabled

AUTOTUNE_ Parameters

AUTOTUNE_AXES (AC_AutoTune_Multi): Autotune axis bitmask

1-byte bitmap of axes to autotune

Bitmask

Bit

Meaning

0

Roll

1

Pitch

2

Yaw

3

YawD

AUTOTUNE_AGGR: Autotune aggressiveness

Autotune aggressiveness. Defines the bounce back used to detect size of the D term.

Range

0.05 to 0.10

AUTOTUNE_MIN_D: AutoTune minimum D

Defines the minimum D gain

Range

0.001 to 0.006

AUTOTUNE_AXES (AC_AutoTune_Heli): Autotune axis bitmask

1-byte bitmap of axes to autotune

Bitmask

Bit

Meaning

0

Roll

1

Pitch

2

Yaw

AUTOTUNE_SEQ: AutoTune Sequence Bitmask

2-byte bitmask to select what tuning should be performed. Max gain automatically performed if Rate D is selected. Values: 7:All,1:VFF Only,2:Rate D/Rate P Only(incl max gain),4:Angle P Only,8:Max Gain Only,16:Tune Check,3:VFF and Rate D/Rate P(incl max gain),5:VFF and Angle P,6:Rate D/Rate P(incl max gain) and angle P

Bitmask

Bit

Meaning

0

VFF

1

Rate D/Rate P(incl max gain)

2

Angle P

3

Max Gain Only

4

Tune Check

AUTOTUNE_FRQ_MIN: AutoTune minimum sweep frequency

Defines the start frequency for sweeps and dwells

Range

10 to 30

AUTOTUNE_FRQ_MAX: AutoTune maximum sweep frequency

Defines the end frequency for sweeps and dwells

Range

50 to 120

AUTOTUNE_GN_MAX: AutoTune maximum response gain

Defines the response gain (output/input) to tune

Range

1 to 2.5

AUTOTUNE_VELXY_P: AutoTune velocity xy P gain

Velocity xy P gain used to hold position during Max Gain, Rate P, and Rate D frequency sweeps

Range

0 to 1

AVD_ Parameters

AVD_ENABLE: Enable Avoidance using ADSB

Note: This parameter is for advanced users

Enable Avoidance using ADSB

Values

Value

Meaning

0

Disabled

1

Enabled

AVD_F_ACTION: Collision Avoidance Behavior

Note: This parameter is for advanced users

Specifies aircraft behaviour when a collision is imminent

Values

Value

Meaning

0

None

1

Report

2

Climb Or Descend

3

Move Horizontally

4

Move Perpendicularly in 3D

5

RTL

6

Hover

AVD_W_ACTION: Collision Avoidance Behavior - Warn

Note: This parameter is for advanced users

Specifies aircraft behaviour when a collision may occur

Values

Value

Meaning

0

None

1

Report

AVD_F_RCVRY: Recovery behaviour after a fail event

Note: This parameter is for advanced users

Determines what the aircraft will do after a fail event is resolved

Values

Value

Meaning

0

Remain in AVOID_ADSB

1

Resume previous flight mode

2

RTL

3

Resume if AUTO else Loiter

AVD_OBS_MAX: Maximum number of obstacles to track

Note: This parameter is for advanced users

Maximum number of obstacles to track

AVD_W_TIME: Time Horizon Warn

Note: This parameter is for advanced users

Aircraft velocity vectors are multiplied by this time to determine closest approach. If this results in an approach closer than W_DIST_XY or W_DIST_Z then W_ACTION is undertaken (assuming F_ACTION is not undertaken)

Units

seconds

AVD_F_TIME: Time Horizon Fail

Note: This parameter is for advanced users

Aircraft velocity vectors are multiplied by this time to determine closest approach. If this results in an approach closer than F_DIST_XY or F_DIST_Z then F_ACTION is undertaken

Units

seconds

AVD_W_DIST_XY: Distance Warn XY

Note: This parameter is for advanced users

Closest allowed projected distance before W_ACTION is undertaken

Units

meters

AVD_F_DIST_XY: Distance Fail XY

Note: This parameter is for advanced users

Closest allowed projected distance before F_ACTION is undertaken

Units

meters

AVD_W_DIST_Z: Distance Warn Z

Note: This parameter is for advanced users

Closest allowed projected distance before BEHAVIOUR_W is undertaken

Units

meters

AVD_F_DIST_Z: Distance Fail Z

Note: This parameter is for advanced users

Closest allowed projected distance before BEHAVIOUR_F is undertaken

Units

meters

AVD_F_ALT_MIN: ADS-B avoidance minimum altitude

Note: This parameter is for advanced users

Minimum AMSL (above mean sea level) altitude for ADS-B avoidance. If the vehicle is below this altitude, no avoidance action will take place. Useful to prevent ADS-B avoidance from activating while below the tree line or around structures. Default of 0 is no minimum.

Units

meters

AVOID_ Parameters

AVOID_ENABLE: Avoidance control enable/disable

Enabled/disable avoidance input sources

Bitmask

Bit

Meaning

0

UseFence

1

UseProximitySensor

2

UseBeaconFence

AVOID_ANGLE_MAX: Avoidance max lean angle in non-GPS flight modes

Max lean angle used to avoid obstacles while in non-GPS modes

Increment

Range

Units

10

0 to 4500

centidegrees

AVOID_DIST_MAX: Avoidance distance maximum in non-GPS flight modes

Distance from object at which obstacle avoidance will begin in non-GPS modes

Range

Units

1 to 30

meters

AVOID_MARGIN: Avoidance distance margin in GPS modes

Vehicle will attempt to stay at least this distance (in meters) from objects while in GPS modes

Range

Units

1 to 10

meters

AVOID_BEHAVE: Avoidance behaviour

Avoidance behaviour (slide or stop)

Values

Value

Meaning

0

Slide

1

Stop

AVOID_BACKUP_SPD: Avoidance maximum backup speed

Maximum speed that will be used to back away from obstacles in GPS modes (m/s). Set zero to disable

Range

Units

0 to 2

meters per second

AVOID_ALT_MIN: Avoidance minimum altitude

Minimum altitude above which proximity based avoidance will start working. This requires a valid downward facing rangefinder reading to work. Set zero to disable

Range

Units

0 to 6

meters

AVOID_ACCEL_MAX: Avoidance maximum acceleration

Maximum acceleration with which obstacles will be avoided with. Set zero to disable acceleration limits

Range

Units

0 to 9

meters per square second

AVOID_BACKUP_DZ: Avoidance deadzone between stopping and backing away from obstacle

Distance beyond AVOID_MARGIN parameter, after which vehicle will backaway from obstacles. Increase this parameter if you see vehicle going back and forth in front of obstacle.

Range

Units

0 to 2

meters

BARO Parameters

BARO1_GND_PRESS: Ground Pressure

Note: This parameter is for advanced users

calibrated ground pressure in Pascals

Increment

ReadOnly

Units

Volatile

1

True

pascal

True

BARO_GND_TEMP: ground temperature

Note: This parameter is for advanced users

User provided ambient ground temperature in degrees Celsius. This is used to improve the calculation of the altitude the vehicle is at. This parameter is not persistent and will be reset to 0 every time the vehicle is rebooted. A value of 0 means use the internal measurement ambient temperature.

Increment

Units

Volatile

1

degrees Celsius

True

BARO_ALT_OFFSET: altitude offset

Note: This parameter is for advanced users

altitude offset in meters added to barometric altitude. This is used to allow for automatic adjustment of the base barometric altitude by a ground station equipped with a barometer. The value is added to the barometric altitude read by the aircraft. It is automatically reset to 0 when the barometer is calibrated on each reboot or when a preflight calibration is performed.

Increment

Units

0.1

meters

BARO_PRIMARY: Primary barometer

Note: This parameter is for advanced users

This selects which barometer will be the primary if multiple barometers are found

Values

Value

Meaning

0

FirstBaro

1

2ndBaro

2

3rdBaro

BARO_EXT_BUS: External baro bus

Note: This parameter is for advanced users

This selects the bus number for looking for an I2C barometer. When set to -1 it will probe all external i2c buses based on the BARO_PROBE_EXT parameter.

Values

Value

Meaning

-1

Disabled

0

Bus0

1

Bus1

6

Bus6

BARO2_GND_PRESS: Ground Pressure

Note: This parameter is for advanced users

calibrated ground pressure in Pascals

Increment

ReadOnly

Units

Volatile

1

True

pascal

True

BARO3_GND_PRESS: Absolute Pressure

Note: This parameter is for advanced users

calibrated ground pressure in Pascals

Increment

ReadOnly

Units

Volatile

1

True

pascal

True

BARO_FLTR_RNG: Range in which sample is accepted

This sets the range around the average value that new samples must be within to be accepted. This can help reduce the impact of noise on sensors that are on long I2C cables. The value is a percentage from the average value. A value of zero disables this filter.

Increment

Range

Units

1

0 to 100

percent

BARO_PROBE_EXT: External barometers to probe

Note: This parameter is for advanced users

This sets which types of external i2c barometer to look for. It is a bitmask of barometer types. The I2C buses to probe is based on BARO_EXT_BUS. If BARO_EXT_BUS is -1 then it will probe all external buses, otherwise it will probe just the bus number given in BARO_EXT_BUS.

Bitmask

Bit

Meaning

0

BMP085

1

BMP280

2

MS5611

3

MS5607

4

MS5637

5

FBM320

6

DPS280

7

LPS25H

8

Keller

9

MS5837

10

BMP388

11

SPL06

12

MSP

BARO1_DEVID: Baro ID

Note: This parameter is for advanced users

Barometer sensor ID, taking into account its type, bus and instance

ReadOnly

True

BARO2_DEVID: Baro ID2

Note: This parameter is for advanced users

Barometer2 sensor ID, taking into account its type, bus and instance

ReadOnly

True

BARO3_DEVID: Baro ID3

Note: This parameter is for advanced users

Barometer3 sensor ID, taking into account its type, bus and instance

ReadOnly

True

BARO_FIELD_ELV: field elevation

Note: This parameter is for advanced users

User provided field elevation in meters. This is used to improve the calculation of the altitude the vehicle is at. This parameter is not persistent and will be reset to 0 every time the vehicle is rebooted. Changes to this parameter will only be used when disarmed. A value of 0 means the EKF origin height is used for takeoff height above sea level.

Increment

Units

Volatile

0.1

meters

True

BARO_ALTERR_MAX: Altitude error maximum

Note: This parameter is for advanced users

This is the maximum acceptable altitude discrepancy between GPS altitude and barometric presssure altitude calculated against a standard atmosphere for arming checks to pass. If you are getting an arming error due to this parameter then you may have a faulty or substituted barometer. A common issue is vendors replacing a MS5611 in a "Pixhawk" with a MS5607. If you have that issue then please see BARO_OPTIONS parameter to force the MS5611 to be treated as a MS5607. This check is disabled if the value is zero.

Increment

Range

Units

1

0 to 5000

meters

BARO_OPTIONS: Barometer options

Note: This parameter is for advanced users

Barometer options

Bitmask

Bit

Meaning

0

Treat MS5611 as MS5607

BARO1_WCF_ Parameters

BARO1_WCF_ENABLE: Wind coefficient enable

Note: This parameter is for advanced users

This enables the use of wind coefficients for barometer compensation

Values

Value

Meaning

0

Disabled

1

Enabled

BARO1_WCF_FWD: Pressure error coefficient in positive X direction (forward)

Note: This parameter is for advanced users

This is the ratio of static pressure error to dynamic pressure generated by a positive wind relative velocity along the X body axis. If the baro height estimate rises during forwards flight, then this will be a negative number. Multirotors can use this feature only if using EKF3 and if the EK3_DRAG_BCOEF_X and EK3_DRAG_BCOEF_Y parameters have been tuned.

Increment

Range

0.05

-1.0 to 1.0

BARO1_WCF_BCK: Pressure error coefficient in negative X direction (backwards)

Note: This parameter is for advanced users

This is the ratio of static pressure error to dynamic pressure generated by a negative wind relative velocity along the X body axis. If the baro height estimate rises during backwards flight, then this will be a negative number. Multirotors can use this feature only if using EKF3 and if the EK3_DRAG_BCOEF_X and EK3_DRAG_BCOEF_Y parameters have been tuned.

Increment

Range

0.05

-1.0 to 1.0

BARO1_WCF_RGT: Pressure error coefficient in positive Y direction (right)

Note: This parameter is for advanced users

This is the ratio of static pressure error to dynamic pressure generated by a positive wind relative velocity along the Y body axis. If the baro height estimate rises during sideways flight to the right, then this should be a negative number. Multirotors can use this feature only if using EKF3 and if the EK3_DRAG_BCOEF_X and EK3_DRAG_BCOEF_Y parameters have been tuned.

Increment

Range

0.05

-1.0 to 1.0

BARO1_WCF_LFT: Pressure error coefficient in negative Y direction (left)

Note: This parameter is for advanced users

This is the ratio of static pressure error to dynamic pressure generated by a negative wind relative velocity along the Y body axis. If the baro height estimate rises during sideways flight to the left, then this should be a negative number. Multirotors can use this feature only if using EKF3 and if the EK3_DRAG_BCOEF_X and EK3_DRAG_BCOEF_Y parameters have been tuned.

Increment

Range

0.05

-1.0 to 1.0

BARO1_WCF_UP: Pressure error coefficient in positive Z direction (up)

Note: This parameter is for advanced users

This is the ratio of static pressure error to dynamic pressure generated by a positive wind relative velocity along the Z body axis. If the baro height estimate rises above truth height during climbing flight (or forward flight with a high forwards lean angle), then this should be a negative number. Multirotors can use this feature only if using EKF3 and if the EK3_DRAG_BCOEF_X and EK3_DRAG_BCOEF_Y parameters have been tuned.

Increment

Range

0.05

-1.0 to 1.0

BARO1_WCF_DN: Pressure error coefficient in negative Z direction (down)

Note: This parameter is for advanced users

This is the ratio of static pressure error to dynamic pressure generated by a negative wind relative velocity along the Z body axis. If the baro height estimate rises above truth height during descending flight (or forward flight with a high backwards lean angle, eg braking manoeuvre), then this should be a negative number. Multirotors can use this feature only if using EKF3 and if the EK3_DRAG_BCOEF_X and EK3_DRAG_BCOEF_Y parameters have been tuned.

Increment

Range

0.05

-1.0 to 1.0

BARO2_WCF_ Parameters

BARO2_WCF_ENABLE: Wind coefficient enable

Note: This parameter is for advanced users

This enables the use of wind coefficients for barometer compensation

Values

Value

Meaning

0

Disabled

1

Enabled

BARO2_WCF_FWD: Pressure error coefficient in positive X direction (forward)

Note: This parameter is for advanced users

This is the ratio of static pressure error to dynamic pressure generated by a positive wind relative velocity along the X body axis. If the baro height estimate rises during forwards flight, then this will be a negative number. Multirotors can use this feature only if using EKF3 and if the EK3_DRAG_BCOEF_X and EK3_DRAG_BCOEF_Y parameters have been tuned.

Increment

Range

0.05

-1.0 to 1.0

BARO2_WCF_BCK: Pressure error coefficient in negative X direction (backwards)

Note: This parameter is for advanced users

This is the ratio of static pressure error to dynamic pressure generated by a negative wind relative velocity along the X body axis. If the baro height estimate rises during backwards flight, then this will be a negative number. Multirotors can use this feature only if using EKF3 and if the EK3_DRAG_BCOEF_X and EK3_DRAG_BCOEF_Y parameters have been tuned.

Increment

Range

0.05

-1.0 to 1.0

BARO2_WCF_RGT: Pressure error coefficient in positive Y direction (right)

Note: This parameter is for advanced users

This is the ratio of static pressure error to dynamic pressure generated by a positive wind relative velocity along the Y body axis. If the baro height estimate rises during sideways flight to the right, then this should be a negative number. Multirotors can use this feature only if using EKF3 and if the EK3_DRAG_BCOEF_X and EK3_DRAG_BCOEF_Y parameters have been tuned.

Increment

Range

0.05

-1.0 to 1.0

BARO2_WCF_LFT: Pressure error coefficient in negative Y direction (left)

Note: This parameter is for advanced users

This is the ratio of static pressure error to dynamic pressure generated by a negative wind relative velocity along the Y body axis. If the baro height estimate rises during sideways flight to the left, then this should be a negative number. Multirotors can use this feature only if using EKF3 and if the EK3_DRAG_BCOEF_X and EK3_DRAG_BCOEF_Y parameters have been tuned.

Increment

Range

0.05

-1.0 to 1.0

BARO2_WCF_UP: Pressure error coefficient in positive Z direction (up)

Note: This parameter is for advanced users

This is the ratio of static pressure error to dynamic pressure generated by a positive wind relative velocity along the Z body axis. If the baro height estimate rises above truth height during climbing flight (or forward flight with a high forwards lean angle), then this should be a negative number. Multirotors can use this feature only if using EKF3 and if the EK3_DRAG_BCOEF_X and EK3_DRAG_BCOEF_Y parameters have been tuned.

Increment

Range

0.05

-1.0 to 1.0

BARO2_WCF_DN: Pressure error coefficient in negative Z direction (down)

Note: This parameter is for advanced users

This is the ratio of static pressure error to dynamic pressure generated by a negative wind relative velocity along the Z body axis. If the baro height estimate rises above truth height during descending flight (or forward flight with a high backwards lean angle, eg braking manoeuvre), then this should be a negative number. Multirotors can use this feature only if using EKF3 and if the EK3_DRAG_BCOEF_X and EK3_DRAG_BCOEF_Y parameters have been tuned.

Increment

Range

0.05

-1.0 to 1.0

BARO3_WCF_ Parameters

BARO3_WCF_ENABLE: Wind coefficient enable

Note: This parameter is for advanced users

This enables the use of wind coefficients for barometer compensation

Values

Value

Meaning

0

Disabled

1

Enabled

BARO3_WCF_FWD: Pressure error coefficient in positive X direction (forward)

Note: This parameter is for advanced users

This is the ratio of static pressure error to dynamic pressure generated by a positive wind relative velocity along the X body axis. If the baro height estimate rises during forwards flight, then this will be a negative number. Multirotors can use this feature only if using EKF3 and if the EK3_DRAG_BCOEF_X and EK3_DRAG_BCOEF_Y parameters have been tuned.

Increment

Range

0.05

-1.0 to 1.0

BARO3_WCF_BCK: Pressure error coefficient in negative X direction (backwards)

Note: This parameter is for advanced users

This is the ratio of static pressure error to dynamic pressure generated by a negative wind relative velocity along the X body axis. If the baro height estimate rises during backwards flight, then this will be a negative number. Multirotors can use this feature only if using EKF3 and if the EK3_DRAG_BCOEF_X and EK3_DRAG_BCOEF_Y parameters have been tuned.

Increment

Range

0.05

-1.0 to 1.0

BARO3_WCF_RGT: Pressure error coefficient in positive Y direction (right)

Note: This parameter is for advanced users

This is the ratio of static pressure error to dynamic pressure generated by a positive wind relative velocity along the Y body axis. If the baro height estimate rises during sideways flight to the right, then this should be a negative number. Multirotors can use this feature only if using EKF3 and if the EK3_DRAG_BCOEF_X and EK3_DRAG_BCOEF_Y parameters have been tuned.

Increment

Range

0.05

-1.0 to 1.0

BARO3_WCF_LFT: Pressure error coefficient in negative Y direction (left)

Note: This parameter is for advanced users

This is the ratio of static pressure error to dynamic pressure generated by a negative wind relative velocity along the Y body axis. If the baro height estimate rises during sideways flight to the left, then this should be a negative number. Multirotors can use this feature only if using EKF3 and if the EK3_DRAG_BCOEF_X and EK3_DRAG_BCOEF_Y parameters have been tuned.

Increment

Range

0.05

-1.0 to 1.0

BARO3_WCF_UP: Pressure error coefficient in positive Z direction (up)

Note: This parameter is for advanced users

This is the ratio of static pressure error to dynamic pressure generated by a positive wind relative velocity along the Z body axis. If the baro height estimate rises above truth height during climbing flight (or forward flight with a high forwards lean angle), then this should be a negative number. Multirotors can use this feature only if using EKF3 and if the EK3_DRAG_BCOEF_X and EK3_DRAG_BCOEF_Y parameters have been tuned.

Increment

Range

0.05

-1.0 to 1.0

BARO3_WCF_DN: Pressure error coefficient in negative Z direction (down)

Note: This parameter is for advanced users

This is the ratio of static pressure error to dynamic pressure generated by a negative wind relative velocity along the Z body axis. If the baro height estimate rises above truth height during descending flight (or forward flight with a high backwards lean angle, eg braking manoeuvre), then this should be a negative number. Multirotors can use this feature only if using EKF3 and if the EK3_DRAG_BCOEF_X and EK3_DRAG_BCOEF_Y parameters have been tuned.

Increment

Range

0.05

-1.0 to 1.0

BATT2_ Parameters

BATT2_MONITOR: Battery monitoring

Note: Reboot required after change

Controls enabling monitoring of the battery's voltage and current

Values

Value

Meaning

0

Disabled

3

Analog Voltage Only

4

Analog Voltage and Current

5

Solo

6

Bebop

7

SMBus-Generic

8

DroneCAN-BatteryInfo

9

ESC

10

Sum Of Selected Monitors

11

FuelFlow

12

FuelLevelPWM

13

SMBUS-SUI3

14

SMBUS-SUI6

15

NeoDesign

16

SMBus-Maxell

17

Generator-Elec

18

Generator-Fuel

19

Rotoye

20

MPPT

21

INA2XX

22

LTC2946

23

Torqeedo

24

FuelLevelAnalog

25

Synthetic Current and Analog Voltage

26

INA239_SPI

27

EFI

BATT2_CAPACITY: Battery capacity

Capacity of the battery in mAh when full

Increment

Units

50

milliampere hour

BATT2_SERIAL_NUM: Battery serial number

Note: This parameter is for advanced users

Battery serial number, automatically filled in for SMBus batteries, otherwise will be -1. With DroneCan it is the battery_id.

BATT2_LOW_TIMER: Low voltage timeout

Note: This parameter is for advanced users

This is the timeout in seconds before a low voltage event will be triggered. For aircraft with low C batteries it may be necessary to raise this in order to cope with low voltage on long takeoffs. A value of zero disables low voltage errors.

Increment

Range

Units

1

0 to 120

seconds

BATT2_FS_VOLTSRC: Failsafe voltage source

Note: This parameter is for advanced users

Voltage type used for detection of low voltage event

Values

Value

Meaning

0

Raw Voltage

1

Sag Compensated Voltage

BATT2_LOW_VOLT: Low battery voltage

Battery voltage that triggers a low battery failsafe. Set to 0 to disable. If the battery voltage drops below this voltage continuously for more then the period specified by the BATT2_LOW_TIMER parameter then the vehicle will perform the failsafe specified by the BATT2_FS_LOW_ACT parameter.

Increment

Units

0.1

volt

BATT2_LOW_MAH: Low battery capacity

Battery capacity at which the low battery failsafe is triggered. Set to 0 to disable battery remaining failsafe. If the battery capacity drops below this level the vehicle will perform the failsafe specified by the BATT2_FS_LOW_ACT parameter.

Increment

Units

50

milliampere hour

BATT2_CRT_VOLT: Critical battery voltage

Battery voltage that triggers a critical battery failsafe. Set to 0 to disable. If the battery voltage drops below this voltage continuously for more then the period specified by the BATT2_LOW_TIMER parameter then the vehicle will perform the failsafe specified by the BATT2_FS_CRT_ACT parameter.

Increment

Units

0.1

volt

BATT2_CRT_MAH: Battery critical capacity

Battery capacity at which the critical battery failsafe is triggered. Set to 0 to disable battery remaining failsafe. If the battery capacity drops below this level the vehicle will perform the failsafe specified by the BATT2__FS_CRT_ACT parameter.

Increment

Units

50

milliampere hour

BATT2_FS_LOW_ACT: Low battery failsafe action

What action the vehicle should perform if it hits a low battery failsafe

Values

Value

Meaning

0

None

1

Land

2

RTL

3

SmartRTL or RTL

4

SmartRTL or Land

5

Terminate

6

Auto DO_LAND_START or RTL

BATT2_FS_CRT_ACT: Critical battery failsafe action

What action the vehicle should perform if it hits a critical battery failsafe

Values

Value

Meaning

0

None

1

Land

2

RTL

3

SmartRTL or RTL

4

SmartRTL or Land

5

Terminate

6

Auto DO_LAND_START or RTL

BATT2_ARM_VOLT: Required arming voltage

Note: This parameter is for advanced users

Battery voltage level which is required to arm the aircraft. Set to 0 to allow arming at any voltage.

Increment

Units

0.1

volt

BATT2_ARM_MAH: Required arming remaining capacity

Note: This parameter is for advanced users

Battery capacity remaining which is required to arm the aircraft. Set to 0 to allow arming at any capacity. Note that execept for smart batteries rebooting the vehicle will always reset the remaining capacity estimate, which can lead to this check not providing sufficent protection, it is recommended to always use this in conjunction with the BATT2__ARM_VOLT parameter.

Increment

Units

50

milliampere hour

BATT2_OPTIONS: Battery monitor options

Note: This parameter is for advanced users

This sets options to change the behaviour of the battery monitor

Bitmask

Bit

Meaning

0

Ignore DroneCAN SoC

1

MPPT reports input voltage and current

2

MPPT Powered off when disarmed

3

MPPT Powered on when armed

4

MPPT Powered off at boot

5

MPPT Powered on at boot

6

Send resistance compensated voltage to GCS

BATT2_VOLT_PIN: Battery Voltage sensing pin

Note: Reboot required after change

Sets the analog input pin that should be used for voltage monitoring.

Values

Value

Meaning

-1

Disabled

2

Pixhawk/Pixracer/Navio2/Pixhawk2_PM1

5

Navigator

13

Pixhawk2_PM2/CubeOrange_PM2

14

CubeOrange

16

Durandal

100

PX4-v1

BATT2_CURR_PIN: Battery Current sensing pin

Note: Reboot required after change

Sets the analog input pin that should be used for current monitoring.

Values

Value

Meaning

-1

Disabled

3

Pixhawk/Pixracer/Navio2/Pixhawk2_PM1

4

CubeOrange_PM2/Navigator

14

Pixhawk2_PM2

15

CubeOrange

17

Durandal

101

PX4-v1

BATT2_VOLT_MULT: Voltage Multiplier

Note: This parameter is for advanced users

Used to convert the voltage of the voltage sensing pin (BATT2_VOLT_PIN) to the actual battery's voltage (pin_voltage * VOLT_MULT). For the 3DR Power brick with a Pixhawk, this should be set to 10.1. For the Pixhawk with the 3DR 4in1 ESC this should be 12.02. For the PX using the PX4IO power supply this should be set to 1.

BATT2_AMP_PERVLT: Amps per volt

Number of amps that a 1V reading on the current sensor corresponds to. With a Pixhawk using the 3DR Power brick this should be set to 17. For the Pixhawk with the 3DR 4in1 ESC this should be 17. For Synthetic Current sensor monitors, this is the maximum, full throttle current draw.

Units

ampere per volt

BATT2_AMP_OFFSET: AMP offset

Voltage offset at zero current on current sensor for Analog Sensors. For Synthetic Current sensor, this offset is the zero throttle system current and is added to the calculated throttle base current.

Units

volt

BATT2_VLT_OFFSET: Voltage offset

Note: This parameter is for advanced users

Voltage offset on voltage pin. This allows for an offset due to a diode. This voltage is subtracted before the scaling is applied.

Units

volt

BATT2_I2C_BUS: Battery monitor I2C bus number

Note: This parameter is for advanced users
Note: Reboot required after change

Battery monitor I2C bus number

Range

0 to 3

BATT2_I2C_ADDR: Battery monitor I2C address

Note: This parameter is for advanced users
Note: Reboot required after change

Battery monitor I2C address

Range

0 to 127

BATT2_SUM_MASK: Battery Sum mask

0: sum of remaining battery monitors, If none 0 sum of specified monitors. Current will be summed and voltages averaged.

Bitmask

Bit

Meaning

0

monitor 1

1

monitor 2

2

monitor 3

3

monitor 4

4

monitor 5

5

monitor 6

6

monitor 7

7

monitor 8

8

monitor 9

BATT2_CURR_MULT: Scales reported power monitor current

Note: This parameter is for advanced users

Multiplier applied to all current related reports to allow for adjustment if no UAVCAN param access or current splitting applications

Range

.1 to 10

BATT2_FL_VLT_MIN: Empty fuel level voltage

Note: This parameter is for advanced users

The voltage seen on the analog pin when the fuel tank is empty. Note: For this type of battery monitor, the voltage seen by the analog pin is displayed as battery voltage on a GCS.

Range

Units

0.01 to 10

volt

BATT2_FL_V_MULT: Fuel level voltage multiplier

Note: This parameter is for advanced users

Voltage multiplier to determine what the full tank voltage reading is. This is calculated as 1 / (Voltage_Full - Voltage_Empty) Note: For this type of battery monitor, the voltage seen by the analog pin is displayed as battery voltage on a GCS.

Range

0.01 to 10

BATT2_FL_FLTR: Fuel level filter frequency

Note: This parameter is for advanced users
Note: Reboot required after change

Filter frequency in Hertz where a low pass filter is used. This is used to filter out tank slosh from the fuel level reading. A value of -1 disables the filter and unfiltered voltage is used to determine the fuel level. The suggested values at in the range of 0.2 Hz to 0.5 Hz.

Range

Units

-1 to 1

hertz

BATT2_FL_PIN: Fuel level analog pin number

Analog input pin that fuel level sensor is connected to. Airspeed ports can be used for Analog input. When using analog pin 103, the maximum value of the input in 3.3V.

Values

Value

Meaning

-1

Not Used

11

Pixracer

13

Pixhawk ADC4

14

Pixhawk ADC3

15

Pixhawk ADC6/Pixhawk2 ADC

103

Pixhawk SBUS

BATT2_MAX_VOLT: Maximum Battery Voltage

Note: This parameter is for advanced users

Maximum voltage of battery. Provides scaling of current versus voltage

Range

7 to 100

BATT3_ Parameters

BATT3_MONITOR: Battery monitoring

Note: Reboot required after change

Controls enabling monitoring of the battery's voltage and current

Values

Value

Meaning

0

Disabled

3

Analog Voltage Only

4

Analog Voltage and Current

5

Solo

6

Bebop

7

SMBus-Generic

8

DroneCAN-BatteryInfo

9

ESC

10

Sum Of Selected Monitors

11

FuelFlow

12

FuelLevelPWM

13

SMBUS-SUI3

14

SMBUS-SUI6

15

NeoDesign

16

SMBus-Maxell

17

Generator-Elec

18

Generator-Fuel

19

Rotoye

20

MPPT

21

INA2XX

22

LTC2946

23

Torqeedo

24

FuelLevelAnalog

25

Synthetic Current and Analog Voltage

26

INA239_SPI

27

EFI

BATT3_CAPACITY: Battery capacity

Capacity of the battery in mAh when full

Increment

Units

50

milliampere hour

BATT3_SERIAL_NUM: Battery serial number

Note: This parameter is for advanced users

Battery serial number, automatically filled in for SMBus batteries, otherwise will be -1. With DroneCan it is the battery_id.

