Complete Parameter List

Full Parameter List of Copter stable V4.1.3

You can change and check the parameters for another version:

This is a complete list of the parameters which can be set (e.g. via the MAVLink protocol) to control vehicle behaviour. They are stored in persistent storage on the vehicle.

This list is automatically generated from the latest ardupilot source code, and so may contain parameters which are not yet in the stable released versions of the code.

ArduCopter Parameters

FORMAT_VERSION: Eeprom format version number

Note: This parameter is for advanced users

This value is incremented when changes are made to the eeprom format

ReadOnly
True

SYSID_MYGCS: My ground station number

Note: This parameter is for advanced users

Allows restricting radio overrides to only come from my ground station

Range
1 - 255

PILOT_THR_FILT: Throttle filter cutoff

Note: This parameter is for advanced users

Throttle filter cutoff (Hz) - active whenever altitude control is inactive - 0 to disable

Increment Range Units
.5 0 - 10 hertz

PILOT_TKOFF_ALT: Pilot takeoff altitude

Altitude that altitude control modes will climb to when a takeoff is triggered with the throttle stick.

Increment Range Units
10 0.0 - 1000.0 centimeters

PILOT_THR_BHV: Throttle stick behavior

Bitmask containing various throttle stick options. TX with sprung throttle can set PILOT_THR_BHV to “1” so motor feedback when landed starts from mid-stick instead of bottom of stick.

Bitmask Values
Bit Meaning
0 Feedback from mid stick
1 High throttle cancels landing
2 Disarm on land detection
Value Meaning
0 None
1 Feedback from mid stick
2 High throttle cancels landing
4 Disarm on land detection

TELEM_DELAY: Telemetry startup delay

Note: This parameter is for advanced users

The amount of time (in seconds) to delay radio telemetry to prevent an Xbee bricking on power up

Increment Range Units
1 0 - 30 seconds

GCS_PID_MASK: GCS PID tuning mask

Note: This parameter is for advanced users

bitmask of PIDs to send MAVLink PID_TUNING messages for

Bitmask Values
Bit Meaning
0 Roll
1 Pitch
2 Yaw
3 AccelZ
Value Meaning
0 None
1 Roll
2 Pitch
4 Yaw
8 AccelZ

RTL_ALT: RTL Altitude

The minimum alt above home the vehicle will climb to before returning. If the vehicle is flying higher than this value it will return at its current altitude.

Increment Range Units
1 200 - 8000 centimeters

RTL_CONE_SLOPE: RTL cone slope

Defines a cone above home which determines maximum climb

Increment Range Values
.1 0.5 - 10.0
Value Meaning
0 Disabled
1 Shallow
3 Steep

RTL_SPEED: RTL speed

Defines the speed in cm/s which the aircraft will attempt to maintain horizontally while flying home. If this is set to zero, WPNAV_SPEED will be used instead.

Increment Range Units
50 0 - 2000 centimeters per second

RTL_ALT_FINAL: RTL Final Altitude

This is the altitude the vehicle will move to as the final stage of Returning to Launch or after completing a mission. Set to zero to land.

Increment Range Units
1 0 - 1000 centimeters

RTL_CLIMB_MIN: RTL minimum climb

The vehicle will climb this many cm during the initial climb portion of the RTL

Increment Range Units
10 0 - 3000 centimeters

RTL_LOIT_TIME: RTL loiter time

Time (in milliseconds) to loiter above home before beginning final descent

Increment Range Units
1000 0 - 60000 milliseconds

RTL_ALT_TYPE: RTL mode altitude type

RTL altitude type. Set to 1 for Terrain following during RTL and then set WPNAV_RFND_USE=1 to use rangefinder or WPNAV_RFND_USE=0 to use Terrain database

Values
Value Meaning
0 Relative to Home
1 Terrain

FS_GCS_ENABLE: Ground Station Failsafe Enable

Controls whether failsafe will be invoked (and what action to take) when connection with Ground station is lost for at least 5 seconds. See FS_OPTIONS param for additional actions, or for cases allowing Mission continuation, when GCS failsafe is enabled.

Values
Value Meaning
0 Disabled/NoAction
1 RTL
2 RTL or Continue with Mission in Auto Mode (Removed in 4.0+-see FS_OPTIONS)
3 SmartRTL or RTL
4 SmartRTL or Land
5 Land (4.0+ Only)

GPS_HDOP_GOOD: GPS Hdop Good

Note: This parameter is for advanced users

GPS Hdop value at or below this value represent a good position. Used for pre-arm checks

Range
100 - 900

SUPER_SIMPLE: Super Simple Mode

Bitmask to enable Super Simple mode for some flight modes. Setting this to Disabled(0) will disable Super Simple Mode