BATT3_LOW_TIMER: Low voltage timeout

Note: This parameter is for advanced users

This is the timeout in seconds before a low voltage event will be triggered. For aircraft with low C batteries it may be necessary to raise this in order to cope with low voltage on long takeoffs. A value of zero disables low voltage errors.

Increment

Range

Units

1

0 to 120

seconds

BATT3_FS_VOLTSRC: Failsafe voltage source

Note: This parameter is for advanced users

Voltage type used for detection of low voltage event

Values

Value

Meaning

0

Raw Voltage

1

Sag Compensated Voltage

BATT3_LOW_VOLT: Low battery voltage

Battery voltage that triggers a low battery failsafe. Set to 0 to disable. If the battery voltage drops below this voltage continuously for more then the period specified by the BATT3_LOW_TIMER parameter then the vehicle will perform the failsafe specified by the BATT3_FS_LOW_ACT parameter.

Increment

Units

0.1

volt

BATT3_LOW_MAH: Low battery capacity

Battery capacity at which the low battery failsafe is triggered. Set to 0 to disable battery remaining failsafe. If the battery capacity drops below this level the vehicle will perform the failsafe specified by the BATT3_FS_LOW_ACT parameter.

Increment

Units

50

milliampere hour

BATT3_CRT_VOLT: Critical battery voltage

Battery voltage that triggers a critical battery failsafe. Set to 0 to disable. If the battery voltage drops below this voltage continuously for more then the period specified by the BATT3_LOW_TIMER parameter then the vehicle will perform the failsafe specified by the BATT3_FS_CRT_ACT parameter.

Increment

Units

0.1

volt

BATT3_CRT_MAH: Battery critical capacity

Battery capacity at which the critical battery failsafe is triggered. Set to 0 to disable battery remaining failsafe. If the battery capacity drops below this level the vehicle will perform the failsafe specified by the BATT3__FS_CRT_ACT parameter.

Increment

Units

50

milliampere hour

BATT3_FS_LOW_ACT: Low battery failsafe action

What action the vehicle should perform if it hits a low battery failsafe

Values

Value

Meaning

0

None

1

Land

2

RTL

3

SmartRTL or RTL

4

SmartRTL or Land

5

Terminate

6

Auto DO_LAND_START or RTL

BATT3_FS_CRT_ACT: Critical battery failsafe action

What action the vehicle should perform if it hits a critical battery failsafe

Values

Value

Meaning

0

None

1

Land

2

RTL

3

SmartRTL or RTL

4

SmartRTL or Land

5

Terminate

6

Auto DO_LAND_START or RTL

BATT3_ARM_VOLT: Required arming voltage

Note: This parameter is for advanced users

Battery voltage level which is required to arm the aircraft. Set to 0 to allow arming at any voltage.

Increment

Units

0.1

volt

BATT3_ARM_MAH: Required arming remaining capacity

Note: This parameter is for advanced users

Battery capacity remaining which is required to arm the aircraft. Set to 0 to allow arming at any capacity. Note that execept for smart batteries rebooting the vehicle will always reset the remaining capacity estimate, which can lead to this check not providing sufficent protection, it is recommended to always use this in conjunction with the BATT3__ARM_VOLT parameter.

Increment

Units

50

milliampere hour

BATT3_OPTIONS: Battery monitor options

Note: This parameter is for advanced users

This sets options to change the behaviour of the battery monitor

Bitmask

Bit

Meaning

0

Ignore DroneCAN SoC

1

MPPT reports input voltage and current

2

MPPT Powered off when disarmed

3

MPPT Powered on when armed

4

MPPT Powered off at boot

5

MPPT Powered on at boot

6

Send resistance compensated voltage to GCS

BATT3_VOLT_PIN: Battery Voltage sensing pin

Note: Reboot required after change

Sets the analog input pin that should be used for voltage monitoring.

Values

Value

Meaning

-1

Disabled

2

Pixhawk/Pixracer/Navio2/Pixhawk2_PM1

5

Navigator

13

Pixhawk2_PM2/CubeOrange_PM2

14

CubeOrange

16

Durandal

100

PX4-v1

BATT3_CURR_PIN: Battery Current sensing pin

Note: Reboot required after change

Sets the analog input pin that should be used for current monitoring.

Values

Value

Meaning

-1

Disabled

3

Pixhawk/Pixracer/Navio2/Pixhawk2_PM1

4

CubeOrange_PM2/Navigator

14

Pixhawk2_PM2

15

CubeOrange

17

Durandal

101

PX4-v1

BATT3_VOLT_MULT: Voltage Multiplier

Note: This parameter is for advanced users

Used to convert the voltage of the voltage sensing pin (BATT3_VOLT_PIN) to the actual battery's voltage (pin_voltage * VOLT_MULT). For the 3DR Power brick with a Pixhawk, this should be set to 10.1. For the Pixhawk with the 3DR 4in1 ESC this should be 12.02. For the PX using the PX4IO power supply this should be set to 1.

BATT3_AMP_PERVLT: Amps per volt

Number of amps that a 1V reading on the current sensor corresponds to. With a Pixhawk using the 3DR Power brick this should be set to 17. For the Pixhawk with the 3DR 4in1 ESC this should be 17. For Synthetic Current sensor monitors, this is the maximum, full throttle current draw.

Units

ampere per volt

BATT3_AMP_OFFSET: AMP offset

Voltage offset at zero current on current sensor for Analog Sensors. For Synthetic Current sensor, this offset is the zero throttle system current and is added to the calculated throttle base current.

Units

volt

BATT3_VLT_OFFSET: Voltage offset

Note: This parameter is for advanced users

Voltage offset on voltage pin. This allows for an offset due to a diode. This voltage is subtracted before the scaling is applied.

Units

volt

BATT3_I2C_BUS: Battery monitor I2C bus number

Note: This parameter is for advanced users
Note: Reboot required after change

Battery monitor I2C bus number

Range

0 to 3

BATT3_I2C_ADDR: Battery monitor I2C address

Note: This parameter is for advanced users
Note: Reboot required after change

Battery monitor I2C address

Range

0 to 127

BATT3_SUM_MASK: Battery Sum mask

0: sum of remaining battery monitors, If none 0 sum of specified monitors. Current will be summed and voltages averaged.

Bitmask

Bit

Meaning

0

monitor 1

1

monitor 2

2

monitor 3

3

monitor 4

4

monitor 5

5

monitor 6

6

monitor 7

7

monitor 8

8

monitor 9

BATT3_CURR_MULT: Scales reported power monitor current

Note: This parameter is for advanced users

Multiplier applied to all current related reports to allow for adjustment if no UAVCAN param access or current splitting applications

Range

.1 to 10

BATT3_FL_VLT_MIN: Empty fuel level voltage

Note: This parameter is for advanced users

The voltage seen on the analog pin when the fuel tank is empty. Note: For this type of battery monitor, the voltage seen by the analog pin is displayed as battery voltage on a GCS.

Range

Units

0.01 to 10

volt

BATT3_FL_V_MULT: Fuel level voltage multiplier

Note: This parameter is for advanced users

Voltage multiplier to determine what the full tank voltage reading is. This is calculated as 1 / (Voltage_Full - Voltage_Empty) Note: For this type of battery monitor, the voltage seen by the analog pin is displayed as battery voltage on a GCS.

Range

0.01 to 10

BATT3_FL_FLTR: Fuel level filter frequency

Note: This parameter is for advanced users
Note: Reboot required after change

Filter frequency in Hertz where a low pass filter is used. This is used to filter out tank slosh from the fuel level reading. A value of -1 disables the filter and unfiltered voltage is used to determine the fuel level. The suggested values at in the range of 0.2 Hz to 0.5 Hz.

Range

Units

-1 to 1

hertz

BATT3_FL_PIN: Fuel level analog pin number

Analog input pin that fuel level sensor is connected to. Airspeed ports can be used for Analog input. When using analog pin 103, the maximum value of the input in 3.3V.

Values

Value

Meaning

-1

Not Used

11

Pixracer

13

Pixhawk ADC4

14

Pixhawk ADC3

15

Pixhawk ADC6/Pixhawk2 ADC

103

Pixhawk SBUS

BATT3_MAX_VOLT: Maximum Battery Voltage

Note: This parameter is for advanced users

Maximum voltage of battery. Provides scaling of current versus voltage

Range

7 to 100

BATT4_ Parameters

BATT4_MONITOR: Battery monitoring

Note: Reboot required after change

Controls enabling monitoring of the battery's voltage and current

Values

Value

Meaning

0

Disabled

3

Analog Voltage Only

4

Analog Voltage and Current

5

Solo

6

Bebop

7

SMBus-Generic

8

DroneCAN-BatteryInfo

9

ESC

10

Sum Of Selected Monitors

11

FuelFlow

12

FuelLevelPWM

13

SMBUS-SUI3

14

SMBUS-SUI6

15

NeoDesign

16

SMBus-Maxell

17

Generator-Elec

18

Generator-Fuel

19

Rotoye

20

MPPT

21

INA2XX

22

LTC2946

23

Torqeedo

24

FuelLevelAnalog

25

Synthetic Current and Analog Voltage

26

INA239_SPI

27

EFI

BATT4_CAPACITY: Battery capacity

Capacity of the battery in mAh when full

Increment

Units

50

milliampere hour

BATT4_SERIAL_NUM: Battery serial number

Note: This parameter is for advanced users

Battery serial number, automatically filled in for SMBus batteries, otherwise will be -1. With DroneCan it is the battery_id.

BATT4_LOW_TIMER: Low voltage timeout

Note: This parameter is for advanced users

This is the timeout in seconds before a low voltage event will be triggered. For aircraft with low C batteries it may be necessary to raise this in order to cope with low voltage on long takeoffs. A value of zero disables low voltage errors.

Increment

Range

Units

1

0 to 120

seconds

BATT4_FS_VOLTSRC: Failsafe voltage source

Note: This parameter is for advanced users

Voltage type used for detection of low voltage event

Values

Value

Meaning

0

Raw Voltage

1

Sag Compensated Voltage

BATT4_LOW_VOLT: Low battery voltage

Battery voltage that triggers a low battery failsafe. Set to 0 to disable. If the battery voltage drops below this voltage continuously for more then the period specified by the BATT4_LOW_TIMER parameter then the vehicle will perform the failsafe specified by the BATT4_FS_LOW_ACT parameter.

Increment

Units

0.1

volt

BATT4_LOW_MAH: Low battery capacity

Battery capacity at which the low battery failsafe is triggered. Set to 0 to disable battery remaining failsafe. If the battery capacity drops below this level the vehicle will perform the failsafe specified by the BATT4_FS_LOW_ACT parameter.

Increment

Units

50

milliampere hour

BATT4_CRT_VOLT: Critical battery voltage

Battery voltage that triggers a critical battery failsafe. Set to 0 to disable. If the battery voltage drops below this voltage continuously for more then the period specified by the BATT4_LOW_TIMER parameter then the vehicle will perform the failsafe specified by the BATT4_FS_CRT_ACT parameter.

Increment

Units

0.1

volt

BATT4_CRT_MAH: Battery critical capacity

Battery capacity at which the critical battery failsafe is triggered. Set to 0 to disable battery remaining failsafe. If the battery capacity drops below this level the vehicle will perform the failsafe specified by the BATT4__FS_CRT_ACT parameter.

Increment

Units

50

milliampere hour

BATT4_FS_LOW_ACT: Low battery failsafe action

What action the vehicle should perform if it hits a low battery failsafe

Values

Value

Meaning

0

None

1

Land

2

RTL

3

SmartRTL or RTL

4

SmartRTL or Land

5

Terminate

6

Auto DO_LAND_START or RTL

BATT4_FS_CRT_ACT: Critical battery failsafe action

What action the vehicle should perform if it hits a critical battery failsafe

Values

Value

Meaning

0

None

1

Land

2

RTL

3

SmartRTL or RTL

4

SmartRTL or Land

5

Terminate

6

Auto DO_LAND_START or RTL

BATT4_ARM_VOLT: Required arming voltage

Note: This parameter is for advanced users

Battery voltage level which is required to arm the aircraft. Set to 0 to allow arming at any voltage.

Increment

Units

0.1

volt

BATT4_ARM_MAH: Required arming remaining capacity

Note: This parameter is for advanced users

Battery capacity remaining which is required to arm the aircraft. Set to 0 to allow arming at any capacity. Note that execept for smart batteries rebooting the vehicle will always reset the remaining capacity estimate, which can lead to this check not providing sufficent protection, it is recommended to always use this in conjunction with the BATT4__ARM_VOLT parameter.

Increment

Units

50

milliampere hour

BATT4_OPTIONS: Battery monitor options

Note: This parameter is for advanced users

This sets options to change the behaviour of the battery monitor

Bitmask

Bit

Meaning

0

Ignore DroneCAN SoC

1

MPPT reports input voltage and current

2

MPPT Powered off when disarmed

3

MPPT Powered on when armed

4

MPPT Powered off at boot

5

MPPT Powered on at boot

6

Send resistance compensated voltage to GCS

BATT4_VOLT_PIN: Battery Voltage sensing pin

Note: Reboot required after change

Sets the analog input pin that should be used for voltage monitoring.

Values

Value

Meaning

-1

Disabled

2

Pixhawk/Pixracer/Navio2/Pixhawk2_PM1

5

Navigator

13

Pixhawk2_PM2/CubeOrange_PM2

14

CubeOrange

16

Durandal

100

PX4-v1

BATT4_CURR_PIN: Battery Current sensing pin

Note: Reboot required after change

Sets the analog input pin that should be used for current monitoring.

Values

Value

Meaning

-1

Disabled

3

Pixhawk/Pixracer/Navio2/Pixhawk2_PM1

4

CubeOrange_PM2/Navigator

14

Pixhawk2_PM2

15

CubeOrange

17

Durandal

101

PX4-v1

BATT4_VOLT_MULT: Voltage Multiplier

Note: This parameter is for advanced users

Used to convert the voltage of the voltage sensing pin (BATT4_VOLT_PIN) to the actual battery's voltage (pin_voltage * VOLT_MULT). For the 3DR Power brick with a Pixhawk, this should be set to 10.1. For the Pixhawk with the 3DR 4in1 ESC this should be 12.02. For the PX using the PX4IO power supply this should be set to 1.

BATT4_AMP_PERVLT: Amps per volt

Number of amps that a 1V reading on the current sensor corresponds to. With a Pixhawk using the 3DR Power brick this should be set to 17. For the Pixhawk with the 3DR 4in1 ESC this should be 17. For Synthetic Current sensor monitors, this is the maximum, full throttle current draw.

Units

ampere per volt

BATT4_AMP_OFFSET: AMP offset

Voltage offset at zero current on current sensor for Analog Sensors. For Synthetic Current sensor, this offset is the zero throttle system current and is added to the calculated throttle base current.

Units

volt

BATT4_VLT_OFFSET: Voltage offset

Note: This parameter is for advanced users

Voltage offset on voltage pin. This allows for an offset due to a diode. This voltage is subtracted before the scaling is applied.

Units

volt

BATT4_I2C_BUS: Battery monitor I2C bus number

Note: This parameter is for advanced users
Note: Reboot required after change

Battery monitor I2C bus number

Range

0 to 3

BATT4_I2C_ADDR: Battery monitor I2C address

Note: This parameter is for advanced users
Note: Reboot required after change

Battery monitor I2C address

Range

0 to 127

BATT4_SUM_MASK: Battery Sum mask

0: sum of remaining battery monitors, If none 0 sum of specified monitors. Current will be summed and voltages averaged.

Bitmask

Bit

Meaning

0

monitor 1

1

monitor 2

2

monitor 3

3

monitor 4

4

monitor 5

5

monitor 6

6

monitor 7

7

monitor 8

8

monitor 9

BATT4_CURR_MULT: Scales reported power monitor current

Note: This parameter is for advanced users

Multiplier applied to all current related reports to allow for adjustment if no UAVCAN param access or current splitting applications

Range

.1 to 10

BATT4_FL_VLT_MIN: Empty fuel level voltage

Note: This parameter is for advanced users

The voltage seen on the analog pin when the fuel tank is empty. Note: For this type of battery monitor, the voltage seen by the analog pin is displayed as battery voltage on a GCS.

Range

Units

0.01 to 10

volt

BATT4_FL_V_MULT: Fuel level voltage multiplier

Note: This parameter is for advanced users

Voltage multiplier to determine what the full tank voltage reading is. This is calculated as 1 / (Voltage_Full - Voltage_Empty) Note: For this type of battery monitor, the voltage seen by the analog pin is displayed as battery voltage on a GCS.

Range

0.01 to 10

BATT4_FL_FLTR: Fuel level filter frequency

Note: This parameter is for advanced users
Note: Reboot required after change

Filter frequency in Hertz where a low pass filter is used. This is used to filter out tank slosh from the fuel level reading. A value of -1 disables the filter and unfiltered voltage is used to determine the fuel level. The suggested values at in the range of 0.2 Hz to 0.5 Hz.

Range

Units

-1 to 1

hertz

BATT4_FL_PIN: Fuel level analog pin number

Analog input pin that fuel level sensor is connected to. Airspeed ports can be used for Analog input. When using analog pin 103, the maximum value of the input in 3.3V.

Values

Value

Meaning

-1

Not Used

11

Pixracer

13

Pixhawk ADC4

14

Pixhawk ADC3

15

Pixhawk ADC6/Pixhawk2 ADC

103

Pixhawk SBUS

BATT4_MAX_VOLT: Maximum Battery Voltage

Note: This parameter is for advanced users

Maximum voltage of battery. Provides scaling of current versus voltage

Range

7 to 100

BATT5_ Parameters

BATT5_MONITOR: Battery monitoring

Note: Reboot required after change

Controls enabling monitoring of the battery's voltage and current

Values

Value

Meaning

0

Disabled

3

Analog Voltage Only

4

Analog Voltage and Current

5

Solo

6

Bebop

7

SMBus-Generic

8

DroneCAN-BatteryInfo

9

ESC

10

Sum Of Selected Monitors

11

FuelFlow

12

FuelLevelPWM

13

SMBUS-SUI3

14

SMBUS-SUI6

15

NeoDesign

16

SMBus-Maxell

17

Generator-Elec

18

Generator-Fuel

19

Rotoye

20

MPPT

21

INA2XX

22

LTC2946

23

Torqeedo

24

FuelLevelAnalog

25

Synthetic Current and Analog Voltage

26

INA239_SPI

27

EFI

BATT5_CAPACITY: Battery capacity

Capacity of the battery in mAh when full

Increment

Units

50

milliampere hour

BATT5_SERIAL_NUM: Battery serial number

Note: This parameter is for advanced users

Battery serial number, automatically filled in for SMBus batteries, otherwise will be -1. With DroneCan it is the battery_id.

BATT5_LOW_TIMER: Low voltage timeout

Note: This parameter is for advanced users

This is the timeout in seconds before a low voltage event will be triggered. For aircraft with low C batteries it may be necessary to raise this in order to cope with low voltage on long takeoffs. A value of zero disables low voltage errors.

Increment

Range

Units

1

0 to 120

seconds

BATT5_FS_VOLTSRC: Failsafe voltage source

Note: This parameter is for advanced users

Voltage type used for detection of low voltage event

Values

Value

Meaning

0

Raw Voltage

1

Sag Compensated Voltage

BATT5_LOW_VOLT: Low battery voltage

Battery voltage that triggers a low battery failsafe. Set to 0 to disable. If the battery voltage drops below this voltage continuously for more then the period specified by the BATT5_LOW_TIMER parameter then the vehicle will perform the failsafe specified by the BATT5_FS_LOW_ACT parameter.

Increment

Units

0.1

volt

BATT5_LOW_MAH: Low battery capacity

Battery capacity at which the low battery failsafe is triggered. Set to 0 to disable battery remaining failsafe. If the battery capacity drops below this level the vehicle will perform the failsafe specified by the BATT5_FS_LOW_ACT parameter.

Increment

Units

50

milliampere hour

BATT5_CRT_VOLT: Critical battery voltage

Battery voltage that triggers a critical battery failsafe. Set to 0 to disable. If the battery voltage drops below this voltage continuously for more then the period specified by the BATT5_LOW_TIMER parameter then the vehicle will perform the failsafe specified by the BATT5_FS_CRT_ACT parameter.

Increment

Units

0.1

volt

BATT5_CRT_MAH: Battery critical capacity

Battery capacity at which the critical battery failsafe is triggered. Set to 0 to disable battery remaining failsafe. If the battery capacity drops below this level the vehicle will perform the failsafe specified by the BATT5__FS_CRT_ACT parameter.

Increment

Units

50

milliampere hour

BATT5_FS_LOW_ACT: Low battery failsafe action

What action the vehicle should perform if it hits a low battery failsafe

Values

Value

Meaning

0

None

1

Land

2

RTL

3

SmartRTL or RTL

4

SmartRTL or Land

5

Terminate

6

Auto DO_LAND_START or RTL

BATT5_FS_CRT_ACT: Critical battery failsafe action

What action the vehicle should perform if it hits a critical battery failsafe

Values

Value

Meaning

0

None

1

Land

2

RTL

3

SmartRTL or RTL

4

SmartRTL or Land

5

Terminate

6

Auto DO_LAND_START or RTL

BATT5_ARM_VOLT: Required arming voltage

Note: This parameter is for advanced users

Battery voltage level which is required to arm the aircraft. Set to 0 to allow arming at any voltage.

Increment

Units

0.1

volt

BATT5_ARM_MAH: Required arming remaining capacity

Note: This parameter is for advanced users

Battery capacity remaining which is required to arm the aircraft. Set to 0 to allow arming at any capacity. Note that execept for smart batteries rebooting the vehicle will always reset the remaining capacity estimate, which can lead to this check not providing sufficent protection, it is recommended to always use this in conjunction with the BATT5__ARM_VOLT parameter.

Increment

Units

50

milliampere hour

BATT5_OPTIONS: Battery monitor options

Note: This parameter is for advanced users

This sets options to change the behaviour of the battery monitor

Bitmask

Bit

Meaning

0

Ignore DroneCAN SoC

1

MPPT reports input voltage and current

2

MPPT Powered off when disarmed

3

MPPT Powered on when armed

4

MPPT Powered off at boot

5

MPPT Powered on at boot

6

Send resistance compensated voltage to GCS

BATT5_VOLT_PIN: Battery Voltage sensing pin

Note: Reboot required after change

Sets the analog input pin that should be used for voltage monitoring.

Values

Value

Meaning

-1

Disabled

2

Pixhawk/Pixracer/Navio2/Pixhawk2_PM1

5

Navigator

13

Pixhawk2_PM2/CubeOrange_PM2

14

CubeOrange

16

Durandal

100

PX4-v1

BATT5_CURR_PIN: Battery Current sensing pin

Note: Reboot required after change

Sets the analog input pin that should be used for current monitoring.

Values

Value

Meaning

-1

Disabled

3

Pixhawk/Pixracer/Navio2/Pixhawk2_PM1

4

CubeOrange_PM2/Navigator

14

Pixhawk2_PM2

15

CubeOrange

17

Durandal

101

PX4-v1

BATT5_VOLT_MULT: Voltage Multiplier

Note: This parameter is for advanced users

Used to convert the voltage of the voltage sensing pin (BATT5_VOLT_PIN) to the actual battery's voltage (pin_voltage * VOLT_MULT). For the 3DR Power brick with a Pixhawk, this should be set to 10.1. For the Pixhawk with the 3DR 4in1 ESC this should be 12.02. For the PX using the PX4IO power supply this should be set to 1.

BATT5_AMP_PERVLT: Amps per volt

Number of amps that a 1V reading on the current sensor corresponds to. With a Pixhawk using the 3DR Power brick this should be set to 17. For the Pixhawk with the 3DR 4in1 ESC this should be 17. For Synthetic Current sensor monitors, this is the maximum, full throttle current draw.

Units

ampere per volt

BATT5_AMP_OFFSET: AMP offset

Voltage offset at zero current on current sensor for Analog Sensors. For Synthetic Current sensor, this offset is the zero throttle system current and is added to the calculated throttle base current.

Units

volt

BATT5_VLT_OFFSET: Voltage offset

Note: This parameter is for advanced users

Voltage offset on voltage pin. This allows for an offset due to a diode. This voltage is subtracted before the scaling is applied.

Units

volt

BATT5_I2C_BUS: Battery monitor I2C bus number

Note: This parameter is for advanced users
Note: Reboot required after change

Battery monitor I2C bus number

Range

0 to 3

BATT5_I2C_ADDR: Battery monitor I2C address

Note: This parameter is for advanced users
Note: Reboot required after change

Battery monitor I2C address

Range

0 to 127

BATT5_SUM_MASK: Battery Sum mask

0: sum of remaining battery monitors, If none 0 sum of specified monitors. Current will be summed and voltages averaged.

Bitmask

Bit

Meaning

0

monitor 1

1

monitor 2

2

monitor 3

3

monitor 4

4

monitor 5

5

monitor 6

6

monitor 7

7

monitor 8

8

monitor 9

BATT5_CURR_MULT: Scales reported power monitor current

Note: This parameter is for advanced users

Multiplier applied to all current related reports to allow for adjustment if no UAVCAN param access or current splitting applications

Range

.1 to 10

BATT5_FL_VLT_MIN: Empty fuel level voltage

Note: This parameter is for advanced users

The voltage seen on the analog pin when the fuel tank is empty. Note: For this type of battery monitor, the voltage seen by the analog pin is displayed as battery voltage on a GCS.

Range

Units

0.01 to 10

volt

BATT5_FL_V_MULT: Fuel level voltage multiplier

Note: This parameter is for advanced users

Voltage multiplier to determine what the full tank voltage reading is. This is calculated as 1 / (Voltage_Full - Voltage_Empty) Note: For this type of battery monitor, the voltage seen by the analog pin is displayed as battery voltage on a GCS.

Range

0.01 to 10

BATT5_FL_FLTR: Fuel level filter frequency

Note: This parameter is for advanced users
Note: Reboot required after change

Filter frequency in Hertz where a low pass filter is used. This is used to filter out tank slosh from the fuel level reading. A value of -1 disables the filter and unfiltered voltage is used to determine the fuel level. The suggested values at in the range of 0.2 Hz to 0.5 Hz.

Range

Units

-1 to 1

hertz

BATT5_FL_PIN: Fuel level analog pin number

Analog input pin that fuel level sensor is connected to. Airspeed ports can be used for Analog input. When using analog pin 103, the maximum value of the input in 3.3V.

Values

Value

Meaning

-1

Not Used

11

Pixracer

13

Pixhawk ADC4

14

Pixhawk ADC3

15

Pixhawk ADC6/Pixhawk2 ADC

103

Pixhawk SBUS

BATT5_MAX_VOLT: Maximum Battery Voltage

Note: This parameter is for advanced users

Maximum voltage of battery. Provides scaling of current versus voltage

Range

7 to 100

BATT6_ Parameters

BATT6_MONITOR: Battery monitoring

Note: Reboot required after change

Controls enabling monitoring of the battery's voltage and current

Values

Value

Meaning

0

Disabled

3

Analog Voltage Only

4

Analog Voltage and Current

5

Solo

6

Bebop

7

SMBus-Generic

8

DroneCAN-BatteryInfo

9

ESC

10

Sum Of Selected Monitors

11

FuelFlow

12

FuelLevelPWM

13

SMBUS-SUI3

14

SMBUS-SUI6

15

NeoDesign

16

SMBus-Maxell

17

Generator-Elec

18

Generator-Fuel

19

Rotoye

20

MPPT

21

INA2XX

22

LTC2946

23

Torqeedo

24

FuelLevelAnalog

25

Synthetic Current and Analog Voltage

26

INA239_SPI

27

EFI

BATT6_CAPACITY: Battery capacity

Capacity of the battery in mAh when full

Increment

Units

50

milliampere hour

BATT6_SERIAL_NUM: Battery serial number

Note: This parameter is for advanced users

Battery serial number, automatically filled in for SMBus batteries, otherwise will be -1. With DroneCan it is the battery_id.

BATT6_LOW_TIMER: Low voltage timeout

Note: This parameter is for advanced users

This is the timeout in seconds before a low voltage event will be triggered. For aircraft with low C batteries it may be necessary to raise this in order to cope with low voltage on long takeoffs. A value of zero disables low voltage errors.

Increment

Range

Units

1

0 to 120

seconds

BATT6_FS_VOLTSRC: Failsafe voltage source

Note: This parameter is for advanced users

Voltage type used for detection of low voltage event

Values

Value

Meaning

0

Raw Voltage

1

Sag Compensated Voltage

BATT6_LOW_VOLT: Low battery voltage

Battery voltage that triggers a low battery failsafe. Set to 0 to disable. If the battery voltage drops below this voltage continuously for more then the period specified by the BATT6_LOW_TIMER parameter then the vehicle will perform the failsafe specified by the BATT6_FS_LOW_ACT parameter.

Increment

Units

0.1

volt

BATT6_LOW_MAH: Low battery capacity

Battery capacity at which the low battery failsafe is triggered. Set to 0 to disable battery remaining failsafe. If the battery capacity drops below this level the vehicle will perform the failsafe specified by the BATT6_FS_LOW_ACT parameter.

Increment

Units

50

milliampere hour

BATT6_CRT_VOLT: Critical battery voltage

Battery voltage that triggers a critical battery failsafe. Set to 0 to disable. If the battery voltage drops below this voltage continuously for more then the period specified by the BATT6_LOW_TIMER parameter then the vehicle will perform the failsafe specified by the BATT6_FS_CRT_ACT parameter.

Increment

Units

0.1

volt

BATT6_CRT_MAH: Battery critical capacity

Battery capacity at which the critical battery failsafe is triggered. Set to 0 to disable battery remaining failsafe. If the battery capacity drops below this level the vehicle will perform the failsafe specified by the BATT6__FS_CRT_ACT parameter.

Increment

Units

50

milliampere hour

BATT6_FS_LOW_ACT: Low battery failsafe action

What action the vehicle should perform if it hits a low battery failsafe

Values

Value

Meaning

0

None

1

Land

2

RTL

3

SmartRTL or RTL

4

SmartRTL or Land

5

Terminate

6

Auto DO_LAND_START or RTL

BATT6_FS_CRT_ACT: Critical battery failsafe action

What action the vehicle should perform if it hits a critical battery failsafe

Values

Value

Meaning

0

None

1

Land

2

RTL

3

SmartRTL or RTL

4

SmartRTL or Land

5

Terminate

6

Auto DO_LAND_START or RTL

BATT6_ARM_VOLT: Required arming voltage

Note: This parameter is for advanced users

Battery voltage level which is required to arm the aircraft. Set to 0 to allow arming at any voltage.

Increment

Units

0.1

volt

BATT6_ARM_MAH: Required arming remaining capacity

Note: This parameter is for advanced users

Battery capacity remaining which is required to arm the aircraft. Set to 0 to allow arming at any capacity. Note that execept for smart batteries rebooting the vehicle will always reset the remaining capacity estimate, which can lead to this check not providing sufficent protection, it is recommended to always use this in conjunction with the BATT6__ARM_VOLT parameter.

Increment

Units

50

milliampere hour

BATT6_OPTIONS: Battery monitor options

Note: This parameter is for advanced users

This sets options to change the behaviour of the battery monitor

Bitmask

Bit

Meaning

0

Ignore DroneCAN SoC

1

MPPT reports input voltage and current

2

MPPT Powered off when disarmed

3

MPPT Powered on when armed

4

MPPT Powered off at boot

5

MPPT Powered on at boot

6

Send resistance compensated voltage to GCS

BATT6_VOLT_PIN: Battery Voltage sensing pin

Note: Reboot required after change

Sets the analog input pin that should be used for voltage monitoring.

Values

Value

Meaning

-1

Disabled

2

Pixhawk/Pixracer/Navio2/Pixhawk2_PM1

5

Navigator

13

Pixhawk2_PM2/CubeOrange_PM2

14

CubeOrange

16

Durandal

100

PX4-v1

BATT6_CURR_PIN: Battery Current sensing pin

Note: Reboot required after change

Sets the analog input pin that should be used for current monitoring.

Values

Value

Meaning

-1

Disabled

3

Pixhawk/Pixracer/Navio2/Pixhawk2_PM1

4

CubeOrange_PM2/Navigator

14

Pixhawk2_PM2

15

CubeOrange

17

Durandal

101

PX4-v1

BATT6_VOLT_MULT: Voltage Multiplier

Note: This parameter is for advanced users

Used to convert the voltage of the voltage sensing pin (BATT6_VOLT_PIN) to the actual battery's voltage (pin_voltage * VOLT_MULT). For the 3DR Power brick with a Pixhawk, this should be set to 10.1. For the Pixhawk with the 3DR 4in1 ESC this should be 12.02. For the PX using the PX4IO power supply this should be set to 1.

BATT6_AMP_PERVLT: Amps per volt

Number of amps that a 1V reading on the current sensor corresponds to. With a Pixhawk using the 3DR Power brick this should be set to 17. For the Pixhawk with the 3DR 4in1 ESC this should be 17. For Synthetic Current sensor monitors, this is the maximum, full throttle current draw.

Units

ampere per volt

BATT6_AMP_OFFSET: AMP offset

Voltage offset at zero current on current sensor for Analog Sensors. For Synthetic Current sensor, this offset is the zero throttle system current and is added to the calculated throttle base current.

Units

volt

BATT6_VLT_OFFSET: Voltage offset

Note: This parameter is for advanced users

Voltage offset on voltage pin. This allows for an offset due to a diode. This voltage is subtracted before the scaling is applied.

Units

volt

BATT6_I2C_BUS: Battery monitor I2C bus number

Note: This parameter is for advanced users
Note: Reboot required after change

Battery monitor I2C bus number

Range

0 to 3

BATT6_I2C_ADDR: Battery monitor I2C address

Note: This parameter is for advanced users
Note: Reboot required after change

Battery monitor I2C address

Range

0 to 127

BATT6_SUM_MASK: Battery Sum mask

0: sum of remaining battery monitors, If none 0 sum of specified monitors. Current will be summed and voltages averaged.

Bitmask

Bit

Meaning

0

monitor 1

1

monitor 2

2

monitor 3

3

monitor 4

4

monitor 5

5

monitor 6

6

monitor 7

7

monitor 8

8

monitor 9

BATT6_CURR_MULT: Scales reported power monitor current

Note: This parameter is for advanced users

Multiplier applied to all current related reports to allow for adjustment if no UAVCAN param access or current splitting applications

Range

.1 to 10

BATT6_FL_VLT_MIN: Empty fuel level voltage

Note: This parameter is for advanced users

The voltage seen on the analog pin when the fuel tank is empty. Note: For this type of battery monitor, the voltage seen by the analog pin is displayed as battery voltage on a GCS.

Range

Units

0.01 to 10

volt

BATT6_FL_V_MULT: Fuel level voltage multiplier

Note: This parameter is for advanced users

Voltage multiplier to determine what the full tank voltage reading is. This is calculated as 1 / (Voltage_Full - Voltage_Empty) Note: For this type of battery monitor, the voltage seen by the analog pin is displayed as battery voltage on a GCS.

Range

0.01 to 10

BATT6_FL_FLTR: Fuel level filter frequency

Note: This parameter is for advanced users
Note: Reboot required after change

Filter frequency in Hertz where a low pass filter is used. This is used to filter out tank slosh from the fuel level reading. A value of -1 disables the filter and unfiltered voltage is used to determine the fuel level. The suggested values at in the range of 0.2 Hz to 0.5 Hz.

Range

Units

-1 to 1

hertz

BATT6_FL_PIN: Fuel level analog pin number

Analog input pin that fuel level sensor is connected to. Airspeed ports can be used for Analog input. When using analog pin 103, the maximum value of the input in 3.3V.

Values

Value

Meaning

-1

Not Used

11

Pixracer

13

Pixhawk ADC4

14

Pixhawk ADC3

15

Pixhawk ADC6/Pixhawk2 ADC

103

Pixhawk SBUS

BATT6_MAX_VOLT: Maximum Battery Voltage

Note: This parameter is for advanced users

Maximum voltage of battery. Provides scaling of current versus voltage

Range

7 to 100

BATT7_ Parameters

BATT7_MONITOR: Battery monitoring

Note: Reboot required after change

Controls enabling monitoring of the battery's voltage and current

Values

Value

Meaning

0

Disabled

3

Analog Voltage Only

4

Analog Voltage and Current

5

Solo

6

Bebop

7

SMBus-Generic

8

DroneCAN-BatteryInfo

9

ESC

10

Sum Of Selected Monitors

11

FuelFlow

12

FuelLevelPWM

13

SMBUS-SUI3

14

SMBUS-SUI6

15

NeoDesign

16

SMBus-Maxell

17

Generator-Elec

18

Generator-Fuel

19

Rotoye

20

MPPT

21

INA2XX

22

LTC2946

23

Torqeedo

24

FuelLevelAnalog

25

Synthetic Current and Analog Voltage

26

INA239_SPI

27

EFI

BATT7_CAPACITY: Battery capacity

Capacity of the battery in mAh when full

Increment

Units

50

milliampere hour

BATT7_SERIAL_NUM: Battery serial number

Note: This parameter is for advanced users

Battery serial number, automatically filled in for SMBus batteries, otherwise will be -1. With DroneCan it is the battery_id.

BATT7_LOW_TIMER: Low voltage timeout

Note: This parameter is for advanced users

This is the timeout in seconds before a low voltage event will be triggered. For aircraft with low C batteries it may be necessary to raise this in order to cope with low voltage on long takeoffs. A value of zero disables low voltage errors.

Increment

Range

Units

1

0 to 120

seconds

BATT7_FS_VOLTSRC: Failsafe voltage source

Note: This parameter is for advanced users

Voltage type used for detection of low voltage event

Values

Value

Meaning

0

Raw Voltage

1

Sag Compensated Voltage

BATT7_LOW_VOLT: Low battery voltage

Battery voltage that triggers a low battery failsafe. Set to 0 to disable. If the battery voltage drops below this voltage continuously for more then the period specified by the BATT7_LOW_TIMER parameter then the vehicle will perform the failsafe specified by the BATT7_FS_LOW_ACT parameter.

Increment

Units

0.1

volt

BATT7_LOW_MAH: Low battery capacity

Battery capacity at which the low battery failsafe is triggered. Set to 0 to disable battery remaining failsafe. If the battery capacity drops below this level the vehicle will perform the failsafe specified by the BATT7_FS_LOW_ACT parameter.

Increment

Units

50

milliampere hour

BATT7_CRT_VOLT: Critical battery voltage

Battery voltage that triggers a critical battery failsafe. Set to 0 to disable. If the battery voltage drops below this voltage continuously for more then the period specified by the BATT7_LOW_TIMER parameter then the vehicle will perform the failsafe specified by the BATT7_FS_CRT_ACT parameter.

Increment

Units

0.1

volt

BATT7_CRT_MAH: Battery critical capacity

Battery capacity at which the critical battery failsafe is triggered. Set to 0 to disable battery remaining failsafe. If the battery capacity drops below this level the vehicle will perform the failsafe specified by the BATT7__FS_CRT_ACT parameter.

Increment

Units

50

milliampere hour

BATT7_FS_LOW_ACT: Low battery failsafe action

What action the vehicle should perform if it hits a low battery failsafe

Values

Value

Meaning

0

None

1

Land

2

RTL

3

SmartRTL or RTL

4

SmartRTL or Land

5

Terminate

6

Auto DO_LAND_START or RTL

BATT7_FS_CRT_ACT: Critical battery failsafe action

What action the vehicle should perform if it hits a critical battery failsafe

Values

Value

Meaning

0

None

1

Land

2

RTL

3

SmartRTL or RTL

4

SmartRTL or Land

5

Terminate

6

Auto DO_LAND_START or RTL

BATT7_ARM_VOLT: Required arming voltage

Note: This parameter is for advanced users

Battery voltage level which is required to arm the aircraft. Set to 0 to allow arming at any voltage.

Increment

Units

0.1

volt

BATT7_ARM_MAH: Required arming remaining capacity

Note: This parameter is for advanced users

Battery capacity remaining which is required to arm the aircraft. Set to 0 to allow arming at any capacity. Note that execept for smart batteries rebooting the vehicle will always reset the remaining capacity estimate, which can lead to this check not providing sufficent protection, it is recommended to always use this in conjunction with the BATT7__ARM_VOLT parameter.

Increment

Units

50

milliampere hour

BATT7_OPTIONS: Battery monitor options

Note: This parameter is for advanced users

This sets options to change the behaviour of the battery monitor

Bitmask

Bit

Meaning

0

Ignore DroneCAN SoC

1

MPPT reports input voltage and current

2

MPPT Powered off when disarmed

3

MPPT Powered on when armed

4

MPPT Powered off at boot

5

MPPT Powered on at boot

6

Send resistance compensated voltage to GCS

BATT7_VOLT_PIN: Battery Voltage sensing pin

Note: Reboot required after change

Sets the analog input pin that should be used for voltage monitoring.

Values

Value

Meaning

-1

Disabled

2

Pixhawk/Pixracer/Navio2/Pixhawk2_PM1

5

Navigator

13

Pixhawk2_PM2/CubeOrange_PM2

14

CubeOrange

16

Durandal

100

PX4-v1

BATT7_CURR_PIN: Battery Current sensing pin

Note: Reboot required after change

Sets the analog input pin that should be used for current monitoring.

Values

Value

Meaning

-1

Disabled

3

Pixhawk/Pixracer/Navio2/Pixhawk2_PM1

4

CubeOrange_PM2/Navigator

14

Pixhawk2_PM2

15

CubeOrange

17

Durandal

101

PX4-v1

BATT7_VOLT_MULT: Voltage Multiplier

Note: This parameter is for advanced users

Used to convert the voltage of the voltage sensing pin (BATT7_VOLT_PIN) to the actual battery's voltage (pin_voltage * VOLT_MULT). For the 3DR Power brick with a Pixhawk, this should be set to 10.1. For the Pixhawk with the 3DR 4in1 ESC this should be 12.02. For the PX using the PX4IO power supply this should be set to 1.

BATT7_AMP_PERVLT: Amps per volt

Number of amps that a 1V reading on the current sensor corresponds to. With a Pixhawk using the 3DR Power brick this should be set to 17. For the Pixhawk with the 3DR 4in1 ESC this should be 17. For Synthetic Current sensor monitors, this is the maximum, full throttle current draw.

Units

ampere per volt

BATT7_AMP_OFFSET: AMP offset

Voltage offset at zero current on current sensor for Analog Sensors. For Synthetic Current sensor, this offset is the zero throttle system current and is added to the calculated throttle base current.

Units

volt

BATT7_VLT_OFFSET: Voltage offset

Note: This parameter is for advanced users

Voltage offset on voltage pin. This allows for an offset due to a diode. This voltage is subtracted before the scaling is applied.

Units

volt

BATT7_I2C_BUS: Battery monitor I2C bus number

Note: This parameter is for advanced users
Note: Reboot required after change

Battery monitor I2C bus number

Range

0 to 3

BATT7_I2C_ADDR: Battery monitor I2C address

Note: This parameter is for advanced users
Note: Reboot required after change

Battery monitor I2C address

Range

0 to 127

BATT7_SUM_MASK: Battery Sum mask

0: sum of remaining battery monitors, If none 0 sum of specified monitors. Current will be summed and voltages averaged.

Bitmask

Bit

Meaning

0

monitor 1

1

monitor 2

2

monitor 3

3

monitor 4

4

monitor 5

5

monitor 6

6

monitor 7

7

monitor 8

8

monitor 9

BATT7_CURR_MULT: Scales reported power monitor current

Note: This parameter is for advanced users

Multiplier applied to all current related reports to allow for adjustment if no UAVCAN param access or current splitting applications

Range

.1 to 10

BATT7_FL_VLT_MIN: Empty fuel level voltage

Note: This parameter is for advanced users

The voltage seen on the analog pin when the fuel tank is empty. Note: For this type of battery monitor, the voltage seen by the analog pin is displayed as battery voltage on a GCS.

Range

Units

0.01 to 10

volt

BATT7_FL_V_MULT: Fuel level voltage multiplier

Note: This parameter is for advanced users

Voltage multiplier to determine what the full tank voltage reading is. This is calculated as 1 / (Voltage_Full - Voltage_Empty) Note: For this type of battery monitor, the voltage seen by the analog pin is displayed as battery voltage on a GCS.

Range

0.01 to 10

BATT7_FL_FLTR: Fuel level filter frequency

Note: This parameter is for advanced users
Note: Reboot required after change

Filter frequency in Hertz where a low pass filter is used. This is used to filter out tank slosh from the fuel level reading. A value of -1 disables the filter and unfiltered voltage is used to determine the fuel level. The suggested values at in the range of 0.2 Hz to 0.5 Hz.

Range

Units

-1 to 1

hertz

BATT7_FL_PIN: Fuel level analog pin number

Analog input pin that fuel level sensor is connected to. Airspeed ports can be used for Analog input. When using analog pin 103, the maximum value of the input in 3.3V.

Values

Value

Meaning

-1

Not Used

11

Pixracer

13

Pixhawk ADC4

14

Pixhawk ADC3

15

Pixhawk ADC6/Pixhawk2 ADC

103

Pixhawk SBUS

BATT7_MAX_VOLT: Maximum Battery Voltage

Note: This parameter is for advanced users

Maximum voltage of battery. Provides scaling of current versus voltage

Range

7 to 100

BATT8_ Parameters

BATT8_MONITOR: Battery monitoring

Note: Reboot required after change

Controls enabling monitoring of the battery's voltage and current

Values

Value

Meaning

0

Disabled

3

Analog Voltage Only

4

Analog Voltage and Current

5

Solo

6

Bebop

7

SMBus-Generic

8

DroneCAN-BatteryInfo

9

ESC

10

Sum Of Selected Monitors

11

FuelFlow

12

FuelLevelPWM

13

SMBUS-SUI3

14

SMBUS-SUI6

15

NeoDesign

16

SMBus-Maxell

17

Generator-Elec

18

Generator-Fuel

19

Rotoye

20

MPPT

21

INA2XX

22

LTC2946

23

Torqeedo

24

FuelLevelAnalog

25

Synthetic Current and Analog Voltage

26

INA239_SPI

27

EFI

BATT8_CAPACITY: Battery capacity

Capacity of the battery in mAh when full

Increment

Units

50

milliampere hour

BATT8_SERIAL_NUM: Battery serial number

Note: This parameter is for advanced users

Battery serial number, automatically filled in for SMBus batteries, otherwise will be -1. With DroneCan it is the battery_id.

BATT8_LOW_TIMER: Low voltage timeout

Note: This parameter is for advanced users

This is the timeout in seconds before a low voltage event will be triggered. For aircraft with low C batteries it may be necessary to raise this in order to cope with low voltage on long takeoffs. A value of zero disables low voltage errors.

Increment

Range

Units

1

0 to 120

seconds

BATT8_FS_VOLTSRC: Failsafe voltage source

Note: This parameter is for advanced users

Voltage type used for detection of low voltage event

Values

Value

Meaning

0

Raw Voltage

1

Sag Compensated Voltage

BATT8_LOW_VOLT: Low battery voltage

Battery voltage that triggers a low battery failsafe. Set to 0 to disable. If the battery voltage drops below this voltage continuously for more then the period specified by the BATT8_LOW_TIMER parameter then the vehicle will perform the failsafe specified by the BATT8_FS_LOW_ACT parameter.

Increment

Units

0.1

volt

BATT8_LOW_MAH: Low battery capacity

Battery capacity at which the low battery failsafe is triggered. Set to 0 to disable battery remaining failsafe. If the battery capacity drops below this level the vehicle will perform the failsafe specified by the BATT8_FS_LOW_ACT parameter.

Increment

Units

50

milliampere hour

BATT8_CRT_VOLT: Critical battery voltage

Battery voltage that triggers a critical battery failsafe. Set to 0 to disable. If the battery voltage drops below this voltage continuously for more then the period specified by the BATT8_LOW_TIMER parameter then the vehicle will perform the failsafe specified by the BATT8_FS_CRT_ACT parameter.

Increment

Units

0.1

volt

BATT8_CRT_MAH: Battery critical capacity

Battery capacity at which the critical battery failsafe is triggered. Set to 0 to disable battery remaining failsafe. If the battery capacity drops below this level the vehicle will perform the failsafe specified by the BATT8__FS_CRT_ACT parameter.

Increment

Units

50

milliampere hour

BATT8_FS_LOW_ACT: Low battery failsafe action

What action the vehicle should perform if it hits a low battery failsafe

Values

Value

Meaning

0

None

1

Land

2

RTL

3

SmartRTL or RTL

4

SmartRTL or Land

5

Terminate

6

Auto DO_LAND_START or RTL

BATT8_FS_CRT_ACT: Critical battery failsafe action

What action the vehicle should perform if it hits a critical battery failsafe

Values

Value

Meaning

0

None

1

Land

2

RTL

3

SmartRTL or RTL

4

SmartRTL or Land

5

Terminate

6

Auto DO_LAND_START or RTL

BATT8_ARM_VOLT: Required arming voltage

Note: This parameter is for advanced users

Battery voltage level which is required to arm the aircraft. Set to 0 to allow arming at any voltage.

Increment

Units

0.1

volt

BATT8_ARM_MAH: Required arming remaining capacity

Note: This parameter is for advanced users

Battery capacity remaining which is required to arm the aircraft. Set to 0 to allow arming at any capacity. Note that execept for smart batteries rebooting the vehicle will always reset the remaining capacity estimate, which can lead to this check not providing sufficent protection, it is recommended to always use this in conjunction with the BATT8__ARM_VOLT parameter.

Increment

Units

50

milliampere hour

BATT8_OPTIONS: Battery monitor options

Note: This parameter is for advanced users

This sets options to change the behaviour of the battery monitor

Bitmask

Bit

Meaning

0

Ignore DroneCAN SoC

1

MPPT reports input voltage and current

2

MPPT Powered off when disarmed

3

MPPT Powered on when armed

4

MPPT Powered off at boot

5

MPPT Powered on at boot

6

Send resistance compensated voltage to GCS

BATT8_VOLT_PIN: Battery Voltage sensing pin

Note: Reboot required after change

Sets the analog input pin that should be used for voltage monitoring.

Values

Value

Meaning

-1

Disabled

2

Pixhawk/Pixracer/Navio2/Pixhawk2_PM1

5

Navigator

13

Pixhawk2_PM2/CubeOrange_PM2

14

CubeOrange

16

Durandal

100

PX4-v1

BATT8_CURR_PIN: Battery Current sensing pin

Note: Reboot required after change

Sets the analog input pin that should be used for current monitoring.

Values

Value

Meaning

-1

Disabled

3

Pixhawk/Pixracer/Navio2/Pixhawk2_PM1

4

CubeOrange_PM2/Navigator

14

Pixhawk2_PM2

15

CubeOrange

17

Durandal

101

PX4-v1

BATT8_VOLT_MULT: Voltage Multiplier

Note: This parameter is for advanced users

Used to convert the voltage of the voltage sensing pin (BATT8_VOLT_PIN) to the actual battery's voltage (pin_voltage * VOLT_MULT). For the 3DR Power brick with a Pixhawk, this should be set to 10.1. For the Pixhawk with the 3DR 4in1 ESC this should be 12.02. For the PX using the PX4IO power supply this should be set to 1.

BATT8_AMP_PERVLT: Amps per volt

Number of amps that a 1V reading on the current sensor corresponds to. With a Pixhawk using the 3DR Power brick this should be set to 17. For the Pixhawk with the 3DR 4in1 ESC this should be 17. For Synthetic Current sensor monitors, this is the maximum, full throttle current draw.

Units

ampere per volt

BATT8_AMP_OFFSET: AMP offset

Voltage offset at zero current on current sensor for Analog Sensors. For Synthetic Current sensor, this offset is the zero throttle system current and is added to the calculated throttle base current.

Units

volt

BATT8_VLT_OFFSET: Voltage offset

Note: This parameter is for advanced users

Voltage offset on voltage pin. This allows for an offset due to a diode. This voltage is subtracted before the scaling is applied.

Units

volt

BATT8_I2C_BUS: Battery monitor I2C bus number

Note: This parameter is for advanced users
Note: Reboot required after change

Battery monitor I2C bus number

Range

0 to 3

BATT8_I2C_ADDR: Battery monitor I2C address

Note: This parameter is for advanced users
Note: Reboot required after change

Battery monitor I2C address

Range

0 to 127

BATT8_SUM_MASK: Battery Sum mask

0: sum of remaining battery monitors, If none 0 sum of specified monitors. Current will be summed and voltages averaged.

Bitmask

Bit

Meaning

0

monitor 1

1

monitor 2

2

monitor 3

3

monitor 4

4

monitor 5

5

monitor 6

6

monitor 7

7

monitor 8

8

monitor 9

BATT8_CURR_MULT: Scales reported power monitor current

Note: This parameter is for advanced users

Multiplier applied to all current related reports to allow for adjustment if no UAVCAN param access or current splitting applications

Range

.1 to 10

BATT8_FL_VLT_MIN: Empty fuel level voltage

Note: This parameter is for advanced users

The voltage seen on the analog pin when the fuel tank is empty. Note: For this type of battery monitor, the voltage seen by the analog pin is displayed as battery voltage on a GCS.

Range

Units

0.01 to 10

volt

BATT8_FL_V_MULT: Fuel level voltage multiplier

Note: This parameter is for advanced users

Voltage multiplier to determine what the full tank voltage reading is. This is calculated as 1 / (Voltage_Full - Voltage_Empty) Note: For this type of battery monitor, the voltage seen by the analog pin is displayed as battery voltage on a GCS.

Range

0.01 to 10

BATT8_FL_FLTR: Fuel level filter frequency

Note: This parameter is for advanced users
Note: Reboot required after change

Filter frequency in Hertz where a low pass filter is used. This is used to filter out tank slosh from the fuel level reading. A value of -1 disables the filter and unfiltered voltage is used to determine the fuel level. The suggested values at in the range of 0.2 Hz to 0.5 Hz.

Range

Units

-1 to 1

hertz

BATT8_FL_PIN: Fuel level analog pin number

Analog input pin that fuel level sensor is connected to. Airspeed ports can be used for Analog input. When using analog pin 103, the maximum value of the input in 3.3V.

Values

Value

Meaning

-1

Not Used

11

Pixracer

13

Pixhawk ADC4

14

Pixhawk ADC3

15

Pixhawk ADC6/Pixhawk2 ADC

103

Pixhawk SBUS

BATT8_MAX_VOLT: Maximum Battery Voltage

Note: This parameter is for advanced users

Maximum voltage of battery. Provides scaling of current versus voltage

Range

7 to 100

BATT9_ Parameters

BATT9_MONITOR: Battery monitoring

Note: Reboot required after change

Controls enabling monitoring of the battery's voltage and current

Values

Value

Meaning

0

Disabled

3

Analog Voltage Only

4

Analog Voltage and Current

5

Solo

6

Bebop

7

SMBus-Generic

8

DroneCAN-BatteryInfo

9

ESC

10

Sum Of Selected Monitors

11

FuelFlow

12

FuelLevelPWM

13

SMBUS-SUI3

14

SMBUS-SUI6

15

NeoDesign

16

SMBus-Maxell

17

Generator-Elec

18

Generator-Fuel

19

Rotoye

20

MPPT

21

INA2XX

22

LTC2946

23

Torqeedo

24

FuelLevelAnalog

25

Synthetic Current and Analog Voltage

26

INA239_SPI

27

EFI

BATT9_CAPACITY: Battery capacity

Capacity of the battery in mAh when full

Increment

Units

50

milliampere hour

BATT9_SERIAL_NUM: Battery serial number

Note: This parameter is for advanced users

Battery serial number, automatically filled in for SMBus batteries, otherwise will be -1. With DroneCan it is the battery_id.

BATT9_LOW_TIMER: Low voltage timeout

Note: This parameter is for advanced users

This is the timeout in seconds before a low voltage event will be triggered. For aircraft with low C batteries it may be necessary to raise this in order to cope with low voltage on long takeoffs. A value of zero disables low voltage errors.

Increment

Range

Units

1

0 to 120

seconds

BATT9_FS_VOLTSRC: Failsafe voltage source

Note: This parameter is for advanced users

Voltage type used for detection of low voltage event

Values

Value

Meaning

0

Raw Voltage

1

Sag Compensated Voltage

BATT9_LOW_VOLT: Low battery voltage

Battery voltage that triggers a low battery failsafe. Set to 0 to disable. If the battery voltage drops below this voltage continuously for more then the period specified by the BATT9_LOW_TIMER parameter then the vehicle will perform the failsafe specified by the BATT9_FS_LOW_ACT parameter.

Increment

Units

0.1

volt

BATT9_LOW_MAH: Low battery capacity

Battery capacity at which the low battery failsafe is triggered. Set to 0 to disable battery remaining failsafe. If the battery capacity drops below this level the vehicle will perform the failsafe specified by the BATT9_FS_LOW_ACT parameter.

Increment

Units

50

milliampere hour

BATT9_CRT_VOLT: Critical battery voltage

Battery voltage that triggers a critical battery failsafe. Set to 0 to disable. If the battery voltage drops below this voltage continuously for more then the period specified by the BATT9_LOW_TIMER parameter then the vehicle will perform the failsafe specified by the BATT9_FS_CRT_ACT parameter.

Increment

Units

0.1

volt

BATT9_CRT_MAH: Battery critical capacity

Battery capacity at which the critical battery failsafe is triggered. Set to 0 to disable battery remaining failsafe. If the battery capacity drops below this level the vehicle will perform the failsafe specified by the BATT9__FS_CRT_ACT parameter.

Increment

Units

50

milliampere hour

BATT9_FS_LOW_ACT: Low battery failsafe action

What action the vehicle should perform if it hits a low battery failsafe

Values

Value

Meaning

0

None

1

Land

2

RTL

3

SmartRTL or RTL

4

SmartRTL or Land

5

Terminate

6

Auto DO_LAND_START or RTL

BATT9_FS_CRT_ACT: Critical battery failsafe action

What action the vehicle should perform if it hits a critical battery failsafe

Values

Value

Meaning

0

None

1

Land

2

RTL

3

SmartRTL or RTL

4

SmartRTL or Land

5

Terminate

6

Auto DO_LAND_START or RTL

BATT9_ARM_VOLT: Required arming voltage

Note: This parameter is for advanced users

Battery voltage level which is required to arm the aircraft. Set to 0 to allow arming at any voltage.

Increment

Units

0.1

volt

BATT9_ARM_MAH: Required arming remaining capacity

Note: This parameter is for advanced users

Battery capacity remaining which is required to arm the aircraft. Set to 0 to allow arming at any capacity. Note that execept for smart batteries rebooting the vehicle will always reset the remaining capacity estimate, which can lead to this check not providing sufficent protection, it is recommended to always use this in conjunction with the BATT9__ARM_VOLT parameter.

Increment

Units

50

milliampere hour

BATT9_OPTIONS: Battery monitor options

Note: This parameter is for advanced users

This sets options to change the behaviour of the battery monitor

Bitmask

Bit

Meaning

0

Ignore DroneCAN SoC

1

MPPT reports input voltage and current

2

MPPT Powered off when disarmed

3

MPPT Powered on when armed

4

MPPT Powered off at boot

5

MPPT Powered on at boot

6

Send resistance compensated voltage to GCS

BATT9_VOLT_PIN: Battery Voltage sensing pin

Note: Reboot required after change

Sets the analog input pin that should be used for voltage monitoring.

Values

Value

Meaning

-1

Disabled

2

Pixhawk/Pixracer/Navio2/Pixhawk2_PM1

5

Navigator

13

Pixhawk2_PM2/CubeOrange_PM2

14

CubeOrange

16

Durandal

100

PX4-v1

BATT9_CURR_PIN: Battery Current sensing pin

Note: Reboot required after change

Sets the analog input pin that should be used for current monitoring.

Values

Value

Meaning

-1

Disabled

3

Pixhawk/Pixracer/Navio2/Pixhawk2_PM1

4

CubeOrange_PM2/Navigator

14

Pixhawk2_PM2

15

CubeOrange

17

Durandal

101

PX4-v1

BATT9_VOLT_MULT: Voltage Multiplier

Note: This parameter is for advanced users

Used to convert the voltage of the voltage sensing pin (BATT9_VOLT_PIN) to the actual battery's voltage (pin_voltage * VOLT_MULT). For the 3DR Power brick with a Pixhawk, this should be set to 10.1. For the Pixhawk with the 3DR 4in1 ESC this should be 12.02. For the PX using the PX4IO power supply this should be set to 1.

BATT9_AMP_PERVLT: Amps per volt

Number of amps that a 1V reading on the current sensor corresponds to. With a Pixhawk using the 3DR Power brick this should be set to 17. For the Pixhawk with the 3DR 4in1 ESC this should be 17. For Synthetic Current sensor monitors, this is the maximum, full throttle current draw.

Units

ampere per volt

BATT9_AMP_OFFSET: AMP offset

Voltage offset at zero current on current sensor for Analog Sensors. For Synthetic Current sensor, this offset is the zero throttle system current and is added to the calculated throttle base current.

Units

volt

BATT9_VLT_OFFSET: Voltage offset

Note: This parameter is for advanced users

Voltage offset on voltage pin. This allows for an offset due to a diode. This voltage is subtracted before the scaling is applied.

Units

volt

BATT9_I2C_BUS: Battery monitor I2C bus number

Note: This parameter is for advanced users
Note: Reboot required after change

Battery monitor I2C bus number

Range

0 to 3

BATT9_I2C_ADDR: Battery monitor I2C address

Note: This parameter is for advanced users
Note: Reboot required after change

Battery monitor I2C address

Range

0 to 127

BATT9_SUM_MASK: Battery Sum mask

0: sum of remaining battery monitors, If none 0 sum of specified monitors. Current will be summed and voltages averaged.

Bitmask

Bit

Meaning

0

monitor 1

1

monitor 2

2

monitor 3

3

monitor 4

4

monitor 5

5

monitor 6

6

monitor 7

7

monitor 8

8

monitor 9

BATT9_CURR_MULT: Scales reported power monitor current

Note: This parameter is for advanced users

Multiplier applied to all current related reports to allow for adjustment if no UAVCAN param access or current splitting applications

Range

.1 to 10

BATT9_FL_VLT_MIN: Empty fuel level voltage

Note: This parameter is for advanced users

The voltage seen on the analog pin when the fuel tank is empty. Note: For this type of battery monitor, the voltage seen by the analog pin is displayed as battery voltage on a GCS.

Range

Units

0.01 to 10

volt

BATT9_FL_V_MULT: Fuel level voltage multiplier

Note: This parameter is for advanced users

Voltage multiplier to determine what the full tank voltage reading is. This is calculated as 1 / (Voltage_Full - Voltage_Empty) Note: For this type of battery monitor, the voltage seen by the analog pin is displayed as battery voltage on a GCS.

Range

0.01 to 10

BATT9_FL_FLTR: Fuel level filter frequency

Note: This parameter is for advanced users
Note: Reboot required after change

Filter frequency in Hertz where a low pass filter is used. This is used to filter out tank slosh from the fuel level reading. A value of -1 disables the filter and unfiltered voltage is used to determine the fuel level. The suggested values at in the range of 0.2 Hz to 0.5 Hz.

Range

Units

-1 to 1

hertz

BATT9_FL_PIN: Fuel level analog pin number

Analog input pin that fuel level sensor is connected to. Airspeed ports can be used for Analog input. When using analog pin 103, the maximum value of the input in 3.3V.

Values

Value

Meaning

-1

Not Used

11

Pixracer

13

Pixhawk ADC4

14

Pixhawk ADC3

15

Pixhawk ADC6/Pixhawk2 ADC

103

Pixhawk SBUS

BATT9_MAX_VOLT: Maximum Battery Voltage

Note: This parameter is for advanced users

Maximum voltage of battery. Provides scaling of current versus voltage

Range

7 to 100

BATT_ Parameters

BATT_MONITOR: Battery monitoring

Note: Reboot required after change

Controls enabling monitoring of the battery's voltage and current

Values

Value

Meaning

0

Disabled

3

Analog Voltage Only

4

Analog Voltage and Current

5

Solo

6

Bebop

7

SMBus-Generic

8

DroneCAN-BatteryInfo

9

ESC

10

Sum Of Selected Monitors

11

FuelFlow

12

FuelLevelPWM

13

SMBUS-SUI3

14

SMBUS-SUI6

15

NeoDesign

16

SMBus-Maxell

17

Generator-Elec

18

Generator-Fuel

19

Rotoye

20

MPPT

21

INA2XX

22

LTC2946

23

Torqeedo

24

FuelLevelAnalog

25

Synthetic Current and Analog Voltage

26

INA239_SPI

27

EFI

BATT_CAPACITY: Battery capacity

Capacity of the battery in mAh when full

Increment

Units

50

milliampere hour

BATT_SERIAL_NUM: Battery serial number

Note: This parameter is for advanced users

Battery serial number, automatically filled in for SMBus batteries, otherwise will be -1. With DroneCan it is the battery_id.

BATT_LOW_TIMER: Low voltage timeout

Note: This parameter is for advanced users

This is the timeout in seconds before a low voltage event will be triggered. For aircraft with low C batteries it may be necessary to raise this in order to cope with low voltage on long takeoffs. A value of zero disables low voltage errors.

Increment

Range

Units

1

0 to 120

seconds

BATT_FS_VOLTSRC: Failsafe voltage source

Note: This parameter is for advanced users

Voltage type used for detection of low voltage event

Values

Value

Meaning

0

Raw Voltage

1

Sag Compensated Voltage

BATT_LOW_VOLT: Low battery voltage

Battery voltage that triggers a low battery failsafe. Set to 0 to disable. If the battery voltage drops below this voltage continuously for more then the period specified by the BATT_LOW_TIMER parameter then the vehicle will perform the failsafe specified by the BATT_FS_LOW_ACT parameter.

Increment

Units

0.1

volt

BATT_LOW_MAH: Low battery capacity

Battery capacity at which the low battery failsafe is triggered. Set to 0 to disable battery remaining failsafe. If the battery capacity drops below this level the vehicle will perform the failsafe specified by the BATT_FS_LOW_ACT parameter.

Increment

Units

50

milliampere hour

BATT_CRT_VOLT: Critical battery voltage

Battery voltage that triggers a critical battery failsafe. Set to 0 to disable. If the battery voltage drops below this voltage continuously for more then the period specified by the BATT_LOW_TIMER parameter then the vehicle will perform the failsafe specified by the BATT_FS_CRT_ACT parameter.

Increment

Units

0.1

volt

BATT_CRT_MAH: Battery critical capacity

Battery capacity at which the critical battery failsafe is triggered. Set to 0 to disable battery remaining failsafe. If the battery capacity drops below this level the vehicle will perform the failsafe specified by the BATT__FS_CRT_ACT parameter.

Increment

Units

50

milliampere hour

BATT_FS_LOW_ACT: Low battery failsafe action

What action the vehicle should perform if it hits a low battery failsafe

Values

Value

Meaning

0

None

1

Land

2

RTL

3

SmartRTL or RTL

4

SmartRTL or Land

5

Terminate

6

Auto DO_LAND_START or RTL

BATT_FS_CRT_ACT: Critical battery failsafe action

What action the vehicle should perform if it hits a critical battery failsafe

Values

Value

Meaning

0

None

1

Land

2

RTL

3

SmartRTL or RTL

4

SmartRTL or Land

5

Terminate

6

Auto DO_LAND_START or RTL

BATT_ARM_VOLT: Required arming voltage

Note: This parameter is for advanced users

Battery voltage level which is required to arm the aircraft. Set to 0 to allow arming at any voltage.

Increment

Units

0.1

volt

BATT_ARM_MAH: Required arming remaining capacity

Note: This parameter is for advanced users

Battery capacity remaining which is required to arm the aircraft. Set to 0 to allow arming at any capacity. Note that execept for smart batteries rebooting the vehicle will always reset the remaining capacity estimate, which can lead to this check not providing sufficent protection, it is recommended to always use this in conjunction with the BATT__ARM_VOLT parameter.

Increment

Units

50

milliampere hour

BATT_OPTIONS: Battery monitor options

Note: This parameter is for advanced users

This sets options to change the behaviour of the battery monitor

Bitmask

Bit

Meaning

0

Ignore DroneCAN SoC

1

MPPT reports input voltage and current

2

MPPT Powered off when disarmed

3

MPPT Powered on when armed

4

MPPT Powered off at boot

5

MPPT Powered on at boot

6

Send resistance compensated voltage to GCS

BATT_VOLT_PIN: Battery Voltage sensing pin

Note: Reboot required after change

Sets the analog input pin that should be used for voltage monitoring.

Values

Value

Meaning

-1

Disabled

2

Pixhawk/Pixracer/Navio2/Pixhawk2_PM1

5

Navigator

13

Pixhawk2_PM2/CubeOrange_PM2

14

CubeOrange

16

Durandal

100

PX4-v1

BATT_CURR_PIN: Battery Current sensing pin

Note: Reboot required after change

Sets the analog input pin that should be used for current monitoring.

Values

Value

Meaning

-1

Disabled

3

Pixhawk/Pixracer/Navio2/Pixhawk2_PM1

4

CubeOrange_PM2/Navigator

14

Pixhawk2_PM2

15

CubeOrange

17

Durandal

101

PX4-v1

BATT_VOLT_MULT: Voltage Multiplier

Note: This parameter is for advanced users

Used to convert the voltage of the voltage sensing pin (BATT_VOLT_PIN) to the actual battery's voltage (pin_voltage * VOLT_MULT). For the 3DR Power brick with a Pixhawk, this should be set to 10.1. For the Pixhawk with the 3DR 4in1 ESC this should be 12.02. For the PX using the PX4IO power supply this should be set to 1.

BATT_AMP_PERVLT: Amps per volt

Number of amps that a 1V reading on the current sensor corresponds to. With a Pixhawk using the 3DR Power brick this should be set to 17. For the Pixhawk with the 3DR 4in1 ESC this should be 17. For Synthetic Current sensor monitors, this is the maximum, full throttle current draw.

Units

ampere per volt

BATT_AMP_OFFSET: AMP offset

Voltage offset at zero current on current sensor for Analog Sensors. For Synthetic Current sensor, this offset is the zero throttle system current and is added to the calculated throttle base current.

Units

volt

BATT_VLT_OFFSET: Voltage offset

Note: This parameter is for advanced users

Voltage offset on voltage pin. This allows for an offset due to a diode. This voltage is subtracted before the scaling is applied.

Units

volt

BATT_I2C_BUS: Battery monitor I2C bus number

Note: This parameter is for advanced users
Note: Reboot required after change

Battery monitor I2C bus number

Range

0 to 3

BATT_I2C_ADDR: Battery monitor I2C address

Note: This parameter is for advanced users
Note: Reboot required after change

Battery monitor I2C address

Range

0 to 127

BATT_SUM_MASK: Battery Sum mask

0: sum of remaining battery monitors, If none 0 sum of specified monitors. Current will be summed and voltages averaged.

Bitmask

Bit

Meaning

0

monitor 1

1

monitor 2

2

monitor 3

3

monitor 4

4

monitor 5

5

monitor 6

6

monitor 7

7

monitor 8

8

monitor 9

BATT_CURR_MULT: Scales reported power monitor current

Note: This parameter is for advanced users

Multiplier applied to all current related reports to allow for adjustment if no UAVCAN param access or current splitting applications

Range

.1 to 10

BATT_FL_VLT_MIN: Empty fuel level voltage

Note: This parameter is for advanced users

The voltage seen on the analog pin when the fuel tank is empty. Note: For this type of battery monitor, the voltage seen by the analog pin is displayed as battery voltage on a GCS.

Range

Units

0.01 to 10

volt

BATT_FL_V_MULT: Fuel level voltage multiplier

Note: This parameter is for advanced users

Voltage multiplier to determine what the full tank voltage reading is. This is calculated as 1 / (Voltage_Full - Voltage_Empty) Note: For this type of battery monitor, the voltage seen by the analog pin is displayed as battery voltage on a GCS.

Range

0.01 to 10

BATT_FL_FLTR: Fuel level filter frequency

Note: This parameter is for advanced users
Note: Reboot required after change

Filter frequency in Hertz where a low pass filter is used. This is used to filter out tank slosh from the fuel level reading. A value of -1 disables the filter and unfiltered voltage is used to determine the fuel level. The suggested values at in the range of 0.2 Hz to 0.5 Hz.

Range

Units

-1 to 1

hertz

BATT_FL_PIN: Fuel level analog pin number

Analog input pin that fuel level sensor is connected to. Airspeed ports can be used for Analog input. When using analog pin 103, the maximum value of the input in 3.3V.

Values

Value

Meaning

-1

Not Used

11

Pixracer

13

Pixhawk ADC4

14

Pixhawk ADC3

15

Pixhawk ADC6/Pixhawk2 ADC

103

Pixhawk SBUS

BATT_MAX_VOLT: Maximum Battery Voltage

Note: This parameter is for advanced users

Maximum voltage of battery. Provides scaling of current versus voltage

Range

7 to 100

BCN Parameters

BCN_TYPE: Beacon based position estimation device type

Note: This parameter is for advanced users

What type of beacon based position estimation device is connected

Values

Value

Meaning

0

None

1

Pozyx

2

Marvelmind

3

Nooploop

10

SITL

BCN_LATITUDE: Beacon origin's latitude

Note: This parameter is for advanced users

Beacon origin's latitude

Increment

Range

Units

0.000001

-90 to 90

degrees

BCN_LONGITUDE: Beacon origin's longitude

Note: This parameter is for advanced users

Beacon origin's longitude

Increment

Range

Units

0.000001

-180 to 180

degrees

BCN_ALT: Beacon origin's altitude above sealevel in meters

Note: This parameter is for advanced users

Beacon origin's altitude above sealevel in meters

Increment

Range

Units

1

0 to 10000

meters

BCN_ORIENT_YAW: Beacon systems rotation from north in degrees

Note: This parameter is for advanced users

Beacon systems rotation from north in degrees

Increment

Range

Units

1

-180 to +180

degrees

BRD_ Parameters

BRD_SER1_RTSCTS: Serial 1 flow control

Note: This parameter is for advanced users
Note: Reboot required after change

Enable flow control on serial 1 (telemetry 1). You must have the RTS and CTS pins connected to your radio. The standard DF13 6 pin connector for a 3DR radio does have those pins connected. If this is set to 2 then flow control will be auto-detected by checking for the output buffer filling on startup. Note that the PX4v1 does not have hardware flow control pins on this port, so you should leave this disabled.

Values

Value

Meaning

0

Disabled

1

Enabled

2

Auto

BRD_SER2_RTSCTS: Serial 2 flow control

Note: This parameter is for advanced users
Note: Reboot required after change

Enable flow control on serial 2 (telemetry 2). You must have the RTS and CTS pins connected to your radio. The standard DF13 6 pin connector for a 3DR radio does have those pins connected. If this is set to 2 then flow control will be auto-detected by checking for the output buffer filling on startup.

Values

Value

Meaning

0

Disabled

1

Enabled

2

Auto

BRD_SER3_RTSCTS: Serial 3 flow control

Note: This parameter is for advanced users
Note: Reboot required after change

Enable flow control on serial 3. You must have the RTS and CTS pins connected to your radio. The standard DF13 6 pin connector for a 3DR radio does have those pins connected. If this is set to 2 then flow control will be auto-detected by checking for the output buffer filling on startup.

Values

Value

Meaning

0

Disabled

1

Enabled

2

Auto

BRD_SER4_RTSCTS: Serial 4 flow control

Note: This parameter is for advanced users
Note: Reboot required after change

Enable flow control on serial 4. You must have the RTS and CTS pins connected to your radio. The standard DF13 6 pin connector for a 3DR radio does have those pins connected. If this is set to 2 then flow control will be auto-detected by checking for the output buffer filling on startup.

Values

Value

Meaning

0

Disabled

1

Enabled

2

Auto

BRD_SER5_RTSCTS: Serial 5 flow control

Note: This parameter is for advanced users
Note: Reboot required after change

Enable flow control on serial 5. You must have the RTS and CTS pins connected to your radio. The standard DF13 6 pin connector for a 3DR radio does have those pins connected. If this is set to 2 then flow control will be auto-detected by checking for the output buffer filling on startup.

Values

Value

Meaning

0

Disabled

1

Enabled

2

Auto

BRD_SAFETY_DEFLT: Sets default state of the safety switch

Note: Reboot required after change

This controls the default state of the safety switch at startup. When set to 1 the safety switch will start in the safe state (flashing) at boot. When set to zero the safety switch will start in the unsafe state (solid) at startup. Note that if a safety switch is fitted the user can still control the safety state after startup using the switch. The safety state can also be controlled in software using a MAVLink message.

Values

Value

Meaning

0

Disabled

1

Enabled

BRD_SBUS_OUT: SBUS output rate

Note: This parameter is for advanced users
Note: Reboot required after change

This sets the SBUS output frame rate in Hz

Values

Value

Meaning

0

Disabled

1

50Hz

2

75Hz

3

100Hz

4

150Hz

5

200Hz

6

250Hz

7

300Hz

BRD_SERIAL_NUM: User-defined serial number

User-defined serial number of this vehicle, it can be any arbitrary number you want and has no effect on the autopilot

Range

-8388608 to 8388607

BRD_SAFETY_MASK: Outputs which ignore the safety switch state

Note: This parameter is for advanced users
Note: Reboot required after change

A bitmask which controls what outputs can move while the safety switch has not been pressed

Bitmask

Bit

Meaning

0

Output1

1

Output2

2

Output3

3

Output4

4

Output5

5

Output6

6

Output7

7

Output8

8

Output9

9

Output10

10

Output11

11

Output12

12

Output13

13

Output14

BRD_HEAT_TARG: Board heater temperature target

Note: This parameter is for advanced users

Board heater target temperature for boards with controllable heating units. DO NOT SET to -1 on the Cube. Set to -1 to disable the heater, please reboot after setting to -1.

Range

Units

-1 to 80

degrees Celsius

BRD_TYPE: Board type

Note: This parameter is for advanced users
Note: Reboot required after change

This allows selection of a PX4 or VRBRAIN board type. If set to zero then the board type is auto-detected (PX4)

Values

Value

Meaning

0

AUTO

1

PX4V1

2

Pixhawk

3

Cube/Pixhawk2

4

Pixracer

5

PixhawkMini

6

Pixhawk2Slim

13

Intel Aero FC

14

Pixhawk Pro

20

AUAV2.1

21

PCNC1

22

MINDPXV2

23

SP01

24

CUAVv5/FMUV5

30

VRX BRAIN51

32

VRX BRAIN52

33

VRX BRAIN52E

34

VRX UBRAIN51

35

VRX UBRAIN52

36

VRX CORE10

38

VRX BRAIN54

39

PX4 FMUV6

100

PX4 OLDDRIVERS

BRD_IO_ENABLE: Enable IO co-processor

Note: This parameter is for advanced users
Note: Reboot required after change

This allows for the IO co-processor on boards with an IOMCU to be disabled. Setting to 2 will enable the IOMCU but not attempt to update firmware on startup

Values

Value

Meaning

0

Disabled

1

Enabled

2

EnableNoFWUpdate

BRD_SAFETYOPTION: Options for safety button behavior

This controls the activation of the safety button. It allows you to control if the safety button can be used for safety enable and/or disable, and whether the button is only active when disarmed

Bitmask

Bit

Meaning

0

ActiveForSafetyDisable

1

ActiveForSafetyEnable

2

ActiveWhenArmed

3

Force safety on when the aircraft disarms

BRD_VBUS_MIN: Autopilot board voltage requirement

Note: This parameter is for advanced users

Minimum voltage on the autopilot power rail to allow the aircraft to arm. 0 to disable the check.

Increment

Range

Units

0.1

4.0 to 5.5

volt

BRD_VSERVO_MIN: Servo voltage requirement

Note: This parameter is for advanced users

Minimum voltage on the servo rail to allow the aircraft to arm. 0 to disable the check.

Increment

Range

Units

0.1

3.3 to 12.0

volt

BRD_SD_SLOWDOWN: microSD slowdown

Note: This parameter is for advanced users

This is a scaling factor to slow down microSD operation. It can be used on flight board and microSD card combinations where full speed is not reliable. For normal full speed operation a value of 0 should be used.

Increment

Range

1

0 to 32

BRD_PWM_VOLT_SEL: Set PWM Out Voltage

Note: This parameter is for advanced users

This sets the voltage max for PWM output pulses. 0 for 3.3V and 1 for 5V output. On boards with an IOMCU that support this parameter this option only affects the 8 main outputs, not the 6 auxilliary outputs. Using 5V output can help to reduce the impact of ESC noise interference corrupting signals to the ESCs.

Values

Value

Meaning

0

3.3V

1

5V

BRD_OPTIONS: Board options

Note: This parameter is for advanced users

Board specific option flags

Bitmask

Bit

Meaning

0

Enable hardware watchdog

1

Disable MAVftp

2

Enable set of internal parameters

3

Enable Debug Pins

4

Unlock flash on reboot

5

Write protect firmware flash on reboot

6

Write protect bootloader flash on reboot

BRD_BOOT_DELAY: Boot delay

Note: This parameter is for advanced users

This adds a delay in milliseconds to boot to ensure peripherals initialise fully

Range

Units

0 to 10000

milliseconds

BRD_HEAT_P: Board Heater P gain

Note: This parameter is for advanced users

Board Heater P gain

Increment

Range

1

1 to 500

BRD_HEAT_I: Board Heater I gain

Note: This parameter is for advanced users

Board Heater integrator gain

Increment

Range

0.1

0 to 1

BRD_HEAT_IMAX: Board Heater IMAX

Note: This parameter is for advanced users

Board Heater integrator maximum

Increment

Range

1

0 to 100

BRD_ALT_CONFIG: Alternative HW config

Note: This parameter is for advanced users
Note: Reboot required after change

Select an alternative hardware configuration. A value of zero selects the default configuration for this board. Other values are board specific. Please see the documentation for your board for details on any alternative configuration values that may be available.

Increment

Range

1

0 to 10

BRD_HEAT_LOWMGN: Board heater temp lower margin

Note: This parameter is for advanced users

Arming check will fail if temp is lower than this margin below BRD_HEAT_TARG. 0 disables the low temperature check

Range

Units

0 to 20

degrees Celsius

BRD_SD_MISSION: SDCard Mission size

Note: This parameter is for advanced users
Note: Reboot required after change

This sets the amount of storage in kilobytes reserved on the microsd card in mission.stg for waypoint storage. Each waypoint uses 15 bytes.

Range

0 to 64

BRD_RADIO Parameters

BRD_RADIO_TYPE: Set type of direct attached radio

This enables support for direct attached radio receivers

Values

Value

Meaning

0

None

1

CYRF6936

2

CC2500

3

BK2425

BRD_RADIO_PROT: protocol

Note: This parameter is for advanced users

Select air protocol

Values

Value

Meaning

0

Auto

1

DSM2

2

DSMX

BRD_RADIO_DEBUG: debug level

Note: This parameter is for advanced users

radio debug level

Range

0 to 4

BRD_RADIO_DISCRC: disable receive CRC

Note: This parameter is for advanced users

disable receive CRC (for debug)

Values

Value

Meaning

0

NotDisabled

1

Disabled

BRD_RADIO_SIGCH: RSSI signal strength

Note: This parameter is for advanced users

Channel to show receive RSSI signal strength, or zero for disabled

Range

0 to 16

BRD_RADIO_PPSCH: Packet rate channel

Note: This parameter is for advanced users

Channel to show received packet-per-second rate, or zero for disabled

Range

0 to 16

BRD_RADIO_TELEM: Enable telemetry

Note: This parameter is for advanced users

If this is non-zero then telemetry packets will be sent over DSM

Values

Value

Meaning

0

Disabled

1

Enabled

BRD_RADIO_TXPOW: Telemetry Transmit power

Note: This parameter is for advanced users

Set telemetry transmit power. This is the power level (from 1 to 8) for telemetry packets sent from the RX to the TX

Range

1 to 8

BRD_RADIO_FCCTST: Put radio into FCC test mode

Note: This parameter is for advanced users

If this is enabled then the radio will continuously transmit as required for FCC testing. The transmit channel is set by the value of the parameter. The radio will not work for RC input while this is enabled

Values

Value

Meaning

0

Disabled

1

MinChannel

2

MidChannel

3

MaxChannel

4

MinChannelCW

5

MidChannelCW

6

MaxChannelCW

BRD_RADIO_STKMD: Stick input mode

Note: This parameter is for advanced users

This selects between different stick input modes. The default is mode2, which has throttle on the left stick and pitch on the right stick. You can instead set mode1, which has throttle on the right stick and pitch on the left stick.

Values

Value

Meaning

1

Mode1

2

Mode2

BRD_RADIO_TESTCH: Set radio to factory test channel

Note: This parameter is for advanced users

This sets the radio to a fixed test channel for factory testing. Using a fixed channel avoids the need for binding in factory testing.

Values

Value

Meaning

0

Disabled

1

TestChan1

2

TestChan2

3

TestChan3

4

TestChan4

5

TestChan5

6

TestChan6

7

TestChan7

8

TestChan8

BRD_RADIO_TSIGCH: RSSI value channel for telemetry data on transmitter

Note: This parameter is for advanced users

Channel to show telemetry RSSI value as received by TX

Range

0 to 16

BRD_RADIO_TPPSCH: Telemetry PPS channel

Note: This parameter is for advanced users

Channel to show telemetry packets-per-second value, as received at TX

Range

0 to 16

BRD_RADIO_TXMAX: Transmitter transmit power

Note: This parameter is for advanced users

Set transmitter maximum transmit power (from 1 to 8)

Range

1 to 8

BRD_RADIO_BZOFS: Transmitter buzzer adjustment

Note: This parameter is for advanced users

Set transmitter buzzer note adjustment (adjust frequency up)

Range

0 to 40

BRD_RADIO_ABTIME: Auto-bind time

Note: This parameter is for advanced users

When non-zero this sets the time with no transmitter packets before we start looking for auto-bind packets.

Range

0 to 120

BRD_RADIO_ABLVL: Auto-bind level

Note: This parameter is for advanced users

This sets the minimum RSSI of an auto-bind packet for it to be accepted. This should be set so that auto-bind will only happen at short range to minimise the change of an auto-bind happening accidentially

Range

0 to 31

BRD_RTC Parameters

BRD_RTC_TYPES: Allowed sources of RTC time

Note: This parameter is for advanced users

Specifies which sources of UTC time will be accepted

Bitmask

Bit

Meaning

0

GPS

1

MAVLINK_SYSTEM_TIME

2

HW

BRD_RTC_TZ_MIN: Timezone offset from UTC

Note: This parameter is for advanced users

Adds offset in +- minutes from UTC to calculate local time

Range

-720 to +840

BTN_ Parameters

BTN_ENABLE: Enable button reporting

Note: This parameter is for advanced users

This enables the button checking module. When this is disabled the parameters for setting button inputs are not visible

Values

Value

Meaning

0

Disabled

1

Enabled

BTN_PIN1: First button Pin

Digital pin number for first button input. Some common values are given, but see the Wiki's "GPIOs" page for how to determine the pin number for a given autopilot.

Values

Value

Meaning

-1

Disabled

50

AUXOUT1

51

AUXOUT2

52

AUXOUT3

53

AUXOUT4

54

AUXOUT5

55

AUXOUT6

BTN_PIN2: Second button Pin

Digital pin number for second button input. Some common values are given, but see the Wiki's "GPIOs" page for how to determine the pin number for a given autopilot.

Values

Value

Meaning

-1

Disabled

50

AUXOUT1

51

AUXOUT2

52

AUXOUT3

53

AUXOUT4

54

AUXOUT5

55

AUXOUT6

BTN_PIN3: Third button Pin

Digital pin number for third button input. Some common values are given, but see the Wiki's "GPIOs" page for how to determine the pin number for a given autopilot.

Values

Value

Meaning

-1

Disabled

50

AUXOUT1

51

AUXOUT2

52

AUXOUT3

53

AUXOUT4

54

AUXOUT5

55

AUXOUT6

BTN_PIN4: Fourth button Pin

Digital pin number for fourth button input. Some common values are given, but see the Wiki's "GPIOs" page for how to determine the pin number for a given autopilot.

Values

Value

Meaning

-1

Disabled

50

AUXOUT1

51

AUXOUT2

52

AUXOUT3

53

AUXOUT4

54

AUXOUT5

55

AUXOUT6

BTN_REPORT_SEND: Report send time

The duration in seconds that a BUTTON_CHANGE report is repeatedly sent to the GCS regarding a button changing state. Note that the BUTTON_CHANGE message is MAVLink2 only.

Range

0 to 3600

BTN_OPTIONS1: Button Pin 1 Options

Options for Pin 1. PWM input detects PWM above or below 1800/1200us instead of logic level. If PWM is not detected or is less than 800us or above 2200us the button will interpreted as low. Invert changes HIGH state to be logic low voltage on pin, or below 1200us, if PWM input.

Bitmask

Bit

Meaning

0

PWM Input

1

InvertInput

BTN_OPTIONS2: Button Pin 2 Options

Options for Pin 2. PWM input detects PWM above or below 1800/1200us instead of logic level. If PWM is not detected or is less than 800us or above 2200us the button will interpreted as low. Invert changes HIGH state to be logic low voltage on pin, or below 1200us, if PWM input.

Bitmask

Bit

Meaning

0

PWM Input

1

InvertInput

BTN_OPTIONS3: Button Pin 3 Options

Options for Pin 3. PWM input detects PWM above or below 1800/1200us instead of logic level. If PWM is not detected or is less than 800us or above 2200us the button will interpreted as low. Invert changes HIGH state to be logic low voltage on pin, or below 1200us, if PWM input.

Bitmask

Bit

Meaning

0

PWM Input

1

InvertInput

BTN_OPTIONS4: Button Pin 4 Options

Options for Pin 4. PWM input detects PWM above or below 1800/1200us instead of logic level. If PWM is not detected or is less than 800us or above 2200us the button will interpreted as low. Invert changes HIGH state to be logic low voltage on pin, or below 1200us, if PWM input.

Bitmask

Bit

Meaning

0

PWM Input

1

InvertInput

BTN_FUNC1: Button Pin 1 RC Channel function

Auxiliary RC Options function executed on pin change

Values

Value

Meaning

0

Do Nothing

2

Flip

3

Simple Mode

4

RTL

5

Save Trim

7

Save WP

9

Camera Trigger

10

RangeFinder

11

Fence

13

Super Simple Mode

14

Acro Trainer

15

Sprayer

16

Auto

17

AutoTune

18

Land

19

Gripper

21

Parachute Enable

22

Parachute Release

23

Parachute 3pos

24

Auto Mission Reset

25

AttCon Feed Forward

26

AttCon Accel Limits

27

Retract Mount1

28

Relay On/Off

29

Landing Gear

30

Lost Copter Sound

31

Motor Emergency Stop

32

Motor Interlock

33

Brake

34

Relay2 On/Off

35

Relay3 On/Off

36

Relay4 On/Off

37

Throw

38

ADSB Avoidance En

39

PrecLoiter

40

Proximity Avoidance

41

ArmDisarm (4.1 and lower)

42

SmartRTL

43

InvertedFlight

44

Winch Enable

46

RC Override Enable

47

User Function 1

48

User Function 2

49

User Function 3

52

Acro

55

Guided

56

Loiter

57

Follow

58

Clear Waypoints

60

ZigZag

61

ZigZag SaveWP

62

Compass Learn

65

GPS Disable

66

Relay5 On/Off

67

Relay6 On/Off

68

Stabilize

69

PosHold

70

AltHold

71

FlowHold

72

Circle

73

Drift

75

SurfaceTrackingUpDown

76

Standby Mode

78

RunCam Control

79

RunCam OSD Control

80

VisOdom Align

81

Disarm

83

ZigZag Auto

84

Air Mode

85

Generator

90

EKF Pos Source

94

VTX Power

99

AUTO RTL

100

KillIMU1

101

KillIMU2

102

Camera Mode Toggle

105

GPS Disable Yaw

110

KillIMU3

151

Turtle

152

simple heading reset

153

ArmDisarm (4.2 and higher)

154

ArmDisarm with AirMode (4.2 and higher)

158

Optflow Calibration

159

Force Flying

161

Turbine Start(heli)

162

FFT Tune

163

Mount Lock

164

Pause Stream Logging

165

Arm/Emergency Motor Stop

166

Camera Record Video

167

Camera Zoom

168

Camera Manual Focus

169

Camera Auto Focus

171

Calibrate Compasses

172

Battery MPPT Enable

212

Mount1 Roll

213

Mount1 Pitch

214

Mount1 Yaw

215

Mount2 Roll

216

Mount2 Pitch

217

Mount2 Yaw

300

Scripting1

301

Scripting2

302

Scripting3

303

Scripting4

304

Scripting5

305

Scripting6

306

Scripting7

307

Scripting8

BTN_FUNC2: Button Pin 2 RC Channel function

Auxiliary RC Options function executed on pin change

Values

Value

Meaning

0

Do Nothing

2

Flip

3

Simple Mode

4

RTL

5

Save Trim

7

Save WP

9

Camera Trigger

10

RangeFinder

11

Fence

13

Super Simple Mode

14

Acro Trainer

15

Sprayer

16

Auto

17

AutoTune

18

Land

19

Gripper

21

Parachute Enable

22

Parachute Release

23

Parachute 3pos

24

Auto Mission Reset

25

AttCon Feed Forward

26

AttCon Accel Limits

27

Retract Mount1

28

Relay On/Off

29

Landing Gear

30

Lost Copter Sound

31

Motor Emergency Stop

32

Motor Interlock

33

Brake

34

Relay2 On/Off

35

Relay3 On/Off

36

Relay4 On/Off

37

Throw

38

ADSB Avoidance En

39

PrecLoiter

40

Proximity Avoidance

41

ArmDisarm (4.1 and lower)

42

SmartRTL

43

InvertedFlight

44

Winch Enable

46

RC Override Enable

47

User Function 1

48

User Function 2

49

User Function 3

52

Acro

55

Guided

56

Loiter

57

Follow

58

Clear Waypoints

60

ZigZag

61

ZigZag SaveWP

62

Compass Learn

65

GPS Disable

66

Relay5 On/Off

67

Relay6 On/Off

68

Stabilize

69

PosHold

70

AltHold

71

FlowHold

72

Circle

73

Drift

75

SurfaceTrackingUpDown

76

Standby Mode

78

RunCam Control

79

RunCam OSD Control

80

VisOdom Align

81

Disarm

83

ZigZag Auto

84

Air Mode

85

Generator

90

EKF Pos Source

94

VTX Power

99

AUTO RTL

100

KillIMU1

101

KillIMU2

102

Camera Mode Toggle

105

GPS Disable Yaw

110

KillIMU3

151

Turtle

152

simple heading reset

153

ArmDisarm (4.2 and higher)

154

ArmDisarm with AirMode (4.2 and higher)

158

Optflow Calibration

159

Force Flying

161

Turbine Start(heli)

162

FFT Tune

163

Mount Lock

164

Pause Stream Logging

165

Arm/Emergency Motor Stop

166

Camera Record Video

167

Camera Zoom

168

Camera Manual Focus

169

Camera Auto Focus

171

Calibrate Compasses

172

Battery MPPT Enable

212

Mount1 Roll

213

Mount1 Pitch

214

Mount1 Yaw

215

Mount2 Roll

216

Mount2 Pitch

217

Mount2 Yaw

300

Scripting1

301

Scripting2

302

Scripting3

303

Scripting4

304

Scripting5

305

Scripting6

306

Scripting7

307

Scripting8

BTN_FUNC3: Button Pin 3 RC Channel function

Auxiliary RC Options function executed on pin change

Values

Value

Meaning

0

Do Nothing

2

Flip

3

Simple Mode

4

RTL

5

Save Trim

7

Save WP

9

Camera Trigger

10

RangeFinder

11

Fence

13

Super Simple Mode

14

Acro Trainer

15

Sprayer

16

Auto

17

AutoTune

18

Land

19

Gripper

21

Parachute Enable

22

Parachute Release

23

Parachute 3pos

24

Auto Mission Reset

25

AttCon Feed Forward

26

AttCon Accel Limits

27

Retract Mount1

28

Relay On/Off

29

Landing Gear

30

Lost Copter Sound

31

Motor Emergency Stop

32

Motor Interlock

33

Brake

34

Relay2 On/Off

35

Relay3 On/Off

36

Relay4 On/Off

37

Throw

38

ADSB Avoidance En

39

PrecLoiter

40

Proximity Avoidance

41

ArmDisarm (4.1 and lower)

42

SmartRTL

43

InvertedFlight

44

Winch Enable

46

RC Override Enable

47

User Function 1

48

User Function 2

49

User Function 3

52

Acro

55

Guided

56

Loiter

57

Follow

58

Clear Waypoints

60

ZigZag

61

ZigZag SaveWP

62

Compass Learn

65

GPS Disable

66

Relay5 On/Off

67

Relay6 On/Off

68

Stabilize

69

PosHold

70

AltHold

71

FlowHold

72

Circle

73

Drift

75

SurfaceTrackingUpDown

76

Standby Mode

78

RunCam Control

79

RunCam OSD Control

80

VisOdom Align

81

Disarm

83

ZigZag Auto

84

Air Mode

85

Generator

90

EKF Pos Source

94

VTX Power

99

AUTO RTL

100

KillIMU1

101

KillIMU2

102

Camera Mode Toggle

105

GPS Disable Yaw

110

KillIMU3

151

Turtle

152

simple heading reset

153

ArmDisarm (4.2 and higher)

154

ArmDisarm with AirMode (4.2 and higher)

158

Optflow Calibration

159

Force Flying

161

Turbine Start(heli)

162

FFT Tune

163

Mount Lock

164

Pause Stream Logging

165

Arm/Emergency Motor Stop

166

Camera Record Video

167

Camera Zoom

168

Camera Manual Focus

169

Camera Auto Focus

171

Calibrate Compasses

172

Battery MPPT Enable

212

Mount1 Roll

213

Mount1 Pitch

214

Mount1 Yaw

215

Mount2 Roll

216

Mount2 Pitch

217

Mount2 Yaw

300

Scripting1

301

Scripting2

302

Scripting3

303

Scripting4

304

Scripting5

305

Scripting6

306

Scripting7

307

Scripting8

BTN_FUNC4: Button Pin 4 RC Channel function

Auxiliary RC Options function executed on pin change

Values

Value

Meaning

0

Do Nothing

2

Flip

3

Simple Mode

4

RTL

5

Save Trim

7

Save WP

9

Camera Trigger

10

RangeFinder

11

Fence

13

Super Simple Mode

14

Acro Trainer

15

Sprayer

16

Auto

17

AutoTune

18

Land

19

Gripper

21

Parachute Enable

22

Parachute Release

23

Parachute 3pos

24

Auto Mission Reset

25

AttCon Feed Forward

26

AttCon Accel Limits

27

Retract Mount1

28

Relay On/Off

29

Landing Gear

30

Lost Copter Sound

31

Motor Emergency Stop

32

Motor Interlock

33

Brake

34

Relay2 On/Off

35

Relay3 On/Off

36

Relay4 On/Off

37

Throw

38

ADSB Avoidance En

39

PrecLoiter

40

Proximity Avoidance

41

ArmDisarm (4.1 and lower)

42

SmartRTL

43

InvertedFlight

44

Winch Enable

46

RC Override Enable

47

User Function 1

48

User Function 2

49

User Function 3

52

Acro

55

Guided

56

Loiter

57

Follow

58

Clear Waypoints

60

ZigZag

61

ZigZag SaveWP

62

Compass Learn

65

GPS Disable

66

Relay5 On/Off

67

Relay6 On/Off

68

Stabilize

69

PosHold

70

AltHold

71

FlowHold

72

Circle

73

Drift

75

SurfaceTrackingUpDown

76

Standby Mode

78

RunCam Control

79

RunCam OSD Control

80

VisOdom Align

81

Disarm

83

ZigZag Auto

84

Air Mode

85

Generator

90

EKF Pos Source

94

VTX Power

99

AUTO RTL

100

KillIMU1

101

KillIMU2

102

Camera Mode Toggle

105

GPS Disable Yaw

110

KillIMU3

151

Turtle

152

simple heading reset

153

ArmDisarm (4.2 and higher)

154

ArmDisarm with AirMode (4.2 and higher)

158

Optflow Calibration

159

Force Flying

161

Turbine Start(heli)

162

FFT Tune

163

Mount Lock

164

Pause Stream Logging

165

Arm/Emergency Motor Stop

166

Camera Record Video

167

Camera Zoom

168

Camera Manual Focus

169

Camera Auto Focus

171

Calibrate Compasses

172

Battery MPPT Enable

212

Mount1 Roll

213

Mount1 Pitch

214

Mount1 Yaw

215

Mount2 Roll

216

Mount2 Pitch

217

Mount2 Yaw

300

Scripting1

301

Scripting2

302

Scripting3

303

Scripting4

304

Scripting5

305

Scripting6

306

Scripting7

307

Scripting8

CAM Parameters

CAM_MAX_ROLL: Maximum photo roll angle.

Postpone shooting if roll is greater than limit. (0=Disable, will shoot regardless of roll).

Range

Units

0 to 180

degrees

CAM_AUTO_ONLY: Distance-trigging in AUTO mode only

When enabled, trigging by distance is done in AUTO mode only.

Values

Value

Meaning

0

Always

1

Only when in AUTO

CAM1 Parameters

CAM1_TYPE: Camera shutter (trigger) type

how to trigger the camera to take a picture

Values

Value

Meaning

1

Servo

2

Relay

3

GoPro in Solo Gimbal

4

Mount (Siyi)

5

MAVLink

CAM1_DURATION: Camera shutter duration held open

Duration in seconds that the camera shutter is held open

Range

Units

0 to 5

seconds

CAM1_SERVO_ON: Camera servo ON PWM value

PWM value in microseconds to move servo to when shutter is activated

Range

Units

1000 to 2000

PWM in microseconds

CAM1_SERVO_OFF: Camera servo OFF PWM value

PWM value in microseconds to move servo to when shutter is deactivated

Range

Units

1000 to 2000

PWM in microseconds

CAM1_TRIGG_DIST: Camera trigger distance

Distance in meters between camera triggers. If this value is non-zero then the camera will trigger whenever the position changes by this number of meters regardless of what mode the APM is in. Note that this parameter can also be set in an auto mission using the DO_SET_CAM_TRIGG_DIST command, allowing you to enable/disable the triggering of the camera during the flight.

Range

Units

0 to 1000

meters

CAM1_RELAY_ON: Camera relay ON value

This sets whether the relay goes high or low when it triggers. Note that you should also set RELAY_DEFAULT appropriately for your camera

Values

Value

Meaning

0

Low

1

High

CAM1_INTRVAL_MIN: Camera minimum time interval between photos

Postpone shooting if previous picture was taken less than this many seconds ago

Range

Units

0 to 10

seconds

CAM1_FEEDBAK_PIN: Camera feedback pin

Note: Reboot required after change

pin number to use for save accurate camera feedback messages. If set to -1 then don't use a pin flag for this, otherwise this is a pin number which if held high after a picture trigger order, will save camera messages when camera really takes a picture. A universal camera hot shoe is needed. The pin should be held high for at least 2 milliseconds for reliable trigger detection. Some common values are given, but see the Wiki's "GPIOs" page for how to determine the pin number for a given autopilot. See also the CAMx_FEEDBCK_POL option.

Values

Value

Meaning

-1

Disabled

50

AUX1

51

AUX2

52

AUX3

53

AUX4

54

AUX5

55

AUX6

CAM1_FEEDBAK_POL: Camera feedback pin polarity

Polarity for feedback pin. If this is 1 then the feedback pin should go high on trigger. If set to 0 then it should go low

Values

Value

Meaning

0

TriggerLow

1

TriggerHigh

CAM2 Parameters

CAM2_TYPE: Camera shutter (trigger) type

how to trigger the camera to take a picture

Values

Value

Meaning

1

Servo

2

Relay

3

GoPro in Solo Gimbal

4

Mount (Siyi)

5

MAVLink

CAM2_DURATION: Camera shutter duration held open

Duration in seconds that the camera shutter is held open

Range

Units

0 to 5

seconds

CAM2_SERVO_ON: Camera servo ON PWM value

PWM value in microseconds to move servo to when shutter is activated

Range

Units

1000 to 2000

PWM in microseconds

CAM2_SERVO_OFF: Camera servo OFF PWM value

PWM value in microseconds to move servo to when shutter is deactivated

Range

Units

1000 to 2000

PWM in microseconds

CAM2_TRIGG_DIST: Camera trigger distance

Distance in meters between camera triggers. If this value is non-zero then the camera will trigger whenever the position changes by this number of meters regardless of what mode the APM is in. Note that this parameter can also be set in an auto mission using the DO_SET_CAM_TRIGG_DIST command, allowing you to enable/disable the triggering of the camera during the flight.

Range

Units

0 to 1000

meters

CAM2_RELAY_ON: Camera relay ON value

This sets whether the relay goes high or low when it triggers. Note that you should also set RELAY_DEFAULT appropriately for your camera

Values

Value

Meaning

0

Low

1

High

CAM2_INTRVAL_MIN: Camera minimum time interval between photos

Postpone shooting if previous picture was taken less than this many seconds ago

Range

Units

0 to 10

seconds

CAM2_FEEDBAK_PIN: Camera feedback pin

Note: Reboot required after change

pin number to use for save accurate camera feedback messages. If set to -1 then don't use a pin flag for this, otherwise this is a pin number which if held high after a picture trigger order, will save camera messages when camera really takes a picture. A universal camera hot shoe is needed. The pin should be held high for at least 2 milliseconds for reliable trigger detection. Some common values are given, but see the Wiki's "GPIOs" page for how to determine the pin number for a given autopilot. See also the CAMx_FEEDBCK_POL option.

Values

Value

Meaning

-1

Disabled

50

AUX1

51

AUX2

52

AUX3

53

AUX4

54

AUX5

55

AUX6

CAM2_FEEDBAK_POL: Camera feedback pin polarity

Polarity for feedback pin. If this is 1 then the feedback pin should go high on trigger. If set to 0 then it should go low

Values

Value

Meaning

0

TriggerLow

1

TriggerHigh

CAM_RC_ Parameters

CAM_RC_TYPE: RunCam device type

RunCam deviee type used to determine OSD menu structure and shutter options.

Values

Value

Meaning

0

Disabled

1

RunCam Split Micro/RunCam with UART

2

RunCam Split

3

RunCam Split4 4k

4

RunCam Hybrid/RunCam Thumb Pro

5

Runcam 2 4k

CAM_RC_FEATURES: RunCam features available

Note: This parameter is for advanced users

The available features of the attached RunCam device. If 0 then the RunCam device will be queried for the features it supports, otherwise this setting is used.

Bitmask

Bit

Meaning

0

Power Button

1

WiFi Button

2

Change Mode

3

5-Key OSD

4

Settings Access

5

DisplayPort

6

Start Recording

7

Stop Recording

CAM_RC_BT_DELAY: RunCam boot delay before allowing updates

Note: This parameter is for advanced users

Time it takes for the RunCam to become fully ready in ms. If this is too short then commands can get out of sync.

CAM_RC_BTN_DELAY: RunCam button delay before allowing further button presses

Note: This parameter is for advanced users

Time it takes for the a RunCam button press to be actived in ms. If this is too short then commands can get out of sync.

CAM_RC_MDE_DELAY: RunCam mode delay before allowing further button presses

Note: This parameter is for advanced users

Time it takes for the a RunCam mode button press to be actived in ms. If a mode change first requires a video recording change then double this value is used. If this is too short then commands can get out of sync.

CAM_RC_CONTROL: RunCam control option

Note: This parameter is for advanced users

Specifies the allowed actions required to enter the OSD menu and other option like autorecording

Bitmask

Bit

Meaning

0

Stick yaw right

1

Stick roll right

2

3-position switch

3

2-position switch

4

Autorecording enabled

CAN_ Parameters

CAN_LOGLEVEL: Loglevel

Note: This parameter is for advanced users

Loglevel for recording initialisation and debug information from CAN Interface

Range

Values

0 to 4

Value

Meaning

0

Log None

1

Log Error

2

Log Warning and below

3

Log Info and below

4

Log Everything

CAN_D1_ Parameters

CAN_D1_PROTOCOL: Enable use of specific protocol over virtual driver

Note: This parameter is for advanced users
Note: Reboot required after change

Enabling this option starts selected protocol that will use this virtual driver

Values

Value

Meaning

0

Disabled

1

DroneCAN

4

PiccoloCAN

5

CANTester

6

EFI_NWPMU

7

USD1

8

KDECAN

10

Scripting

11

Benewake

12

Scripting2

CAN_D1_KDE_ Parameters

CAN_D1_KDE_NPOLE: Number of motor poles

Sets the number of motor poles to calculate the correct RPM value

CAN_D1_PC_ Parameters

CAN_D1_PC_ESC_BM: ESC channels

Note: This parameter is for advanced users

Bitmask defining which ESC (motor) channels are to be transmitted over Piccolo CAN

Bitmask

Bit

Meaning

0

ESC 1

1

ESC 2

2

ESC 3

3

ESC 4

4

ESC 5

5

ESC 6

6

ESC 7

7

ESC 8

8

ESC 9

9

ESC 10

10

ESC 11

11

ESC 12

12

ESC 13

13

ESC 14

14

ESC 15

15

ESC 16

16

ESC 17

17

ESC 18

18

ESC 19

19

ESC 20

20

ESC 21

21

ESC 22

22

ESC 23

23

ESC 24

24

ESC 25

25

ESC 26

26

ESC 27

27

ESC 28

28

ESC 29

29

ESC 30

30

ESC 31

31

ESC 32

CAN_D1_PC_ESC_RT: ESC output rate

Note: This parameter is for advanced users

Output rate of ESC command messages

Range

Units

1 to 500

hertz

CAN_D1_PC_SRV_BM: Servo channels

Note: This parameter is for advanced users

Bitmask defining which servo channels are to be transmitted over Piccolo CAN

Bitmask

Bit

Meaning

0

Servo 1

1

Servo 2

2

Servo 3

3

Servo 4

4

Servo 5

5

Servo 6

6

Servo 7

7

Servo 8

8

Servo 9

9

Servo 10

10

Servo 11

11

Servo 12

12

Servo 13

13

Servo 14

14

Servo 15

15

Servo 16

CAN_D1_PC_SRV_RT: Servo command output rate

Note: This parameter is for advanced users

Output rate of servo command messages

Range

Units

1 to 500

hertz

CAN_D1_PC_ECU_ID: ECU Node ID

Note: This parameter is for advanced users

Node ID to send ECU throttle messages to. Set to zero to disable ECU throttle messages. Set to 255 to broadcast to all ECUs.

Range

0 to 255

CAN_D1_PC_ECU_RT: ECU command output rate

Note: This parameter is for advanced users

Output rate of ECU command messages

Range

Units

1 to 500

hertz

CAN_D1_TST_ Parameters

CAN_D1_TST_ID: CAN Test Index

Note: This parameter is for advanced users

Selects the Index of Test that needs to be run recursively, this value gets reset to 0 at boot.

Range

Values

0 to 4

Value

Meaning

0

TEST_NONE

1

TEST_LOOPBACK

2

TEST_BUSOFF_RECOVERY

3

TEST_UAVCAN_DNA

5

TEST_KDE_CAN

6

TEST_UAVCAN_ESC

7

TEST_UAVCAN_FD_ESC

CAN_D1_TST_LPR8: CANTester LoopRate

Note: This parameter is for advanced users

Selects the Looprate of Test methods

Units

microseconds

CAN_D1_UC_ Parameters

CAN_D1_UC_NODE: UAVCAN node that is used for this network

Note: This parameter is for advanced users

UAVCAN node should be set implicitly

Range

1 to 250

CAN_D1_UC_SRV_BM: Output channels to be transmitted as servo over UAVCAN

Bitmask with one set for channel to be transmitted as a servo command over UAVCAN

Bitmask

Bit

Meaning

0

Servo 1

1

Servo 2

2

Servo 3

3

Servo 4

4

Servo 5

5

Servo 6

6

Servo 7

7

Servo 8

8

Servo 9

9

Servo 10

10

Servo 11

11

Servo 12

12

Servo 13

13

Servo 14

14

Servo 15

15

Servo 16

16

Servo 17

17

Servo 18

18

Servo 19

19

Servo 20

20

Servo 21

21

Servo 22

22

Servo 23

23

Servo 24

24

Servo 25

25

Servo 26

26

Servo 27

27

Servo 28

28

Servo 29

29

Servo 30

30

Servo 31

31

Servo 32

CAN_D1_UC_ESC_BM: Output channels to be transmitted as ESC over UAVCAN

Note: This parameter is for advanced users

Bitmask with one set for channel to be transmitted as a ESC command over UAVCAN

Bitmask

Bit

Meaning

0

ESC 1

1

ESC 2

2

ESC 3

3

ESC 4

4

ESC 5

5

ESC 6

6

ESC 7

7

ESC 8

8

ESC 9

9

ESC 10

10

ESC 11

11

ESC 12

12

ESC 13

13

ESC 14

14

ESC 15

15

ESC 16

16

ESC 17

17

ESC 18

18

ESC 19

19

ESC 20

20

ESC 21

21

ESC 22

22

ESC 23

23

ESC 24

24

ESC 25

25

ESC 26

26

ESC 27

27

ESC 28

28

ESC 29

29

ESC 30

30

ESC 31

31

ESC 32

CAN_D1_UC_SRV_RT: Servo output rate

Note: This parameter is for advanced users

Maximum transmit rate for servo outputs

Range

Units

1 to 200

hertz

CAN_D1_UC_OPTION: UAVCAN options

Note: This parameter is for advanced users

Option flags

Bitmask

Bit

Meaning

0

ClearDNADatabase

1

IgnoreDNANodeConflicts

2

EnableCanfd

3

IgnoreDNANodeUnhealthy

4

SendServoAsPWM

5

SendGNSS

6

UseHimarkServo

7

UseHobbyWingESC

CAN_D1_UC_NTF_RT: Notify State rate

Note: This parameter is for advanced users

Maximum transmit rate for Notify State Message

Range

Units

1 to 200

hertz

CAN_D1_UC_ESC_OF: ESC Output channels offset

Note: This parameter is for advanced users

Offset for ESC numbering in DroneCAN ESC RawCommand messages. This allows for more efficient packing of ESC command messages. If your ESCs are on servo functions 5 to 8 and you set this parameter to 4 then the ESC RawCommand will be sent with the first 4 slots filled. This can be used for more efficint usage of CAN bandwidth

Range

0 to 18

CAN_D1_UC_POOL: CAN pool size

Note: This parameter is for advanced users

Amount of memory in bytes to allocate for the DroneCAN memory pool. More memory is needed for higher CAN bus loads

Range

1024 to 16384

CAN_D2_ Parameters

CAN_D2_PROTOCOL: Enable use of specific protocol over virtual driver

Note: This parameter is for advanced users
Note: Reboot required after change

Enabling this option starts selected protocol that will use this virtual driver

Values

Value

Meaning

0

Disabled

1

DroneCAN

4

PiccoloCAN

5

CANTester

6

EFI_NWPMU

7

USD1

8

KDECAN

10

Scripting

11

Benewake

12

Scripting2

CAN_D2_KDE_ Parameters

CAN_D2_KDE_NPOLE: Number of motor poles

Sets the number of motor poles to calculate the correct RPM value

CAN_D2_PC_ Parameters

CAN_D2_PC_ESC_BM: ESC channels

Note: This parameter is for advanced users

Bitmask defining which ESC (motor) channels are to be transmitted over Piccolo CAN

Bitmask

Bit

Meaning

0

ESC 1

1

ESC 2

2

ESC 3

3

ESC 4

4

ESC 5

5

ESC 6

6

ESC 7

7

ESC 8

8

ESC 9

9

ESC 10

10

ESC 11

11

ESC 12

12

ESC 13

13

ESC 14

14

ESC 15

15

ESC 16

16

ESC 17

17

ESC 18

18

ESC 19

19

ESC 20

20

ESC 21

21

ESC 22

22

ESC 23

23

ESC 24

24

ESC 25

25

ESC 26

26

ESC 27

27

ESC 28

28

ESC 29

29

ESC 30

30

ESC 31

31

ESC 32

CAN_D2_PC_ESC_RT: ESC output rate

Note: This parameter is for advanced users

Output rate of ESC command messages

Range

Units

1 to 500

hertz

CAN_D2_PC_SRV_BM: Servo channels

Note: This parameter is for advanced users

Bitmask defining which servo channels are to be transmitted over Piccolo CAN

Bitmask

Bit

Meaning

0

Servo 1

1

Servo 2

2

Servo 3

3

Servo 4

4

Servo 5

5

Servo 6

6

Servo 7

7

Servo 8

8

Servo 9

9

Servo 10

10

Servo 11

11

Servo 12

12

Servo 13

13

Servo 14

14

Servo 15

15

Servo 16

CAN_D2_PC_SRV_RT: Servo command output rate

Note: This parameter is for advanced users

Output rate of servo command messages

Range

Units

1 to 500

hertz

CAN_D2_PC_ECU_ID: ECU Node ID

Note: This parameter is for advanced users

Node ID to send ECU throttle messages to. Set to zero to disable ECU throttle messages. Set to 255 to broadcast to all ECUs.

Range

0 to 255

CAN_D2_PC_ECU_RT: ECU command output rate

Note: This parameter is for advanced users

Output rate of ECU command messages

Range

Units

1 to 500

hertz

CAN_D2_TST_ Parameters

CAN_D2_TST_ID: CAN Test Index

Note: This parameter is for advanced users

Selects the Index of Test that needs to be run recursively, this value gets reset to 0 at boot.

Range

Values

0 to 4

Value

Meaning

0

TEST_NONE

1

TEST_LOOPBACK

2

TEST_BUSOFF_RECOVERY

3

TEST_UAVCAN_DNA

5

TEST_KDE_CAN

6

TEST_UAVCAN_ESC

7

TEST_UAVCAN_FD_ESC

CAN_D2_TST_LPR8: CANTester LoopRate

Note: This parameter is for advanced users

Selects the Looprate of Test methods

Units

microseconds

CAN_D2_UC_ Parameters

CAN_D2_UC_NODE: UAVCAN node that is used for this network

Note: This parameter is for advanced users

UAVCAN node should be set implicitly

Range

1 to 250

CAN_D2_UC_SRV_BM: Output channels to be transmitted as servo over UAVCAN

Bitmask with one set for channel to be transmitted as a servo command over UAVCAN

Bitmask

Bit

Meaning

0

Servo 1

1

Servo 2

2

Servo 3

3

Servo 4

4

Servo 5

5

Servo 6

6

Servo 7

7

Servo 8

8

Servo 9

9

Servo 10

10

Servo 11

11

Servo 12

12

Servo 13

13

Servo 14

14

Servo 15

15

Servo 16

16

Servo 17

17

Servo 18

18

Servo 19

19

Servo 20

20

Servo 21

21

Servo 22

22

Servo 23

23

Servo 24

24

Servo 25

25

Servo 26

26

Servo 27

27

Servo 28

28

Servo 29

29

Servo 30

30

Servo 31

31

Servo 32

CAN_D2_UC_ESC_BM: Output channels to be transmitted as ESC over UAVCAN

Note: This parameter is for advanced users

Bitmask with one set for channel to be transmitted as a ESC command over UAVCAN

Bitmask

Bit

Meaning

0

ESC 1

1

ESC 2

2

ESC 3

3

ESC 4

4

ESC 5

5

ESC 6

6

ESC 7

7

ESC 8

8

ESC 9

9

ESC 10

10

ESC 11

11

ESC 12

12

ESC 13

13

ESC 14

14

ESC 15

15

ESC 16

16

ESC 17

17

ESC 18

18

ESC 19

19

ESC 20

20

ESC 21

21

ESC 22

22

ESC 23

23

ESC 24

24

ESC 25

25

ESC 26

26

ESC 27

27

ESC 28

28

ESC 29

29

ESC 30

30

ESC 31

31

ESC 32

CAN_D2_UC_SRV_RT: Servo output rate

Note: This parameter is for advanced users

Maximum transmit rate for servo outputs

Range

Units

1 to 200

hertz

CAN_D2_UC_OPTION: UAVCAN options

Note: This parameter is for advanced users

Option flags

Bitmask

Bit

Meaning

0

ClearDNADatabase

1

IgnoreDNANodeConflicts

2

EnableCanfd

3

IgnoreDNANodeUnhealthy

4

SendServoAsPWM

5

SendGNSS

6

UseHimarkServo

7

UseHobbyWingESC

CAN_D2_UC_NTF_RT: Notify State rate

Note: This parameter is for advanced users

Maximum transmit rate for Notify State Message

Range

Units

1 to 200

hertz

CAN_D2_UC_ESC_OF: ESC Output channels offset

Note: This parameter is for advanced users

Offset for ESC numbering in DroneCAN ESC RawCommand messages. This allows for more efficient packing of ESC command messages. If your ESCs are on servo functions 5 to 8 and you set this parameter to 4 then the ESC RawCommand will be sent with the first 4 slots filled. This can be used for more efficint usage of CAN bandwidth

Range

0 to 18

CAN_D2_UC_POOL: CAN pool size

Note: This parameter is for advanced users

Amount of memory in bytes to allocate for the DroneCAN memory pool. More memory is needed for higher CAN bus loads

Range

1024 to 16384

CAN_D3_ Parameters

CAN_D3_PROTOCOL: Enable use of specific protocol over virtual driver

Note: This parameter is for advanced users
Note: Reboot required after change

Enabling this option starts selected protocol that will use this virtual driver

Values

Value

Meaning

0

Disabled

1

DroneCAN

4

PiccoloCAN

5

CANTester

6

EFI_NWPMU

7

USD1

8

KDECAN

10

Scripting

11

Benewake

12

Scripting2

CAN_D3_KDE_ Parameters

CAN_D3_KDE_NPOLE: Number of motor poles

Sets the number of motor poles to calculate the correct RPM value

CAN_D3_PC_ Parameters

CAN_D3_PC_ESC_BM: ESC channels

Note: This parameter is for advanced users

Bitmask defining which ESC (motor) channels are to be transmitted over Piccolo CAN

Bitmask

Bit

Meaning

0

ESC 1

1

ESC 2

2

ESC 3

3

ESC 4

4

ESC 5

5

ESC 6

6

ESC 7

7

ESC 8

8

ESC 9

9

ESC 10

10

ESC 11

11

ESC 12

12

ESC 13

13

ESC 14

14

ESC 15

15

ESC 16

16

ESC 17

17

ESC 18

18

ESC 19

19

ESC 20

20

ESC 21

21

ESC 22

22

ESC 23

23

ESC 24

24

ESC 25

25

ESC 26

26

ESC 27

27

ESC 28

28

ESC 29

29

ESC 30

30

ESC 31

31

ESC 32

CAN_D3_PC_ESC_RT: ESC output rate

Note: This parameter is for advanced users

Output rate of ESC command messages

Range

Units

1 to 500

hertz

CAN_D3_PC_SRV_BM: Servo channels

Note: This parameter is for advanced users

Bitmask defining which servo channels are to be transmitted over Piccolo CAN

Bitmask

Bit

Meaning

0

Servo 1

1

Servo 2

2

Servo 3

3

Servo 4

4

Servo 5

5

Servo 6

6

Servo 7

7

Servo 8

8

Servo 9

9

Servo 10

10

Servo 11

11

Servo 12

12

Servo 13

13

Servo 14

14

Servo 15

15

Servo 16

CAN_D3_PC_SRV_RT: Servo command output rate

Note: This parameter is for advanced users

Output rate of servo command messages

Range

Units

1 to 500

hertz

CAN_D3_PC_ECU_ID: ECU Node ID

Note: This parameter is for advanced users

Node ID to send ECU throttle messages to. Set to zero to disable ECU throttle messages. Set to 255 to broadcast to all ECUs.

Range

0 to 255

CAN_D3_PC_ECU_RT: ECU command output rate

Note: This parameter is for advanced users

Output rate of ECU command messages

Range

Units

1 to 500

hertz

CAN_D3_TST_ Parameters

CAN_D3_TST_ID: CAN Test Index

Note: This parameter is for advanced users

Selects the Index of Test that needs to be run recursively, this value gets reset to 0 at boot.

Range

Values

0 to 4

Value

Meaning

0

TEST_NONE

1

TEST_LOOPBACK

2

TEST_BUSOFF_RECOVERY

3

TEST_UAVCAN_DNA

5

TEST_KDE_CAN

6

TEST_UAVCAN_ESC

7

TEST_UAVCAN_FD_ESC

CAN_D3_TST_LPR8: CANTester LoopRate

Note: This parameter is for advanced users

Selects the Looprate of Test methods

Units

microseconds

CAN_D3_UC_ Parameters

CAN_D3_UC_NODE: UAVCAN node that is used for this network

Note: This parameter is for advanced users

UAVCAN node should be set implicitly

Range

1 to 250

CAN_D3_UC_SRV_BM: Output channels to be transmitted as servo over UAVCAN

Bitmask with one set for channel to be transmitted as a servo command over UAVCAN

Bitmask

Bit

Meaning

0

Servo 1

1

Servo 2

2

Servo 3

3

Servo 4

4

Servo 5

5

Servo 6

6

Servo 7

7

Servo 8

8

Servo 9

9

Servo 10

10

Servo 11

11

Servo 12

12

Servo 13

13

Servo 14

14

Servo 15

15

Servo 16

16

Servo 17

17

Servo 18

18

Servo 19

19

Servo 20

20

Servo 21

21

Servo 22

22

Servo 23

23

Servo 24

24

Servo 25

25

Servo 26

26

Servo 27

27

Servo 28

28

Servo 29

29

Servo 30

30

Servo 31

31

Servo 32

CAN_D3_UC_ESC_BM: Output channels to be transmitted as ESC over UAVCAN

Note: This parameter is for advanced users

Bitmask with one set for channel to be transmitted as a ESC command over UAVCAN

Bitmask

Bit

Meaning

0

ESC 1

1

ESC 2

2

ESC 3

3

ESC 4

4

ESC 5

5

ESC 6

6

ESC 7

7

ESC 8

8

ESC 9

9

ESC 10

10

ESC 11

11

ESC 12

12

ESC 13

13

ESC 14

14

ESC 15

15

ESC 16

16

ESC 17

17

ESC 18

18

ESC 19

19

ESC 20

20

ESC 21

21

ESC 22

22

ESC 23

23

ESC 24

24

ESC 25

25

ESC 26

26

ESC 27

27

ESC 28

28

ESC 29

29

ESC 30

30

ESC 31

31

ESC 32

CAN_D3_UC_SRV_RT: Servo output rate

Note: This parameter is for advanced users

Maximum transmit rate for servo outputs

Range

Units

1 to 200

hertz

CAN_D3_UC_OPTION: UAVCAN options

Note: This parameter is for advanced users

Option flags

Bitmask

Bit

Meaning

0

ClearDNADatabase

1

IgnoreDNANodeConflicts

2

EnableCanfd

3

IgnoreDNANodeUnhealthy

4

SendServoAsPWM

5

SendGNSS

6

UseHimarkServo

7

UseHobbyWingESC

CAN_D3_UC_NTF_RT: Notify State rate

Note: This parameter is for advanced users

Maximum transmit rate for Notify State Message

Range

Units

1 to 200

hertz

CAN_D3_UC_ESC_OF: ESC Output channels offset

Note: This parameter is for advanced users

Offset for ESC numbering in DroneCAN ESC RawCommand messages. This allows for more efficient packing of ESC command messages. If your ESCs are on servo functions 5 to 8 and you set this parameter to 4 then the ESC RawCommand will be sent with the first 4 slots filled. This can be used for more efficint usage of CAN bandwidth

Range

0 to 18

CAN_D3_UC_POOL: CAN pool size

Note: This parameter is for advanced users

Amount of memory in bytes to allocate for the DroneCAN memory pool. More memory is needed for higher CAN bus loads

Range

1024 to 16384

CAN_P1_ Parameters

CAN_P1_DRIVER: Index of virtual driver to be used with physical CAN interface

Note: Reboot required after change

Enabling this option enables use of CAN buses.

Values

Value

Meaning

0

Disabled

1

First driver

2

Second driver

3

Third driver

CAN_P1_BITRATE: Bitrate of CAN interface

Note: This parameter is for advanced users

Bit rate can be set up to from 10000 to 1000000

Range

10000 to 1000000

CAN_P1_FDBITRATE: Bitrate of CANFD interface

Note: This parameter is for advanced users

Bit rate can be set up to from 1000000 to 8000000

Values

Value

Meaning

1

1M

2

2M

4

4M

5

5M

8

8M

CAN_P2_ Parameters

CAN_P2_DRIVER: Index of virtual driver to be used with physical CAN interface

Note: Reboot required after change

Enabling this option enables use of CAN buses.

Values

Value

Meaning

0

Disabled

1

First driver

2

Second driver

3

Third driver

CAN_P2_BITRATE: Bitrate of CAN interface

Note: This parameter is for advanced users

Bit rate can be set up to from 10000 to 1000000

Range

10000 to 1000000

CAN_P2_FDBITRATE: Bitrate of CANFD interface

Note: This parameter is for advanced users

Bit rate can be set up to from 1000000 to 8000000

Values

Value

Meaning

1

1M

2

2M

4

4M

5

5M

8

8M

CAN_P3_ Parameters

CAN_P3_DRIVER: Index of virtual driver to be used with physical CAN interface

Note: Reboot required after change

Enabling this option enables use of CAN buses.

Values

Value

Meaning

0

Disabled

1

First driver

2

Second driver

3

Third driver

CAN_P3_BITRATE: Bitrate of CAN interface

Note: This parameter is for advanced users

Bit rate can be set up to from 10000 to 1000000

Range

10000 to 1000000

CAN_P3_FDBITRATE: Bitrate of CANFD interface

Note: This parameter is for advanced users

Bit rate can be set up to from 1000000 to 8000000

Values

Value

Meaning

1

1M

2

2M

4

4M

5

5M

8

8M

CAN_SLCAN_ Parameters

CAN_SLCAN_CPORT: SLCAN Route

Note: Reboot required after change

CAN Interface ID to be routed to SLCAN, 0 means no routing

Values

Value

Meaning

0

Disabled

1

First interface

2

Second interface

CAN_SLCAN_SERNUM: SLCAN Serial Port

Serial Port ID to be used for temporary SLCAN iface, -1 means no temporary serial. This parameter is automatically reset on reboot or on timeout. See CAN_SLCAN_TIMOUT for timeout details

Values

Value

Meaning

-1

Disabled

0

Serial0

1

Serial1

2

Serial2

3

Serial3

4

Serial4

5

Serial5

6

Serial6

CAN_SLCAN_TIMOUT: SLCAN Timeout

Duration of inactivity after which SLCAN is switched back to original driver in seconds.

Range

0 to 127

CAN_SLCAN_SDELAY: SLCAN Start Delay

Duration after which slcan starts after setting SERNUM in seconds.

Range

0 to 127

CC Parameters

CC_TYPE: Custom control type

Note: This parameter is for advanced users
Note: Reboot required after change

Custom control type to be used

Values

Value

Meaning

0

None

1

Empty

2

PID

CC_AXIS_MASK: Custom Controller bitmask

Note: This parameter is for advanced users

Custom Controller bitmask to chose which axis to run

Bitmask

Bit

Meaning

0

Roll

1

Pitch

2

Yaw

CHUTE_ Parameters

CHUTE_ENABLED: Parachute release enabled or disabled

Parachute release enabled or disabled

Values

Value

Meaning

0

Disabled

1

Enabled

CHUTE_TYPE: Parachute release mechanism type (relay or servo)

Parachute release mechanism type (relay or servo)

Values

Value

Meaning

0

First Relay

1

Second Relay

2

Third Relay

3

Fourth Relay

10

Servo

CHUTE_SERVO_ON: Parachute Servo ON PWM value

Parachute Servo PWM value in microseconds when parachute is released

Increment

Range

Units

1

1000 to 2000

PWM in microseconds

CHUTE_SERVO_OFF: Servo OFF PWM value

Parachute Servo PWM value in microseconds when parachute is not released

Increment

Range

Units

1

1000 to 2000

PWM in microseconds

CHUTE_ALT_MIN: Parachute min altitude in meters above home

Parachute min altitude above home. Parachute will not be released below this altitude. 0 to disable alt check.

Increment

Range

Units

1

0 to 32000

meters

CHUTE_DELAY_MS: Parachute release delay

Delay in millseconds between motor stop and chute release

Increment

Range

Units

1

0 to 5000

milliseconds

CHUTE_CRT_SINK: Critical sink speed rate in m/s to trigger emergency parachute

Release parachute when critical sink rate is reached

Increment

Range

Units

1

0 to 15

meters per second

CHUTE_OPTIONS: Parachute options

Optional behaviour for parachute

Bitmask

Bit

Meaning

0

hold open forever after release

CIRCLE_ Parameters

CIRCLE_RADIUS: Circle Radius

Defines the radius of the circle the vehicle will fly when in Circle flight mode

Increment

Range

Units

100

0 to 200000

centimeters

CIRCLE_RATE: Circle rate

Circle mode's turn rate in deg/sec. Positive to turn clockwise, negative for counter clockwise. Circle rate must be less than ATC_SLEW_YAW parameter.

Increment

Range

Units

1

-90 to 90

degrees per second

CIRCLE_OPTIONS: Circle options

0:Enable or disable using the pitch/roll stick control circle mode's radius and rate

Bitmask

Bit

Meaning

0

manual control

1

face direction of travel

2

Start at center rather than on perimeter

COMPASS_ Parameters

COMPASS_OFS_X: Compass offsets in milligauss on the X axis

Note: This parameter is for advanced users

Offset to be added to the compass x-axis values to compensate for metal in the frame

Calibration

Increment

Range

Units

1

1

-400 to 400

milligauss

COMPASS_OFS_Y: Compass offsets in milligauss on the Y axis

Note: This parameter is for advanced users

Offset to be added to the compass y-axis values to compensate for metal in the frame

Calibration

Increment

Range

Units

1

1

-400 to 400

milligauss

COMPASS_OFS_Z: Compass offsets in milligauss on the Z axis

Note: This parameter is for advanced users

Offset to be added to the compass z-axis values to compensate for metal in the frame

Increment

Range

Units

1

-400 to 400

milligauss

COMPASS_DEC: Compass declination

An angle to compensate between the true north and magnetic north

Increment

Range

Units

0.01

-3.142 to 3.142

radians

COMPASS_LEARN: Learn compass offsets automatically

Note: This parameter is for advanced users

Enable or disable the automatic learning of compass offsets. You can enable learning either using a compass-only method that is suitable only for fixed wing aircraft or using the offsets learnt by the active EKF state estimator. If this option is enabled then the learnt offsets are saved when you disarm the vehicle. If InFlight learning is enabled then the compass with automatically start learning once a flight starts (must be armed). While InFlight learning is running you cannot use position control modes.

Values

Value

Meaning

0

Disabled

1

Internal-Learning

2

EKF-Learning

3

InFlight-Learning

COMPASS_USE: Use compass for yaw

Note: This parameter is for advanced users

Enable or disable the use of the compass (instead of the GPS) for determining heading

Values

Value

Meaning

0

Disabled

1

Enabled

COMPASS_AUTODEC: Auto Declination

Note: This parameter is for advanced users

Enable or disable the automatic calculation of the declination based on gps location

Values

Value

Meaning

0

Disabled

1

Enabled

COMPASS_MOTCT: Motor interference compensation type

Note: This parameter is for advanced users

Set motor interference compensation type to disabled, throttle or current. Do not change manually.

Calibration

Values

1

Value

Meaning

0

Disabled

1

Use Throttle

2

Use Current

COMPASS_MOT_X: Motor interference compensation for body frame X axis

Note: This parameter is for advanced users

Multiplied by the current throttle and added to the compass's x-axis values to compensate for motor interference (Offset per Amp or at Full Throttle)

Calibration

Increment

Range

Units

1

1

-1000 to 1000

milligauss per ampere

COMPASS_MOT_Y: Motor interference compensation for body frame Y axis

Note: This parameter is for advanced users

Multiplied by the current throttle and added to the compass's y-axis values to compensate for motor interference (Offset per Amp or at Full Throttle)

Calibration

Increment

Range

Units

1

1

-1000 to 1000

milligauss per ampere

COMPASS_MOT_Z: Motor interference compensation for body frame Z axis

Note: This parameter is for advanced users

Multiplied by the current throttle and added to the compass's z-axis values to compensate for motor interference (Offset per Amp or at Full Throttle)

Increment

Range

Units

1

-1000 to 1000

milligauss per ampere

COMPASS_ORIENT: Compass orientation

Note: This parameter is for advanced users

The orientation of the first external compass relative to the vehicle frame. This value will be ignored unless this compass is set as an external compass. When set correctly in the northern hemisphere, pointing the nose and right side down should increase the MagX and MagY values respectively. Rolling the vehicle upside down should decrease the MagZ value. For southern hemisphere, switch increase and decrease. NOTE: For internal compasses, AHRS_ORIENT is used. The label for each option is specified in the order of rotations for that orientation. Firmware versions 4.2 and prior can use a CUSTOM (100) rotation to set the COMPASS_CUS_ROLL/PIT/YAW angles for Compass orientation. Later versions provide two general custom rotations which can be used, Custom 1 and Custom 2, with CUST_1_ROLL/PIT/YAW or CUST_2_ROLL/PIT/YAW angles.

Values

Value

Meaning

0

None

1

Yaw45

2

Yaw90

3

Yaw135

4

Yaw180

5

Yaw225

6

Yaw270

7

Yaw315

8

Roll180

9

Yaw45Roll180

10

Yaw90Roll180

11

Yaw135Roll180

12

Pitch180

13

Yaw225Roll180

14

Yaw270Roll180

15

Yaw315Roll180

16

Roll90

17

Yaw45Roll90

18

Yaw90Roll90

19

Yaw135Roll90

20

Roll270

21

Yaw45Roll270

22

Yaw90Roll270

23

Yaw135Roll270

24

Pitch90

25

Pitch270

26

Yaw90Pitch180

27

Yaw270Pitch180

28

Pitch90Roll90

29

Pitch90Roll180

30

Pitch90Roll270

31

Pitch180Roll90

32

Pitch180Roll270

33

Pitch270Roll90

34

Pitch270Roll180

35

Pitch270Roll270

36

Yaw90Pitch180Roll90

37

Yaw270Roll90

38

Yaw293Pitch68Roll180

39

Pitch315

40

Pitch315Roll90

42

Roll45

43

Roll315

100

Custom 4.1 and older

101

Custom 1

102

Custom 2

COMPASS_EXTERNAL: Compass is attached via an external cable

Note: This parameter is for advanced users

Configure compass so it is attached externally. This is auto-detected on most boards. Set to 1 if the compass is externally connected. When externally connected the COMPASS_ORIENT option operates independently of the AHRS_ORIENTATION board orientation option. If set to 0 or 1 then auto-detection by bus connection can override the value. If set to 2 then auto-detection will be disabled.

Values

Value

Meaning

0

Internal

1

External

2

ForcedExternal

COMPASS_OFS2_X: Compass2 offsets in milligauss on the X axis

Note: This parameter is for advanced users

Offset to be added to compass2's x-axis values to compensate for metal in the frame

Calibration

Increment

Range

Units

1

1

-400 to 400

milligauss

COMPASS_OFS2_Y: Compass2 offsets in milligauss on the Y axis

Note: This parameter is for advanced users

Offset to be added to compass2's y-axis values to compensate for metal in the frame

Calibration

Increment

Range

Units

1

1

-400 to 400

milligauss

COMPASS_OFS2_Z: Compass2 offsets in milligauss on the Z axis

Note: This parameter is for advanced users

Offset to be added to compass2's z-axis values to compensate for metal in the frame

Increment

Range

Units

1

-400 to 400

milligauss

COMPASS_MOT2_X: Motor interference compensation to compass2 for body frame X axis

Note: This parameter is for advanced users

Multiplied by the current throttle and added to compass2's x-axis values to compensate for motor interference (Offset per Amp or at Full Throttle)

Calibration

Increment

Range

Units

1

1

-1000 to 1000

milligauss per ampere

COMPASS_MOT2_Y: Motor interference compensation to compass2 for body frame Y axis

Note: This parameter is for advanced users

Multiplied by the current throttle and added to compass2's y-axis values to compensate for motor interference (Offset per Amp or at Full Throttle)

Calibration

Increment

Range

Units

1

1

-1000 to 1000

milligauss per ampere

COMPASS_MOT2_Z: Motor interference compensation to compass2 for body frame Z axis

Note: This parameter is for advanced users

Multiplied by the current throttle and added to compass2's z-axis values to compensate for motor interference (Offset per Amp or at Full Throttle)

Increment

Range

Units

1

-1000 to 1000

milligauss per ampere

COMPASS_OFS3_X: Compass3 offsets in milligauss on the X axis

Note: This parameter is for advanced users

Offset to be added to compass3's x-axis values to compensate for metal in the frame

Calibration

Increment

Range

Units

1

1

-400 to 400

milligauss

COMPASS_OFS3_Y: Compass3 offsets in milligauss on the Y axis

Note: This parameter is for advanced users

Offset to be added to compass3's y-axis values to compensate for metal in the frame

Calibration

Increment

Range

Units

1

1

-400 to 400

milligauss

COMPASS_OFS3_Z: Compass3 offsets in milligauss on the Z axis

Note: This parameter is for advanced users

Offset to be added to compass3's z-axis values to compensate for metal in the frame

Increment

Range

Units

1

-400 to 400

milligauss

COMPASS_MOT3_X: Motor interference compensation to compass3 for body frame X axis

Note: This parameter is for advanced users

Multiplied by the current throttle and added to compass3's x-axis values to compensate for motor interference (Offset per Amp or at Full Throttle)

Calibration

Increment

Range

Units

1

1

-1000 to 1000

milligauss per ampere

COMPASS_MOT3_Y: Motor interference compensation to compass3 for body frame Y axis

Note: This parameter is for advanced users

Multiplied by the current throttle and added to compass3's y-axis values to compensate for motor interference (Offset per Amp or at Full Throttle)

Calibration

Increment

Range

Units

1

1

-1000 to 1000

milligauss per ampere

COMPASS_MOT3_Z: Motor interference compensation to compass3 for body frame Z axis

Note: This parameter is for advanced users

Multiplied by the current throttle and added to compass3's z-axis values to compensate for motor interference (Offset per Amp or at Full Throttle)

Increment

Range

Units

1

-1000 to 1000

milligauss per ampere

COMPASS_DEV_ID: Compass device id

Note: This parameter is for advanced users

Compass device id. Automatically detected, do not set manually

ReadOnly

True

COMPASS_DEV_ID2: Compass2 device id

Note: This parameter is for advanced users

Second compass's device id. Automatically detected, do not set manually

ReadOnly

True

COMPASS_DEV_ID3: Compass3 device id

Note: This parameter is for advanced users

Third compass's device id. Automatically detected, do not set manually

ReadOnly

True

COMPASS_USE2: Compass2 used for yaw

Note: This parameter is for advanced users

Enable or disable the secondary compass for determining heading.

Values

Value

Meaning

0

Disabled

1

Enabled

COMPASS_ORIENT2: Compass2 orientation

Note: This parameter is for advanced users

The orientation of a second external compass relative to the vehicle frame. This value will be ignored unless this compass is set as an external compass. When set correctly in the northern hemisphere, pointing the nose and right side down should increase the MagX and MagY values respectively. Rolling the vehicle upside down should decrease the MagZ value. For southern hemisphere, switch increase and decrease. NOTE: For internal compasses, AHRS_ORIENT is used. The label for each option is specified in the order of rotations for that orientation. Firmware versions 4.2 and prior can use a CUSTOM (100) rotation to set the COMPASS_CUS_ROLL/PIT/YAW angles for Compass orientation. Later versions provide two general custom rotations which can be used, Custom 1 and Custom 2, with CUST_1_ROLL/PIT/YAW or CUST_2_ROLL/PIT/YAW angles.

Values

Value

Meaning

0

None

1

Yaw45

2

Yaw90

3

Yaw135

4

Yaw180

5

Yaw225

6

Yaw270

7

Yaw315

8

Roll180

9

Yaw45Roll180

10

Yaw90Roll180

11

Yaw135Roll180

12

Pitch180

13

Yaw225Roll180

14

Yaw270Roll180

15

Yaw315Roll180

16

Roll90

17

Yaw45Roll90

18

Yaw90Roll90

19

Yaw135Roll90

20

Roll270

21

Yaw45Roll270

22

Yaw90Roll270

23

Yaw135Roll270

24

Pitch90

25

Pitch270

26

Yaw90Pitch180

27

Yaw270Pitch180

28

Pitch90Roll90

29

Pitch90Roll180

30

Pitch90Roll270

31

Pitch180Roll90

32

Pitch180Roll270

33

Pitch270Roll90

34

Pitch270Roll180

35

Pitch270Roll270

36

Yaw90Pitch180Roll90

37

Yaw270Roll90

38

Yaw293Pitch68Roll180

39

Pitch315

40

Pitch315Roll90

42

Roll45

43

Roll315

100

Custom 4.1 and older

101

Custom 1

102

Custom 2

COMPASS_EXTERN2: Compass2 is attached via an external cable

Note: This parameter is for advanced users

Configure second compass so it is attached externally. This is auto-detected on most boards. If set to 0 or 1 then auto-detection by bus connection can override the value. If set to 2 then auto-detection will be disabled.

Values

Value

Meaning

0

Internal

1

External

2

ForcedExternal

COMPASS_USE3: Compass3 used for yaw

Note: This parameter is for advanced users

Enable or disable the tertiary compass for determining heading.

Values

Value

Meaning

0

Disabled

1

Enabled

COMPASS_ORIENT3: Compass3 orientation

Note: This parameter is for advanced users

The orientation of a third external compass relative to the vehicle frame. This value will be ignored unless this compass is set as an external compass. When set correctly in the northern hemisphere, pointing the nose and right side down should increase the MagX and MagY values respectively. Rolling the vehicle upside down should decrease the MagZ value. For southern hemisphere, switch increase and decrease. NOTE: For internal compasses, AHRS_ORIENT is used. The label for each option is specified in the order of rotations for that orientation. Firmware versions 4.2 and prior can use a CUSTOM (100) rotation to set the COMPASS_CUS_ROLL/PIT/YAW angles for Compass orientation. Later versions provide two general custom rotations which can be used, Custom 1 and Custom 2, with CUST_1_ROLL/PIT/YAW or CUST_2_ROLL/PIT/YAW angles.

Values

Value

Meaning

0

None

1

Yaw45

2

Yaw90

3

Yaw135

4

Yaw180

5

Yaw225

6

Yaw270

7

Yaw315

8

Roll180

9

Yaw45Roll180

10

Yaw90Roll180

11

Yaw135Roll180

12

Pitch180

13

Yaw225Roll180

14

Yaw270Roll180

15

Yaw315Roll180

16

Roll90

17

Yaw45Roll90

18

Yaw90Roll90

19

Yaw135Roll90

20

Roll270

21

Yaw45Roll270

22

Yaw90Roll270

23

Yaw135Roll270

24

Pitch90

25

Pitch270

26

Yaw90Pitch180

27

Yaw270Pitch180

28

Pitch90Roll90

29

Pitch90Roll180

30

Pitch90Roll270

31

Pitch180Roll90

32

Pitch180Roll270

33

Pitch270Roll90

34

Pitch270Roll180

35

Pitch270Roll270

36

Yaw90Pitch180Roll90

37

Yaw270Roll90

38

Yaw293Pitch68Roll180

39

Pitch315

40

Pitch315Roll90

42

Roll45

43

Roll315

100

Custom 4.1 and older

101

Custom 1

102

Custom 2

COMPASS_EXTERN3: Compass3 is attached via an external cable

Note: This parameter is for advanced users

Configure third compass so it is attached externally. This is auto-detected on most boards. If set to 0 or 1 then auto-detection by bus connection can override the value. If set to 2 then auto-detection will be disabled.

Values

Value

Meaning

0

Internal

1

External

2

ForcedExternal

COMPASS_DIA_X: Compass soft-iron diagonal X component

Note: This parameter is for advanced users

DIA_X in the compass soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

Calibration

1

COMPASS_DIA_Y: Compass soft-iron diagonal Y component

Note: This parameter is for advanced users

DIA_Y in the compass soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

Calibration

1

COMPASS_DIA_Z: Compass soft-iron diagonal Z component

Note: This parameter is for advanced users

DIA_Z in the compass soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

COMPASS_ODI_X: Compass soft-iron off-diagonal X component

Note: This parameter is for advanced users

ODI_X in the compass soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

Calibration

1

COMPASS_ODI_Y: Compass soft-iron off-diagonal Y component

Note: This parameter is for advanced users

ODI_Y in the compass soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

Calibration

1

COMPASS_ODI_Z: Compass soft-iron off-diagonal Z component

Note: This parameter is for advanced users

ODI_Z in the compass soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

COMPASS_DIA2_X: Compass2 soft-iron diagonal X component

Note: This parameter is for advanced users

DIA_X in the compass2 soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

Calibration

1

COMPASS_DIA2_Y: Compass2 soft-iron diagonal Y component

Note: This parameter is for advanced users

DIA_Y in the compass2 soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

Calibration

1

COMPASS_DIA2_Z: Compass2 soft-iron diagonal Z component

Note: This parameter is for advanced users

DIA_Z in the compass2 soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

COMPASS_ODI2_X: Compass2 soft-iron off-diagonal X component

Note: This parameter is for advanced users

ODI_X in the compass2 soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

Calibration

1

COMPASS_ODI2_Y: Compass2 soft-iron off-diagonal Y component

Note: This parameter is for advanced users

ODI_Y in the compass2 soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

Calibration

1

COMPASS_ODI2_Z: Compass2 soft-iron off-diagonal Z component

Note: This parameter is for advanced users

ODI_Z in the compass2 soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

COMPASS_DIA3_X: Compass3 soft-iron diagonal X component

Note: This parameter is for advanced users

DIA_X in the compass3 soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

Calibration

1

COMPASS_DIA3_Y: Compass3 soft-iron diagonal Y component

Note: This parameter is for advanced users

DIA_Y in the compass3 soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

Calibration

1

COMPASS_DIA3_Z: Compass3 soft-iron diagonal Z component

Note: This parameter is for advanced users

DIA_Z in the compass3 soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

COMPASS_ODI3_X: Compass3 soft-iron off-diagonal X component

Note: This parameter is for advanced users

ODI_X in the compass3 soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

Calibration

1

COMPASS_ODI3_Y: Compass3 soft-iron off-diagonal Y component

Note: This parameter is for advanced users

ODI_Y in the compass3 soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

Calibration

1

COMPASS_ODI3_Z: Compass3 soft-iron off-diagonal Z component

Note: This parameter is for advanced users

ODI_Z in the compass3 soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

COMPASS_CAL_FIT: Compass calibration fitness

Note: This parameter is for advanced users

This controls the fitness level required for a successful compass calibration. A lower value makes for a stricter fit (less likely to pass). This is the value used for the primary magnetometer. Other magnetometers get double the value.

Increment

Range

Values

0.1

4 to 32

Value

Meaning

4

Very Strict

8

Strict

16

Default

32

Relaxed

COMPASS_OFFS_MAX: Compass maximum offset

Note: This parameter is for advanced users

This sets the maximum allowed compass offset in calibration and arming checks

Increment

Range

1

500 to 3000

COMPASS_TYPEMASK: Compass disable driver type mask

Note: This parameter is for advanced users

This is a bitmask of driver types to disable. If a driver type is set in this mask then that driver will not try to find a sensor at startup

Bitmask

Bit

Meaning

0

HMC5883

1

LSM303D

2

AK8963

3

BMM150

4

LSM9DS1

5

LIS3MDL

6

AK09916

7

IST8310

8

ICM20948

9

MMC3416

11

DroneCAN

12

QMC5883

14

MAG3110

15

IST8308

16

RM3100

17

MSP

18

ExternalAHRS

COMPASS_FLTR_RNG: Range in which sample is accepted

This sets the range around the average value that new samples must be within to be accepted. This can help reduce the impact of noise on sensors that are on long I2C cables. The value is a percentage from the average value. A value of zero disables this filter.

Increment

Range

Units

1

0 to 100

percent

COMPASS_AUTO_ROT: Automatically check orientation

When enabled this will automatically check the orientation of compasses on successful completion of compass calibration. If set to 2 then external compasses will have their orientation automatically corrected.

Values

Value

Meaning

0

Disabled

1

CheckOnly

2

CheckAndFix

3

use same tolerance to auto rotate 45 deg rotations

COMPASS_PRIO1_ID: Compass device id with 1st order priority

Note: This parameter is for advanced users
Note: Reboot required after change

Compass device id with 1st order priority, set automatically if 0. Reboot required after change.

COMPASS_PRIO2_ID: Compass device id with 2nd order priority

Note: This parameter is for advanced users
Note: Reboot required after change

Compass device id with 2nd order priority, set automatically if 0. Reboot required after change.

COMPASS_PRIO3_ID: Compass device id with 3rd order priority

Note: This parameter is for advanced users
Note: Reboot required after change

Compass device id with 3rd order priority, set automatically if 0. Reboot required after change.

COMPASS_ENABLE: Enable Compass

Note: Reboot required after change

Setting this to Enabled(1) will enable the compass. Setting this to Disabled(0) will disable the compass. Note that this is separate from COMPASS_USE. This will enable the low level senor, and will enable logging of magnetometer data. To use the compass for navigation you must also set COMPASS_USE to 1.

Values

Value

Meaning

0

Disabled

1

Enabled

COMPASS_SCALE: Compass1 scale factor

Scaling factor for first compass to compensate for sensor scaling errors. If this is 0 then no scaling is done

Range

0 to 1.3

COMPASS_SCALE2: Compass2 scale factor

Scaling factor for 2nd compass to compensate for sensor scaling errors. If this is 0 then no scaling is done

Range

0 to 1.3

COMPASS_SCALE3: Compass3 scale factor

Scaling factor for 3rd compass to compensate for sensor scaling errors. If this is 0 then no scaling is done

Range

0 to 1.3

COMPASS_OPTIONS: Compass options

Note: This parameter is for advanced users

This sets options to change the behaviour of the compass

Bitmask

Bit

Meaning

0

CalRequireGPS

COMPASS_DEV_ID4: Compass4 device id

Note: This parameter is for advanced users

Extra 4th compass's device id. Automatically detected, do not set manually

ReadOnly

True

COMPASS_DEV_ID5: Compass5 device id

Note: This parameter is for advanced users

Extra 5th compass's device id. Automatically detected, do not set manually

ReadOnly

True

COMPASS_DEV_ID6: Compass6 device id

Note: This parameter is for advanced users

Extra 6th compass's device id. Automatically detected, do not set manually

ReadOnly

True

COMPASS_DEV_ID7: Compass7 device id

Note: This parameter is for advanced users

Extra 7th compass's device id. Automatically detected, do not set manually

ReadOnly

True

COMPASS_DEV_ID8: Compass8 device id

Note: This parameter is for advanced users

Extra 8th compass's device id. Automatically detected, do not set manually

ReadOnly

True

COMPASS_CUS_ROLL: Custom orientation roll offset

Note: This parameter is for advanced users
Note: Reboot required after change

Compass mounting position roll offset. Positive values = roll right, negative values = roll left. This parameter is only used when COMPASS_ORIENT/2/3 is set to CUSTOM.

Increment

Range

Units

1

-180 to 180

degrees

COMPASS_CUS_PIT: Custom orientation pitch offset

Note: This parameter is for advanced users
Note: Reboot required after change

Compass mounting position pitch offset. Positive values = pitch up, negative values = pitch down. This parameter is only used when COMPASS_ORIENT/2/3 is set to CUSTOM.

Increment

Range

Units

1

-180 to 180

degrees

COMPASS_CUS_YAW: Custom orientation yaw offset

Note: This parameter is for advanced users
Note: Reboot required after change

Compass mounting position yaw offset. Positive values = yaw right, negative values = yaw left. This parameter is only used when COMPASS_ORIENT/2/3 is set to CUSTOM.

Increment

Range

Units

1

-180 to 180

degrees

COMPASS_PMOT Parameters

COMPASS_PMOT_EN: per-motor compass correction enable

Note: This parameter is for advanced users

This enables per-motor compass corrections

Values

Value

Meaning

0

Disabled

1

Enabled

COMPASS_PMOT_EXP: per-motor exponential correction

Note: This parameter is for advanced users

This is the exponential correction for the power output of the motor for per-motor compass correction

Increment

Range

0.01

0 to 2

COMPASS_PMOT1_X: Compass per-motor1 X

Note: This parameter is for advanced users

Compensation for X axis of motor1

COMPASS_PMOT1_Y: Compass per-motor1 Y

Note: This parameter is for advanced users

Compensation for Y axis of motor1

COMPASS_PMOT1_Z: Compass per-motor1 Z

Note: This parameter is for advanced users

Compensation for Z axis of motor1

COMPASS_PMOT2_X: Compass per-motor2 X

Note: This parameter is for advanced users

Compensation for X axis of motor2

COMPASS_PMOT2_Y: Compass per-motor2 Y

Note: This parameter is for advanced users

Compensation for Y axis of motor2

COMPASS_PMOT2_Z: Compass per-motor2 Z

Note: This parameter is for advanced users

Compensation for Z axis of motor2

COMPASS_PMOT3_X: Compass per-motor3 X

Note: This parameter is for advanced users

Compensation for X axis of motor3

COMPASS_PMOT3_Y: Compass per-motor3 Y

Note: This parameter is for advanced users

Compensation for Y axis of motor3

COMPASS_PMOT3_Z: Compass per-motor3 Z

Note: This parameter is for advanced users

Compensation for Z axis of motor3

COMPASS_PMOT4_X: Compass per-motor4 X

Note: This parameter is for advanced users

Compensation for X axis of motor4

COMPASS_PMOT4_Y: Compass per-motor4 Y

Note: This parameter is for advanced users

Compensation for Y axis of motor4

COMPASS_PMOT4_Z: Compass per-motor4 Z

Note: This parameter is for advanced users

Compensation for Z axis of motor4

CUST_ROT Parameters

CUST_ROT_ENABLE: Enable Custom rotations

Note: Reboot required after change

This enables custom rotations

Values

Value

Meaning

0

Disable

1

Enable

CUST_ROT1_ Parameters

CUST_ROT1_ROLL: Custom roll

Note: Reboot required after change

Custom euler roll, euler 321 (yaw, pitch, roll) ordering

Units

degrees

CUST_ROT1_PITCH: Custom pitch

Note: Reboot required after change

Custom euler pitch, euler 321 (yaw, pitch, roll) ordering

Units

degrees

CUST_ROT1_YAW: Custom yaw

Note: Reboot required after change

Custom euler yaw, euler 321 (yaw, pitch, roll) ordering

Units

degrees

CUST_ROT2_ Parameters

CUST_ROT2_ROLL: Custom roll

Note: Reboot required after change

Custom euler roll, euler 321 (yaw, pitch, roll) ordering

Units

degrees

CUST_ROT2_PITCH: Custom pitch

Note: Reboot required after change

Custom euler pitch, euler 321 (yaw, pitch, roll) ordering

Units

degrees

CUST_ROT2_YAW: Custom yaw

Note: Reboot required after change

Custom euler yaw, euler 321 (yaw, pitch, roll) ordering

Units

degrees

DID_ Parameters

DID_ENABLE: Enable ODID subsystem

Enable ODID subsystem

Values

Value

Meaning

0

Disabled

1

Enabled

DID_CANDRIVER: DroneCAN driver number

DroneCAN driver index, 0 to disable DroneCAN

Values

Value

Meaning

0

Disabled

1

Driver1

2

Driver2

DID_OPTIONS: OpenDroneID options

Options for OpenDroneID subsystem

Bitmask

Bit

Meaning

0

EnforceArming

1

AllowNonGPSPosition

2

LockUASIDOnFirstBasicIDRx

DID_BARO_ACC: Barometer vertical accuraacy

Note: This parameter is for advanced users

Barometer Vertical Accuracy when installed in the vehicle. Note this is dependent upon installation conditions and thus disabled by default

Units

meters

EAHRS Parameters

EAHRS_TYPE: AHRS type

Type of AHRS device

Values

Value

Meaning

0

None

1

VectorNav

2

LORD

EAHRS_RATE: AHRS data rate

Requested rate for AHRS device

Units

hertz

EAHRS_OPTIONS: External AHRS options

External AHRS options bitmask

Bitmask

Bit

Meaning

0

Vector Nav use uncompensated values for accel gyro and mag.

EAHRS_SENSORS: External AHRS sensors

Note: This parameter is for advanced users

External AHRS sensors bitmask

Bitmask

Bit

Meaning

0

GPS

1

IMU

2

Baro

3

Compass

EFI Parameters

EFI_TYPE: EFI communication type

Note: This parameter is for advanced users
Note: Reboot required after change

What method of communication is used for EFI #1

Values

Value

Meaning

0

None

1

Serial-MS

2

NWPMU

3

Serial-Lutan

5

DroneCAN

6

Currawong-ECU

7

Scripting

EFI_COEF1: EFI Calibration Coefficient 1

Note: This parameter is for advanced users

Used to calibrate fuel flow for MS protocol (Slope). This should be calculated from a log at constant fuel usage rate. Plot (ECYL[0].InjT*EFI.Rpm)/600.0 to get the duty_cycle. Measure actual fuel usage in cm^3/min, and set EFI_COEF1 = fuel_usage_cm3permin / duty_cycle

Range

0 to 1

EFI_COEF2: EFI Calibration Coefficient 2

Note: This parameter is for advanced users

Used to calibrate fuel flow for MS protocol (Offset). This can be used to correct for a non-zero offset in the fuel consumption calculation of EFI_COEF1

Range

0 to 10

EFI_FUEL_DENS: ECU Fuel Density

Note: This parameter is for advanced users

Used to calculate fuel consumption

Range

Units

0 to 10000

kilograms per cubic meter

EK2_ Parameters

EK2_ENABLE: Enable EKF2

Note: This parameter is for advanced users
Note: Reboot required after change

This enables EKF2. Enabling EKF2 only makes the maths run, it does not mean it will be used for flight control. To use it for flight control set AHRS_EKF_TYPE=2. A reboot or restart will need to be performed after changing the value of EK2_ENABLE for it to take effect.

Values

Value

Meaning

0

Disabled

1

Enabled

EK2_GPS_TYPE: GPS mode control

Note: This parameter is for advanced users

This controls use of GPS measurements : 0 = use 3D velocity & 2D position, 1 = use 2D velocity and 2D position, 2 = use 2D position, 3 = Inhibit GPS use - this can be useful when flying with an optical flow sensor in an environment where GPS quality is poor and subject to large multipath errors.

Values

Value

Meaning

0

GPS 3D Vel and 2D Pos

1

GPS 2D vel and 2D pos

2

GPS 2D pos

3

No GPS

EK2_VELNE_M_NSE: GPS horizontal velocity measurement noise (m/s)

Note: This parameter is for advanced users

This sets a lower limit on the speed accuracy reported by the GPS receiver that is used to set horizontal velocity observation noise. If the model of receiver used does not provide a speed accurcy estimate, then the parameter value will be used. Increasing it reduces the weighting of the GPS horizontal velocity measurements.

Increment

Range

Units

0.05

0.05 to 5.0

meters per second

EK2_VELD_M_NSE: GPS vertical velocity measurement noise (m/s)

Note: This parameter is for advanced users

This sets a lower limit on the speed accuracy reported by the GPS receiver that is used to set vertical velocity observation noise. If the model of receiver used does not provide a speed accurcy estimate, then the parameter value will be used. Increasing it reduces the weighting of the GPS vertical velocity measurements.

Increment

Range

Units

0.05

0.05 to 5.0

meters per second

EK2_VEL_I_GATE: GPS velocity innovation gate size

Note: This parameter is for advanced users

This sets the percentage number of standard deviations applied to the GPS velocity measurement innovation consistency check. Decreasing it makes it more likely that good measurements will be rejected. Increasing it makes it more likely that bad measurements will be accepted.

Increment

Range

25

100 to 1000

EK2_POSNE_M_NSE: GPS horizontal position measurement noise (m)

Note: This parameter is for advanced users

This sets the GPS horizontal position observation noise. Increasing it reduces the weighting of GPS horizontal position measurements.

Increment

Range

Units

0.1

0.1 to 10.0

meters

EK2_POS_I_GATE: GPS position measurement gate size

Note: This parameter is for advanced users

This sets the percentage number of standard deviations applied to the GPS position measurement innovation consistency check. Decreasing it makes it more likely that good measurements will be rejected. Increasing it makes it more likely that bad measurements will be accepted.

Increment

Range

25

100 to 1000

EK2_GLITCH_RAD: GPS glitch radius gate size (m)

Note: This parameter is for advanced users

This controls the maximum radial uncertainty in position between the value predicted by the filter and the value measured by the GPS before the filter position and velocity states are reset to the GPS. Making this value larger allows the filter to ignore larger GPS glitches but also means that non-GPS errors such as IMU and compass can create a larger error in position before the filter is forced back to the GPS position.

Increment

Range

Units

5

10 to 100

meters

EK2_ALT_SOURCE: Primary altitude sensor source

Note: This parameter is for advanced users
Note: Reboot required after change

Primary height sensor used by the EKF. If a sensor other than Baro is selected and becomes unavailable, then the Baro sensor will be used as a fallback. NOTE: The EK2_RNG_USE_HGT parameter can be used to switch to range-finder when close to the ground in conjunction with EK2_ALT_SOURCE = 0 or 2 (Baro or GPS).

Values

Value

Meaning

0

Use Baro

1

Use Range Finder

2

Use GPS

3

Use Range Beacon

EK2_ALT_M_NSE: Altitude measurement noise (m)

Note: This parameter is for advanced users

This is the RMS value of noise in the altitude measurement. Increasing it reduces the weighting of the baro measurement and will make the filter respond more slowly to baro measurement errors, but will make it more sensitive to GPS and accelerometer errors.

Increment

Range

Units

0.1

0.1 to 10.0

meters

EK2_HGT_I_GATE: Height measurement gate size

Note: This parameter is for advanced users

This sets the percentage number of standard deviations applied to the height measurement innovation consistency check. Decreasing it makes it more likely that good measurements will be rejected. Increasing it makes it more likely that bad measurements will be accepted.

Increment

Range

25

100 to 1000

EK2_HGT_DELAY: Height measurement delay (msec)

Note: This parameter is for advanced users
Note: Reboot required after change

This is the number of msec that the Height measurements lag behind the inertial measurements.

Increment

Range

Units

10

0 to 250

milliseconds

EK2_MAG_M_NSE: Magnetometer measurement noise (Gauss)

Note: This parameter is for advanced users

This is the RMS value of noise in magnetometer measurements. Increasing it reduces the weighting on these measurements.

Increment

Range

Units

0.01

0.01 to 0.5

gauss

EK2_MAG_CAL: Magnetometer default fusion mode

Note: This parameter is for advanced users

This determines when the filter will use the 3-axis magnetometer fusion model that estimates both earth and body fixed magnetic field states, when it will use a simpler magnetic heading fusion model that does not use magnetic field states and when it will use an alternative method of yaw determination to the magnetometer. The 3-axis magnetometer fusion is only suitable for use when the external magnetic field environment is stable. EK2_MAG_CAL = 0 uses heading fusion on ground, 3-axis fusion in-flight, and is the default setting for Plane users. EK2_MAG_CAL = 1 uses 3-axis fusion only when manoeuvring. EK2_MAG_CAL = 2 uses heading fusion at all times, is recommended if the external magnetic field is varying and is the default for rovers. EK2_MAG_CAL = 3 uses heading fusion on the ground and 3-axis fusion after the first in-air field and yaw reset has completed, and is the default for copters. EK2_MAG_CAL = 4 uses 3-axis fusion at all times. NOTE: The fusion mode can be forced to 2 for specific EKF cores using the EK2_MAG_MASK parameter. NOTE: limited operation without a magnetometer or any other yaw sensor is possible by setting all COMPASS_USE, COMPASS_USE2, COMPASS_USE3, etc parameters to 0 with COMPASS_ENABLE set to 1. If this is done, the EK2_GSF_RUN and EK2_GSF_USE masks must be set to the same as EK2_IMU_MASK.

Values

Value

Meaning

0

When flying

1

When manoeuvring

2

Never

3

After first climb yaw reset

4

Always

EK2_MAG_I_GATE: Magnetometer measurement gate size

Note: This parameter is for advanced users

This sets the percentage number of standard deviations applied to the magnetometer measurement innovation consistency check. Decreasing it makes it more likely that good measurements will be rejected. Increasing it makes it more likely that bad measurements will be accepted.

Increment

Range

25

100 to 1000

EK2_EAS_M_NSE: Equivalent airspeed measurement noise (m/s)

Note: This parameter is for advanced users

This is the RMS value of noise in equivalent airspeed measurements used by planes. Increasing it reduces the weighting of airspeed measurements and will make wind speed estimates less noisy and slower to converge. Increasing also increases navigation errors when dead-reckoning without GPS measurements.

Increment

Range

Units

0.1

0.5 to 5.0

meters per second

EK2_EAS_I_GATE: Airspeed measurement gate size

Note: This parameter is for advanced users

This sets the percentage number of standard deviations applied to the airspeed measurement innovation consistency check. Decreasing it makes it more likely that good measurements will be rejected. Increasing it makes it more likely that bad measurements will be accepted.

Increment

Range

25

100 to 1000

EK2_RNG_M_NSE: Range finder measurement noise (m)

Note: This parameter is for advanced users

This is the RMS value of noise in the range finder measurement. Increasing it reduces the weighting on this measurement.

Increment

Range

Units

0.1

0.1 to 10.0

meters

EK2_RNG_I_GATE: Range finder measurement gate size

Note: This parameter is for advanced users

This sets the percentage number of standard deviations applied to the range finder innovation consistency check. Decreasing it makes it more likely that good measurements will be rejected. Increasing it makes it more likely that bad measurements will be accepted.

Increment

Range

25

100 to 1000

EK2_MAX_FLOW: Maximum valid optical flow rate

Note: This parameter is for advanced users

This sets the magnitude maximum optical flow rate in rad/sec that will be accepted by the filter

Increment

Range

Units

0.1

1.0 to 4.0

radians per second

EK2_FLOW_M_NSE: Optical flow measurement noise (rad/s)

Note: This parameter is for advanced users

This is the RMS value of noise and errors in optical flow measurements. Increasing it reduces the weighting on these measurements.

Increment

Range

Units

0.05

0.05 to 1.0

radians per second

EK2_FLOW_I_GATE: Optical Flow measurement gate size

Note: This parameter is for advanced users

This sets the percentage number of standard deviations applied to the optical flow innovation consistency check. Decreasing it makes it more likely that good measurements will be rejected. Increasing it makes it more likely that bad measurements will be accepted.

Increment

Range

25

100 to 1000

EK2_FLOW_DELAY: Optical Flow measurement delay (msec)

Note: This parameter is for advanced users
Note: Reboot required after change

This is the number of msec that the optical flow measurements lag behind the inertial measurements. It is the time from the end of the optical flow averaging period and does not include the time delay due to the 100msec of averaging within the flow sensor.

Increment

Range

Units

10

0 to 127

milliseconds

EK2_GYRO_P_NSE: Rate gyro noise (rad/s)

Note: This parameter is for advanced users

This control disturbance noise controls the growth of estimated error due to gyro measurement errors excluding bias. Increasing it makes the flter trust the gyro measurements less and other measurements more.

Increment

Range

Units

0.0001

0.0001 to 0.1

radians per second

EK2_ACC_P_NSE: Accelerometer noise (m/s^2)

Note: This parameter is for advanced users

This control disturbance noise controls the growth of estimated error due to accelerometer measurement errors excluding bias. Increasing it makes the flter trust the accelerometer measurements less and other measurements more.

Increment

Range

Units

0.01

0.01 to 1.0

meters per square second

EK2_GBIAS_P_NSE: Rate gyro bias stability (rad/s/s)

Note: This parameter is for advanced users

This state process noise controls growth of the gyro delta angle bias state error estimate. Increasing it makes rate gyro bias estimation faster and noisier.

Range

Units

0.00001 to 0.001

radians per square second

EK2_GSCL_P_NSE: Rate gyro scale factor stability (1/s)

Note: This parameter is for advanced users

This noise controls the rate of gyro scale factor learning. Increasing it makes rate gyro scale factor estimation faster and noisier.

Range

Units

0.000001 to 0.001

hertz

EK2_ABIAS_P_NSE: Accelerometer bias stability (m/s^3)

Note: This parameter is for advanced users

This noise controls the growth of the vertical accelerometer delta velocity bias state error estimate. Increasing it makes accelerometer bias estimation faster and noisier.

Range

Units

0.00001 to 0.005

meters per cubic second

EK2_WIND_P_NSE: Wind velocity process noise (m/s^2)

Note: This parameter is for advanced users

This state process noise controls the growth of wind state error estimates. Increasing it makes wind estimation faster and noisier.

Increment

Range

Units

0.1

0.01 to 1.0

meters per square second

EK2_WIND_PSCALE: Height rate to wind process noise scaler

Note: This parameter is for advanced users

This controls how much the process noise on the wind states is increased when gaining or losing altitude to take into account changes in wind speed and direction with altitude. Increasing this parameter increases how rapidly the wind states adapt when changing altitude, but does make wind velocity estimation noiser.

Increment

Range

0.1

0.0 to 1.0

EK2_GPS_CHECK: GPS preflight check

Note: This parameter is for advanced users

This is a 1 byte bitmap controlling which GPS preflight checks are performed. Set to 0 to bypass all checks. Set to 255 perform all checks. Set to 3 to check just the number of satellites and HDoP. Set to 31 for the most rigorous checks that will still allow checks to pass when the copter is moving, eg launch from a boat.

Bitmask

Bit

Meaning

0

NSats

1

HDoP

2

speed error

3

position error

4

yaw error

5

pos drift

6

vert speed

7

horiz speed

EK2_IMU_MASK: Bitmask of active IMUs

Note: This parameter is for advanced users
Note: Reboot required after change

1 byte bitmap of IMUs to use in EKF2. A separate instance of EKF2 will be started for each IMU selected. Set to 1 to use the first IMU only (default), set to 2 to use the second IMU only, set to 3 to use the first and second IMU. Additional IMU's can be used up to a maximum of 6 if memory and processing resources permit. There may be insufficient memory and processing resources to run multiple instances. If this occurs EKF2 will fail to start.

Bitmask

Bit

Meaning

0

FirstIMU

1

SecondIMU

2

ThirdIMU

3

FourthIMU

4

FifthIMU

5

SixthIMU

EK2_CHECK_SCALE: GPS accuracy check scaler (%)

Note: This parameter is for advanced users

This scales the thresholds that are used to check GPS accuracy before it is used by the EKF. A value of 100 is the default. Values greater than 100 increase and values less than 100 reduce the maximum GPS error the EKF will accept. A value of 200 will double the allowable GPS error.

Range

Units

50 to 200

percent

EK2_NOAID_M_NSE: Non-GPS operation position uncertainty (m)

Note: This parameter is for advanced users

This sets the amount of position variation that the EKF allows for when operating without external measurements (eg GPS or optical flow). Increasing this parameter makes the EKF attitude estimate less sensitive to vehicle manoeuvres but more sensitive to IMU errors.

Range

Units

0.5 to 50.0

meters

EK2_YAW_M_NSE: Yaw measurement noise (rad)

Note: This parameter is for advanced users

This is the RMS value of noise in yaw measurements from the magnetometer. Increasing it reduces the weighting on these measurements.

Increment

Range

Units

0.05

0.05 to 1.0

radians

EK2_YAW_I_GATE: Yaw measurement gate size

Note: This parameter is for advanced users

This sets the percentage number of standard deviations applied to the magnetometer yaw measurement innovation consistency check. Decreasing it makes it more likely that good measurements will be rejected. Increasing it makes it more likely that bad measurements will be accepted.

Increment

Range

25

100 to 1000

EK2_TAU_OUTPUT: Output complementary filter time constant (centi-sec)

Note: This parameter is for advanced users

Sets the time constant of the output complementary filter/predictor in centi-seconds.

Increment

Range

Units

5

10 to 50

centiseconds

EK2_MAGE_P_NSE: Earth magnetic field process noise (gauss/s)

Note: This parameter is for advanced users

This state process noise controls the growth of earth magnetic field state error estimates. Increasing it makes earth magnetic field estimation faster and noisier.

Range

Units

0.00001 to 0.01

gauss per second

EK2_MAGB_P_NSE: Body magnetic field process noise (gauss/s)

Note: This parameter is for advanced users

This state process noise controls the growth of body magnetic field state error estimates. Increasing it makes magnetometer bias error estimation faster and noisier.

Range

Units

0.00001 to 0.01

gauss per second

EK2_RNG_USE_HGT: Range finder switch height percentage

Note: This parameter is for advanced users

Range finder can be used as the primary height source when below this percentage of its maximum range (see RNGFND_MAX_CM). This will not work unless Baro or GPS height is selected as the primary height source vis EK2_ALT_SOURCE = 0 or 2 respectively. This feature should not be used for terrain following as it is designed for vertical takeoff and landing with climb above the range finder use height before commencing the mission, and with horizontal position changes below that height being limited to a flat region around the takeoff and landing point.

Increment

Range

Units

1

-1 to 70

percent

EK2_TERR_GRAD: Maximum terrain gradient

Note: This parameter is for advanced users

Specifies the maximum gradient of the terrain below the vehicle assumed when it is fusing range finder or optical flow to estimate terrain height.

Increment

Range

0.01

0 to 0.2

EK2_BCN_M_NSE: Range beacon measurement noise (m)

Note: This parameter is for advanced users

This is the RMS value of noise in the range beacon measurement. Increasing it reduces the weighting on this measurement.

Increment

Range

Units

0.1

0.1 to 10.0

meters

EK2_BCN_I_GTE: Range beacon measurement gate size

Note: This parameter is for advanced users

This sets the percentage number of standard deviations applied to the range beacon measurement innovation consistency check. Decreasing it makes it more likely that good measurements will be rejected. Increasing it makes it more likely that bad measurements will be accepted.

Increment

Range

25

100 to 1000

EK2_BCN_DELAY: Range beacon measurement delay (msec)

Note: This parameter is for advanced users
Note: Reboot required after change

This is the number of msec that the range beacon measurements lag behind the inertial measurements. It is the time from the end of the optical flow averaging period and does not include the time delay due to the 100msec of averaging within the flow sensor.

Increment

Range

Units

10

0 to 127

milliseconds

EK2_RNG_USE_SPD: Range finder max ground speed

Note: This parameter is for advanced users

The range finder will not be used as the primary height source when the horizontal ground speed is greater than this value.

Increment

Range

Units

0.5

2.0 to 6.0

meters per second

EK2_MAG_MASK: Bitmask of active EKF cores that will always use heading fusion

Note: This parameter is for advanced users
Note: Reboot required after change

1 byte bitmap of EKF cores that will disable magnetic field states and use simple magnetic heading fusion at all times. This parameter enables specified cores to be used as a backup for flight into an environment with high levels of external magnetic interference which may degrade the EKF attitude estimate when using 3-axis magnetometer fusion. NOTE : Use of a different magnetometer fusion algorithm on different cores makes unwanted EKF core switches due to magnetometer errors more likely.

Bitmask

Bit

Meaning

0

FirstEKF

1

SecondEKF

2

ThirdEKF

3

FourthEKF

4

FifthEKF

5

SixthEKF

EK2_OGN_HGT_MASK: Bitmask control of EKF reference height correction

Note: This parameter is for advanced users
Note: Reboot required after change

When a height sensor other than GPS is used as the primary height source by the EKF, the position of the zero height datum is defined by that sensor and its frame of reference. If a GPS height measurement is also available, then the height of the WGS-84 height datum used by the EKF can be corrected so that the height returned by the getLLH() function is compensated for primary height sensor drift and change in datum over time. The first two bit positions control when the height datum will be corrected. Correction is performed using a Bayes filter and only operates when GPS quality permits. The third bit position controls where the corrections to the GPS reference datum are applied. Corrections can be applied to the local vertical position or to the reported EKF origin height (default).

Bitmask

Bit

Meaning

0

Correct when using Baro height

1

Correct when using range finder height

2

Apply corrections to local position

EK2_FLOW_USE: Optical flow use bitmask

Note: This parameter is for advanced users
Note: Reboot required after change

Controls if the optical flow data is fused into the 24-state navigation estimator OR the 1-state terrain height estimator.

Values

Value

Meaning

0

None

1

Navigation

2

Terrain

EK2_MAG_EF_LIM: EarthField error limit

Note: This parameter is for advanced users

This limits the difference between the learned earth magnetic field and the earth field from the world magnetic model tables. A value of zero means to disable the use of the WMM tables.

Range

Units

0 to 500

milligauss

EK2_HRT_FILT: Height rate filter crossover frequency

Specifies the crossover frequency of the complementary filter used to calculate the output predictor height rate derivative.

Range

Units

0.1 to 30.0

hertz

EK2_GSF_RUN_MASK: Bitmask of which EKF-GSF yaw estimators run

Note: This parameter is for advanced users
Note: Reboot required after change

A bitmask of which EKF2 instances run an independant EKF-GSF yaw estimator to provide a backup yaw estimate that doesn't rely on magnetometer data. This estimator uses IMU, GPS and, if available, airspeed data. EKF-GSF yaw estimator data for the primary EKF2 instance will be logged as GSF0 and GSF1 messages. Use of the yaw estimate generated by this algorithm is controlled by the EK2_GSF_USE_MASK and EK2_GSF_RST_MAX parameters. To run the EKF-GSF yaw estimator in ride-along and logging only, set EK2_GSF_USE_MASK to 0.

Bitmask

Bit

Meaning

0

FirstEKF

1

SecondEKF

2

ThirdEKF

3

FourthEKF

4

FifthEKF

5

SixthEKF

EK2_GSF_USE_MASK: Bitmask of which EKF-GSF yaw estimators are used

Note: This parameter is for advanced users
Note: Reboot required after change

1 byte bitmap of which EKF2 instances will use the output from the EKF-GSF yaw estimator that has been turned on by the EK2_GSF_RUN_MASK parameter. If the inertial navigation calculation stops following the GPS, then the vehicle code can request EKF2 to attempt to resolve the issue, either by performing a yaw reset if enabled by this parameter by switching to another EKF2 instance.

Bitmask

Bit

Meaning

0

FirstEKF

1

SecondEKF

2

ThirdEKF

3

FourthEKF

4

FifthEKF

5

SixthEKF

EK2_GSF_RST_MAX: Maximum number of resets to the EKF-GSF yaw estimate allowed

Note: This parameter is for advanced users
Note: Reboot required after change

Sets the maximum number of times the EKF2 will be allowed to reset its yaw to the estimate from the EKF-GSF yaw estimator. No resets will be allowed unless the use of the EKF-GSF yaw estimate is enabled via the EK2_GSF_USE_MASK parameter.

Increment

Range

1

1 to 10

EK3_ Parameters

EK3_ENABLE: Enable EKF3

Note: This parameter is for advanced users
Note: Reboot required after change

This enables EKF3. Enabling EKF3 only makes the maths run, it does not mean it will be used for flight control. To use it for flight control set AHRS_EKF_TYPE=3. A reboot or restart will need to be performed after changing the value of EK3_ENABLE for it to take effect.

Values

Value

Meaning

0

Disabled

1

Enabled

EK3_VELNE_M_NSE: GPS horizontal velocity measurement noise (m/s)

Note: This parameter is for advanced users

This sets a lower limit on the speed accuracy reported by the GPS receiver that is used to set horizontal velocity observation noise. If the model of receiver used does not provide a speed accurcy estimate, then the parameter value will be used. Increasing it reduces the weighting of the GPS horizontal velocity measurements.

Increment

Range

Units

0.05

0.05 to 5.0

meters per second

EK3_VELD_M_NSE: GPS vertical velocity measurement noise (m/s)

Note: This parameter is for advanced users

This sets a lower limit on the speed accuracy reported by the GPS receiver that is used to set vertical velocity observation noise. If the model of receiver used does not provide a speed accurcy estimate, then the parameter value will be used. Increasing it reduces the weighting of the GPS vertical velocity measurements.

Increment

Range

Units

0.05

0.05 to 5.0

meters per second

EK3_VEL_I_GATE: GPS velocity innovation gate size

Note: This parameter is for advanced users

This sets the percentage number of standard deviations applied to the GPS velocity measurement innovation consistency check. Decreasing it makes it more likely that good measurements will be rejected. Increasing it makes it more likely that bad measurements will be accepted. If EK3_GLITCH_RAD set to 0 the velocity innovations will be clipped instead of rejected if they exceed the gate size and a smaller value of EK3_VEL_I_GATE not exceeding 300 is recommended to limit the effect of GPS transient errors.

Increment

Range

25

100 to 1000

EK3_POSNE_M_NSE: GPS horizontal position measurement noise (m)

Note: This parameter is for advanced users

This sets the GPS horizontal position observation noise. Increasing it reduces the weighting of GPS horizontal position measurements.

Increment

Range

Units

0.1

0.1 to 10.0

meters

EK3_POS_I_GATE: GPS position measurement gate size

Note: This parameter is for advanced users

This sets the percentage number of standard deviations applied to the GPS position measurement innovation consistency check. Decreasing it makes it more likely that good measurements will be rejected. Increasing it makes it more likely that bad measurements will be accepted. If EK3_GLITCH_RAD has been set to 0 the horizontal position innovations will be clipped instead of rejected if they exceed the gate size so a smaller value of EK3_POS_I_GATE not exceeding 300 is recommended to limit the effect of GPS transient errors.

Increment

Range

25

100 to 1000

EK3_GLITCH_RAD: GPS glitch radius gate size (m)

Note: This parameter is for advanced users

This controls the maximum radial uncertainty in position between the value predicted by the filter and the value measured by the GPS before the filter position and velocity states are reset to the GPS. Making this value larger allows the filter to ignore larger GPS glitches but also means that non-GPS errors such as IMU and compass can create a larger error in position before the filter is forced back to the GPS position. If EK3_GLITCH_RAD set to 0 the GPS innovations will be clipped instead of rejected if they exceed the gate size set by EK3_VEL_I_GATE and EK3_POS_I_GATE which can be useful if poor quality sensor data is causing GPS rejection and loss of navigation but does make the EKF more susceptible to GPS glitches. If setting EK3_GLITCH_RAD to 0 it is recommended to reduce EK3_VEL_I_GATE and EK3_POS_I_GATE to 300.

Increment

Range

Units

5

10 to 100

meters

EK3_ALT_M_NSE: Altitude measurement noise (m)

Note: This parameter is for advanced users

This is the RMS value of noise in the altitude measurement. Increasing it reduces the weighting of the baro measurement and will make the filter respond more slowly to baro measurement errors, but will make it more sensitive to GPS and accelerometer errors. A larger value for EK3_ALT_M_NSE may be required when operating with EK3_SRCx_POSZ = 0. This parameter also sets the noise for the 'synthetic' zero height measurement that is used when EK3_SRCx_POSZ = 0.

Increment

Range

Units

0.1

0.1 to 100.0

meters

EK3_HGT_I_GATE: Height measurement gate size

Note: This parameter is for advanced users

This sets the percentage number of standard deviations applied to the height measurement innovation consistency check. Decreasing it makes it more likely that good measurements will be rejected. Increasing it makes it more likely that bad measurements will be accepted. If EK3_GLITCH_RAD set to 0 the vertical position innovations will be clipped instead of rejected if they exceed the gate size and a smaller value of EK3_HGT_I_GATE not exceeding 300 is recommended to limit the effect of height sensor transient errors.

Increment

Range

25

100 to 1000

EK3_HGT_DELAY: Height measurement delay (msec)

Note: This parameter is for advanced users
Note: Reboot required after change

This is the number of msec that the Height measurements lag behind the inertial measurements.

Increment

Range

Units

10

0 to 250

milliseconds

EK3_MAG_M_NSE: Magnetometer measurement noise (Gauss)

Note: This parameter is for advanced users

This is the RMS value of noise in magnetometer measurements. Increasing it reduces the weighting on these measurements.

Increment

Range

Units

0.01

0.01 to 0.5

gauss

EK3_MAG_CAL: Magnetometer default fusion mode

Note: This parameter is for advanced users
Note: Reboot required after change

This determines when the filter will use the 3-axis magnetometer fusion model that estimates both earth and body fixed magnetic field states and when it will use a simpler magnetic heading fusion model that does not use magnetic field states. The 3-axis magnetometer fusion is only suitable for use when the external magnetic field environment is stable. EK3_MAG_CAL = 0 uses heading fusion on ground, 3-axis fusion in-flight, and is the default setting for Plane users. EK3_MAG_CAL = 1 uses 3-axis fusion only when manoeuvring. EK3_MAG_CAL = 2 uses heading fusion at all times, is recommended if the external magnetic field is varying and is the default for rovers. EK3_MAG_CAL = 3 uses heading fusion on the ground and 3-axis fusion after the first in-air field and yaw reset has completed, and is the default for copters. EK3_MAG_CAL = 4 uses 3-axis fusion at all times. EK3_MAG_CAL = 5 uses an external yaw sensor with simple heading fusion. NOTE : Use of simple heading magnetometer fusion makes vehicle compass calibration and alignment errors harder for the EKF to detect which reduces the sensitivity of the Copter EKF failsafe algorithm. NOTE: The fusion mode can be forced to 2 for specific EKF cores using the EK3_MAG_MASK parameter. EK3_MAG_CAL = 6 uses an external yaw sensor with fallback to compass when the external sensor is not available if we are flying. NOTE: The fusion mode can be forced to 2 for specific EKF cores using the EK3_MAG_MASK parameter. NOTE: limited operation without a magnetometer or any other yaw sensor is possible by setting all COMPASS_USE, COMPASS_USE2, COMPASS_USE3, etc parameters to 0 and setting COMPASS_ENABLE to 0. If this is done, the EK3_GSF_RUN and EK3_GSF_USE masks must be set to the same as EK3_IMU_MASK. A yaw angle derived from IMU and GPS velocity data using a Gaussian Sum Filter (GSF) will then be used to align the yaw when flight commences and there is sufficient movement.

Values

Value

Meaning

0

When flying

1

When manoeuvring

2

Never

3

After first climb yaw reset

4

Always

5

Use external yaw sensor (Deprecated in 4.1+ see EK3_SRCn_YAW)

6

External yaw sensor with compass fallback (Deprecated in 4.1+ see EK3_SRCn_YAW)

EK3_MAG_I_GATE: Magnetometer measurement gate size

Note: This parameter is for advanced users

This sets the percentage number of standard deviations applied to the magnetometer measurement innovation consistency check. Decreasing it makes it more likely that good measurements will be rejected. Increasing it makes it more likely that bad measurements will be accepted.

Increment

Range

25

100 to 1000

EK3_EAS_M_NSE: Equivalent airspeed measurement noise (m/s)

Note: This parameter is for advanced users

This is the RMS value of noise in equivalent airspeed measurements used by planes. Increasing it reduces the weighting of airspeed measurements and will make wind speed estimates less noisy and slower to converge. Increasing also increases navigation errors when dead-reckoning without GPS measurements.

Increment

Range

Units

0.1

0.5 to 5.0

meters per second

EK3_EAS_I_GATE: Airspeed measurement gate size

Note: This parameter is for advanced users

This sets the percentage number of standard deviations applied to the airspeed measurement innovation consistency check. Decreasing it makes it more likely that good measurements will be rejected. Increasing it makes it more likely that bad measurements will be accepted.

Increment

Range

25

100 to 1000

EK3_RNG_M_NSE: Range finder measurement noise (m)

Note: This parameter is for advanced users

This is the RMS value of noise in the range finder measurement. Increasing it reduces the weighting on this measurement.

Increment

Range

Units

0.1

0.1 to 10.0

meters

EK3_RNG_I_GATE: Range finder measurement gate size

Note: This parameter is for advanced users

This sets the percentage number of standard deviations applied to the range finder innovation consistency check. Decreasing it makes it more likely that good measurements will be rejected. Increasing it makes it more likely that bad measurements will be accepted.

Increment

Range

25

100 to 1000

EK3_MAX_FLOW: Maximum valid optical flow rate

Note: This parameter is for advanced users

This sets the magnitude maximum optical flow rate in rad/sec that will be accepted by the filter

Increment

Range

Units

0.1

1.0 to 4.0

radians per second

EK3_FLOW_M_NSE: Optical flow measurement noise (rad/s)

Note: This parameter is for advanced users

This is the RMS value of noise and errors in optical flow measurements. Increasing it reduces the weighting on these measurements.

Increment

Range

Units

0.05

0.05 to 1.0

radians per second

EK3_FLOW_I_GATE: Optical Flow measurement gate size

Note: This parameter is for advanced users

This sets the percentage number of standard deviations applied to the optical flow innovation consistency check. Decreasing it makes it more likely that good measurements will be rejected. Increasing it makes it more likely that bad measurements will be accepted.

Increment

Range

25

100 to 1000

EK3_FLOW_DELAY: Optical Flow measurement delay (msec)

Note: This parameter is for advanced users
Note: Reboot required after change

This is the number of msec that the optical flow measurements lag behind the inertial measurements. It is the time from the end of the optical flow averaging period and does not include the time delay due to the 100msec of averaging within the flow sensor.

Increment

Range

Units

10

0 to 250

milliseconds

EK3_GYRO_P_NSE: Rate gyro noise (rad/s)

Note: This parameter is for advanced users

This control disturbance noise controls the growth of estimated error due to gyro measurement errors excluding bias. Increasing it makes the flter trust the gyro measurements less and other measurements more.

Increment

Range

Units

0.0001

0.0001 to 0.1

radians per second

EK3_ACC_P_NSE: Accelerometer noise (m/s^2)

Note: This parameter is for advanced users

This control disturbance noise controls the growth of estimated error due to accelerometer measurement errors excluding bias. Increasing it makes the flter trust the accelerometer measurements less and other measurements more.

Increment

Range

Units

0.01

0.01 to 1.0

meters per square second

EK3_GBIAS_P_NSE: Rate gyro bias stability (rad/s/s)

Note: This parameter is for advanced users

This state process noise controls growth of the gyro delta angle bias state error estimate. Increasing it makes rate gyro bias estimation faster and noisier.

Range

Units

0.00001 to 0.001

radians per square second

EK3_ABIAS_P_NSE: Accelerometer bias stability (m/s^3)

Note: This parameter is for advanced users

This noise controls the growth of the vertical accelerometer delta velocity bias state error estimate. Increasing it makes accelerometer bias estimation faster and noisier.

Range

Units

0.00001 to 0.02

meters per cubic second

EK3_WIND_P_NSE: Wind velocity process noise (m/s^2)

Note: This parameter is for advanced users

This state process noise controls the growth of wind state error estimates. Increasing it makes wind estimation faster and noisier.

Increment

Range

Units

0.1

0.01 to 2.0

meters per square second

EK3_WIND_PSCALE: Height rate to wind process noise scaler

Note: This parameter is for advanced users

This controls how much the process noise on the wind states is increased when gaining or losing altitude to take into account changes in wind speed and direction with altitude. Increasing this parameter increases how rapidly the wind states adapt when changing altitude, but does make wind velocity estimation noiser.

Increment

Range

0.1

0.0 to 2.0

EK3_GPS_CHECK: GPS preflight check

Note: This parameter is for advanced users

This is a 1 byte bitmap controlling which GPS preflight checks are performed. Set to 0 to bypass all checks. Set to 255 perform all checks. Set to 3 to check just the number of satellites and HDoP. Set to 31 for the most rigorous checks that will still allow checks to pass when the copter is moving, eg launch from a boat.

Bitmask

Bit

Meaning

0

NSats

1

HDoP

2

speed error

3

position error

4

yaw error

5

pos drift

6

vert speed

7

horiz speed

EK3_IMU_MASK: Bitmask of active IMUs

Note: This parameter is for advanced users
Note: Reboot required after change

1 byte bitmap of IMUs to use in EKF3. A separate instance of EKF3 will be started for each IMU selected. Set to 1 to use the first IMU only (default), set to 2 to use the second IMU only, set to 3 to use the first and second IMU. Additional IMU's can be used up to a maximum of 6 if memory and processing resources permit. There may be insufficient memory and processing resources to run multiple instances. If this occurs EKF3 will fail to start.

Bitmask

Bit

Meaning

0

FirstIMU

1

SecondIMU

2

ThirdIMU

3

FourthIMU

4

FifthIMU

5

SixthIMU

EK3_CHECK_SCALE: GPS accuracy check scaler (%)

Note: This parameter is for advanced users

This scales the thresholds that are used to check GPS accuracy before it is used by the EKF. A value of 100 is the default. Values greater than 100 increase and values less than 100 reduce the maximum GPS error the EKF will accept. A value of 200 will double the allowable GPS error.

Range

Units

50 to 200

percent

EK3_NOAID_M_NSE: Non-GPS operation position uncertainty (m)

Note: This parameter is for advanced users

This sets the amount of position variation that the EKF allows for when operating without external measurements (eg GPS or optical flow). Increasing this parameter makes the EKF attitude estimate less sensitive to vehicle manoeuvres but more sensitive to IMU errors.

Range

Units

0.5 to 50.0

meters

EK3_BETA_MASK: Bitmask controlling sidelip angle fusion

Note: This parameter is for advanced users
Note: Reboot required after change

1 byte bitmap controlling use of sideslip angle fusion for estimation of non wind states during operation of 'fly forward' vehicle types such as fixed wing planes. By assuming that the angle of sideslip is small, the wind velocity state estimates are corrected whenever the EKF is not dead reckoning (e.g. has an independent velocity or position sensor such as GPS). This behaviour is on by default and cannot be disabled. When the EKF is dead reckoning, the wind states are used as a reference, enabling use of the small angle of sideslip assumption to correct non wind velocity states (eg attitude, velocity, position, etc) and improve navigation accuracy. This behaviour is on by default and cannot be disabled. The behaviour controlled by this parameter is the use of the small angle of sideslip assumption to correct non wind velocity states when the EKF is NOT dead reckoning. This is primarily of benefit to reduce the buildup of yaw angle errors during straight and level flight without a yaw sensor (e.g. magnetometer or dual antenna GPS yaw) provided aerobatic flight maneuvers with large sideslip angles are not performed. The 'always' option might be used where the yaw sensor is intentionally not fitted or disabled. The 'WhenNoYawSensor' option might be used if a yaw sensor is fitted, but protection against in-flight failure and continual rejection by the EKF is desired. For vehicles operated within visual range of the operator performing frequent turning maneuvers, setting this parameter is unnecessary.

Bitmask

Bit

Meaning

0

Always

1

WhenNoYawSensor

EK3_YAW_M_NSE: Yaw measurement noise (rad)

Note: This parameter is for advanced users

This is the RMS value of noise in yaw measurements from the magnetometer. Increasing it reduces the weighting on these measurements.

Increment

Range

Units

0.05

0.05 to 1.0

radians

EK3_YAW_I_GATE: Yaw measurement gate size

Note: This parameter is for advanced users

This sets the percentage number of standard deviations applied to the magnetometer yaw measurement innovation consistency check. Decreasing it makes it more likely that good measurements will be rejected. Increasing it makes it more likely that bad measurements will be accepted.

Increment

Range

25

100 to 1000

EK3_TAU_OUTPUT: Output complementary filter time constant (centi-sec)

Note: This parameter is for advanced users

Sets the time constant of the output complementary filter/predictor in centi-seconds.

Increment

Range

Units

5

10 to 50

centiseconds

EK3_MAGE_P_NSE: Earth magnetic field process noise (gauss/s)

Note: This parameter is for advanced users

This state process noise controls the growth of earth magnetic field state error estimates. Increasing it makes earth magnetic field estimation faster and noisier.

Range

Units

0.00001 to 0.01

gauss per second

EK3_MAGB_P_NSE: Body magnetic field process noise (gauss/s)

Note: This parameter is for advanced users

This state process noise controls the growth of body magnetic field state error estimates. Increasing it makes magnetometer bias error estimation faster and noisier.

Range

Units

0.00001 to 0.01

gauss per second

EK3_RNG_USE_HGT: Range finder switch height percentage

Note: This parameter is for advanced users

Range finder can be used as the primary height source when below this percentage of its maximum range (see RNGFNDx_MAX_CM) and the primary height source is Baro or GPS (see EK3_SRCx_POSZ). This feature should not be used for terrain following as it is designed for vertical takeoff and landing with climb above the range finder use height before commencing the mission, and with horizontal position changes below that height being limited to a flat region around the takeoff and landing point.

Increment

Range

Units

1

-1 to 70

percent

EK3_TERR_GRAD: Maximum terrain gradient

Note: This parameter is for advanced users

Specifies the maximum gradient of the terrain below the vehicle when it is using range finder as a height reference

Increment

Range

0.01

0 to 0.2

EK3_BCN_M_NSE: Range beacon measurement noise (m)

Note: This parameter is for advanced users

This is the RMS value of noise in the range beacon measurement. Increasing it reduces the weighting on this measurement.

Increment

Range

Units

0.1

0.1 to 10.0

meters

EK3_BCN_I_GTE: Range beacon measurement gate size

Note: This parameter is for advanced users

This sets the percentage number of standard deviations applied to the range beacon measurement innovation consistency check. Decreasing it makes it more likely that good measurements will be rejected. Increasing it makes it more likely that bad measurements will be accepted.

Increment

Range

25

100 to 1000

EK3_BCN_DELAY: Range beacon measurement delay (msec)

Note: This parameter is for advanced users
Note: Reboot required after change

This is the number of msec that the range beacon measurements lag behind the inertial measurements.

Increment

Range

Units

10

0 to 250

milliseconds

EK3_RNG_USE_SPD: Range finder max ground speed

Note: This parameter is for advanced users

The range finder will not be used as the primary height source when the horizontal ground speed is greater than this value.

Increment

Range

Units

0.5

2.0 to 6.0

meters per second

EK3_ACC_BIAS_LIM: Accelerometer bias limit

Note: This parameter is for advanced users

The accelerometer bias state will be limited to +- this value

Increment

Range

Units

0.1

0.5 to 2.5

meters per square second

EK3_MAG_MASK: Bitmask of active EKF cores that will always use heading fusion

Note: This parameter is for advanced users
Note: Reboot required after change

1 byte bitmap of EKF cores that will disable magnetic field states and use simple magnetic heading fusion at all times. This parameter enables specified cores to be used as a backup for flight into an environment with high levels of external magnetic interference which may degrade the EKF attitude estimate when using 3-axis magnetometer fusion. NOTE : Use of a different magnetometer fusion algorithm on different cores makes unwanted EKF core switches due to magnetometer errors more likely.

Bitmask

Bit

Meaning

0

FirstEKF

1

SecondEKF

2

ThirdEKF

3

FourthEKF

4

FifthEKF

5

SixthEKF

EK3_OGN_HGT_MASK: Bitmask control of EKF reference height correction

Note: This parameter is for advanced users
Note: Reboot required after change

When a height sensor other than GPS is used as the primary height source by the EKF, the position of the zero height datum is defined by that sensor and its frame of reference. If a GPS height measurement is also available, then the height of the WGS-84 height datum used by the EKF can be corrected so that the height returned by the getLLH() function is compensated for primary height sensor drift and change in datum over time. The first two bit positions control when the height datum will be corrected. Correction is performed using a Bayes filter and only operates when GPS quality permits. The third bit position controls where the corrections to the GPS reference datum are applied. Corrections can be applied to the local vertical position or to the reported EKF origin height (default).

Bitmask

Bit

Meaning

0

Correct when using Baro height

1

Correct when using range finder height

2

Apply corrections to local position

EK3_VIS_VERR_MIN: Visual odometry minimum velocity error

Note: This parameter is for advanced users

This is the 1-STD odometry velocity observation error that will be assumed when maximum quality is reported by the sensor. When quality is between max and min, the error will be calculated using linear interpolation between VIS_VERR_MIN and VIS_VERR_MAX.

Increment

Range

Units

0.05

0.05 to 0.5

meters per second

EK3_VIS_VERR_MAX: Visual odometry maximum velocity error

Note: This parameter is for advanced users

This is the 1-STD odometry velocity observation error that will be assumed when minimum quality is reported by the sensor. When quality is between max and min, the error will be calculated using linear interpolation between VIS_VERR_MIN and VIS_VERR_MAX.

Increment

Range

Units

0.1

0.5 to 5.0

meters per second

EK3_WENC_VERR: Wheel odometry velocity error

Note: This parameter is for advanced users

This is the 1-STD odometry velocity observation error that will be assumed when wheel encoder data is being fused.

Increment

Range

Units

0.1

0.01 to 1.0

meters per second

EK3_FLOW_USE: Optical flow use bitmask

Note: This parameter is for advanced users
Note: Reboot required after change

Controls if the optical flow data is fused into the 24-state navigation estimator OR the 1-state terrain height estimator.

Values

Value

Meaning

0

None

1

Navigation

2

Terrain

EK3_HRT_FILT: Height rate filter crossover frequency

Specifies the crossover frequency of the complementary filter used to calculate the output predictor height rate derivative.

Range

Units

0.1 to 30.0

hertz

EK3_MAG_EF_LIM: EarthField error limit

Note: This parameter is for advanced users

This limits the difference between the learned earth magnetic field and the earth field from the world magnetic model tables. A value of zero means to disable the use of the WMM tables.

Range

Units

0 to 500

milligauss

EK3_GSF_RUN_MASK: Bitmask of which EKF-GSF yaw estimators run

Note: This parameter is for advanced users
Note: Reboot required after change

1 byte bitmap of which EKF3 instances run an independant EKF-GSF yaw estimator to provide a backup yaw estimate that doesn't rely on magnetometer data. This estimator uses IMU, GPS and, if available, airspeed data. EKF-GSF yaw estimator data for the primary EKF3 instance will be logged as GSF0 and GSF1 messages. Use of the yaw estimate generated by this algorithm is controlled by the EK3_GSF_USE_MASK and EK3_GSF_RST_MAX parameters. To run the EKF-GSF yaw estimator in ride-along and logging only, set EK3_GSF_USE to 0.

Bitmask

Bit

Meaning

0

FirstEKF

1

SecondEKF

2

ThirdEKF

3

FourthEKF

4

FifthEKF

5

SixthEKF

EK3_GSF_USE_MASK: Bitmask of which EKF-GSF yaw estimators are used

Note: This parameter is for advanced users
Note: Reboot required after change

A bitmask of which EKF3 instances will use the output from the EKF-GSF yaw estimator that has been turned on by the EK3_GSF_RUN_MASK parameter. If the inertial navigation calculation stops following the GPS, then the vehicle code can request EKF3 to attempt to resolve the issue, either by performing a yaw reset if enabled by this parameter by switching to another EKF3 instance.

Bitmask

Bit

Meaning

0

FirstEKF

1

SecondEKF

2

ThirdEKF

3

FourthEKF

4

FifthEKF

5

SixthEKF

EK3_GSF_RST_MAX: Maximum number of resets to the EKF-GSF yaw estimate allowed

Note: This parameter is for advanced users
Note: Reboot required after change

Sets the maximum number of times the EKF3 will be allowed to reset its yaw to the estimate from the EKF-GSF yaw estimator. No resets will be allowed unless the use of the EKF-GSF yaw estimate is enabled via the EK3_GSF_USE_MASK parameter.

Increment

Range

1

1 to 10

EK3_ERR_THRESH: EKF3 Lane Relative Error Sensitivity Threshold

Note: This parameter is for advanced users

lanes have to be consistently better than the primary by at least this threshold to reduce their overall relativeCoreError, lowering this makes lane switching more sensitive to smaller error differences

Increment

Range

0.05

0.05 to 1

EK3_AFFINITY: EKF3 Sensor Affinity Options

Note: This parameter is for advanced users
Note: Reboot required after change

These options control the affinity between sensor instances and EKF cores

Bitmask

Bit

Meaning

0

EnableGPSAffinity

1

EnableBaroAffinity

2

EnableCompassAffinity

3

EnableAirspeedAffinity

EK3_DRAG_BCOEF_X: Ballistic coefficient for X axis drag

Note: This parameter is for advanced users

Ratio of mass to drag coefficient measured along the X body axis. This parameter enables estimation of wind drift for vehicles with bluff bodies and without propulsion forces in the X and Y direction (eg multicopters). The drag produced by this effect scales with speed squared. Set to a postive value > 1.0 to enable. A starting value is the mass in Kg divided by the frontal area. The predicted drag from the rotors is specified separately by the EK3_DRAG_MCOEF parameter.

Range

Units

0.0 to 1000.0

kilograms per square meter

EK3_DRAG_BCOEF_Y: Ballistic coefficient for Y axis drag

Note: This parameter is for advanced users

Ratio of mass to drag coefficient measured along the Y body axis. This parameter enables estimation of wind drift for vehicles with bluff bodies and without propulsion forces in the X and Y direction (eg multicopters). The drag produced by this effect scales with speed squared. Set to a postive value > 1.0 to enable. A starting value is the mass in Kg divided by the side area. The predicted drag from the rotors is specified separately by the EK3_DRAG_MCOEF parameter.

Range

Units

50.0 to 1000.0

kilograms per square meter

EK3_DRAG_M_NSE: Observation noise for drag acceleration

Note: This parameter is for advanced users

This sets the amount of noise used when fusing X and Y acceleration as an observation that enables esitmation of wind velocity for multi-rotor vehicles. This feature is enabled by the EK3_DRAG_BCOEF_X and EK3_DRAG_BCOEF_Y parameters

Increment

Range

Units

0.1

0.1 to 2.0

meters per square second

EK3_DRAG_MCOEF: Momentum coefficient for propeller drag

Note: This parameter is for advanced users

This parameter is used to predict the drag produced by the rotors when flying a multi-copter, enabling estimation of wind drift. The drag produced by this effect scales with speed not speed squared and is produced because some of the air velocity normal to the rotors axis of rotation is lost when passing through the rotor disc which changes the momentum of the airflow causing drag. For unducted rotors the effect is roughly proportional to the area of the propeller blades when viewed side on and changes with different propellers. It is higher for ducted rotors. For example if flying at 15 m/s at sea level conditions produces a rotor induced drag acceleration of 1.5 m/s/s, then EK3_DRAG_MCOEF would be set to 0.1 = (1.5/15.0). Set EK3_MCOEF to a postive value to enable wind estimation using this drag effect. To account for the drag produced by the body which scales with speed squared, see documentation for the EK3_DRAG_BCOEF_X and EK3_DRAG_BCOEF_Y parameters.

Increment

Range

Units

0.01

0.0 to 1.0

per second

EK3_OGNM_TEST_SF: On ground not moving test scale factor

Note: This parameter is for advanced users

This parameter is adjust the sensitivity of the on ground not moving test which is used to assist with learning the yaw gyro bias and stopping yaw drift before flight when operating without a yaw sensor. Bigger values allow the detection of a not moving condition with noiser IMU data. Check the XKFM data logged when the vehicle is on ground not moving and adjust the value of OGNM_TEST_SF to be slightly higher than the maximum value of the XKFM.ADR, XKFM.ALR, XKFM.GDR and XKFM.GLR test levels.

Increment

Range

0.5

1.0 to 10.0

EK3_GND_EFF_DZ: Baro height ground effect dead zone

Note: This parameter is for advanced users

This parameter sets the size of the dead zone that is applied to negative baro height spikes that can occur when taking off or landing when a vehicle with lift rotors is operating in ground effect ground effect. Set to about 0.5m less than the amount of negative offset in baro height that occurs just prior to takeoff when lift motors are spooling up. Set to 0 if no ground effect is present.

Increment

Range

0.5

0.0 to 10.0

EK3_PRIMARY: Primary core number

Note: This parameter is for advanced users

The core number (index in IMU mask) that will be used as the primary EKF core on startup. While disarmed the EKF will force the use of this core. A value of 0 corresponds to the first IMU in EK3_IMU_MASK.

Increment

Range

1

0 to 2

EK3_LOG_LEVEL: Logging Level

Note: This parameter is for advanced users

Determines how verbose the EKF3 streaming logging is. A value of 0 provides full logging(default), a value of 1 only XKF4 scaled innovations are logged, a value of 2 both XKF4 and GSF are logged, and a value of 3 disables all streaming logging of EKF3.

Increment

Range

1

0 to 3

EK3_GPS_VACC_MAX: GPS vertical accuracy threshold

Note: This parameter is for advanced users

Vertical accuracy threshold for GPS as the altitude source. The GPS will not be used as an altitude source if the reported vertical accuracy of the GPS is larger than this threshold, falling back to baro instead. Set to zero to deactivate the threshold check.

Increment

Range

Units

0.1

0.0 to 10.0

meters

EK3_SRC Parameters

EK3_SRC1_POSXY: Position Horizontal Source (Primary)

Note: This parameter is for advanced users

Position Horizontal Source (Primary)

Values

Value

Meaning

0

None

3

GPS

4

Beacon

6

ExternalNav

EK3_SRC1_VELXY: Velocity Horizontal Source

Note: This parameter is for advanced users

Velocity Horizontal Source

Values

Value

Meaning

0

None

3

GPS

4

Beacon

5

OpticalFlow

6

ExternalNav

7

WheelEncoder

EK3_SRC1_POSZ: Position Vertical Source

Note: This parameter is for advanced users

Position Vertical Source

Values

Value

Meaning

0

None

1

Baro

2

RangeFinder

3

GPS

4

Beacon

6

ExternalNav

EK3_SRC1_VELZ: Velocity Vertical Source

Note: This parameter is for advanced users

Velocity Vertical Source

Values

Value

Meaning

0

None

3

GPS

4

Beacon

6

ExternalNav