Values
Value Meaning
0 Disabled
1 Mode1
2 Mode2
3 Mode1+2
4 Mode3
5 Mode1+3
6 Mode2+3
7 Mode1+2+3
8 Mode4
9 Mode1+4
10 Mode2+4
11 Mode1+2+4
12 Mode3+4
13 Mode1+3+4
14 Mode2+3+4
15 Mode1+2+3+4
16 Mode5
17 Mode1+5
18 Mode2+5
19 Mode1+2+5
20 Mode3+5
21 Mode1+3+5
22 Mode2+3+5
23 Mode1+2+3+5
24 Mode4+5
25 Mode1+4+5
26 Mode2+4+5
27 Mode1+2+4+5
28 Mode3+4+5
29 Mode1+3+4+5
30 Mode2+3+4+5
31 Mode1+2+3+4+5
32 Mode6
33 Mode1+6
34 Mode2+6
35 Mode1+2+6
36 Mode3+6
37 Mode1+3+6
38 Mode2+3+6
39 Mode1+2+3+6
40 Mode4+6
41 Mode1+4+6
42 Mode2+4+6
43 Mode1+2+4+6
44 Mode3+4+6
45 Mode1+3+4+6
46 Mode2+3+4+6
47 Mode1+2+3+4+6
48 Mode5+6
49 Mode1+5+6
50 Mode2+5+6
51 Mode1+2+5+6
52 Mode3+5+6
53 Mode1+3+5+6
54 Mode2+3+5+6
55 Mode1+2+3+5+6
56 Mode4+5+6
57 Mode1+4+5+6
58 Mode2+4+5+6
59 Mode1+2+4+5+6
60 Mode3+4+5+6
61 Mode1+3+4+5+6
62 Mode2+3+4+5+6
63 Mode1+2+3+4+5+6

WP_YAW_BEHAVIOR: Yaw behaviour during missions

Determines how the autopilot controls the yaw during missions and RTL

Values
Value Meaning
0 Never change yaw
1 Face next waypoint
2 Face next waypoint except RTL
3 Face along GPS course

LAND_SPEED: Land speed

The descent speed for the final stage of landing in cm/s

Increment Range Units
10 30 - 200 centimeters per second

LAND_SPEED_HIGH: Land speed high

The descent speed for the first stage of landing in cm/s. If this is zero then WPNAV_SPEED_DN is used

Increment Range Units
10 0 - 500 centimeters per second

PILOT_SPEED_UP: Pilot maximum vertical speed ascending

The maximum vertical ascending velocity the pilot may request in cm/s

Increment Range Units
10 50 - 500 centimeters per second

PILOT_ACCEL_Z: Pilot vertical acceleration

The vertical acceleration used when pilot is controlling the altitude

Increment Range Units
10 50 - 500 centimeters per square second

FS_THR_ENABLE: Throttle Failsafe Enable

The throttle failsafe allows you to configure a software failsafe activated by a setting on the throttle input channel

Values
Value Meaning
0 Disabled
1 Enabled always RTL
2 Enabled Continue with Mission in Auto Mode (Removed in 4.0+)
3 Enabled always Land
4 Enabled always SmartRTL or RTL
5 Enabled always SmartRTL or Land

FS_THR_VALUE: Throttle Failsafe Value

The PWM level in microseconds on channel 3 below which throttle failsafe triggers

Increment Range Units
1 910 - 1100 PWM in microseconds

THR_DZ: Throttle deadzone

The deadzone above and below mid throttle in PWM microseconds. Used in AltHold, Loiter, PosHold flight modes

Increment Range Units
1 0 - 300 PWM in microseconds

FLTMODE1: Flight Mode 1

Flight mode when Channel 5 pwm is <= 1230

Values
Value Meaning
0 Stabilize
1 Acro
2 AltHold
3 Auto
4 Guided
5 Loiter
6 RTL
7 Circle
9 Land
11 Drift
13 Sport
14 Flip
15 AutoTune
16 PosHold
17 Brake
18 Throw
19 Avoid_ADSB
20 Guided_NoGPS
21 Smart_RTL
22 FlowHold
23 Follow
24 ZigZag
25 SystemID
26 Heli_Autorotate

FLTMODE2: Flight Mode 2

Flight mode when Channel 5 pwm is >1230, <= 1360

Values
Value Meaning
0 Stabilize
1 Acro
2 AltHold
3 Auto
4 Guided
5 Loiter
6 RTL
7 Circle
9 Land
11 Drift
13 Sport
14 Flip
15 AutoTune
16 PosHold
17 Brake
18 Throw
19 Avoid_ADSB
20 Guided_NoGPS
21 Smart_RTL
22 FlowHold
23 Follow
24 ZigZag
25 SystemID
26 Heli_Autorotate

FLTMODE3: Flight Mode 3

Flight mode when Channel 5 pwm is >1360, <= 1490

Values
Value Meaning
0 Stabilize
1 Acro
2 AltHold
3 Auto
4 Guided
5 Loiter
6 RTL
7 Circle
9 Land
11 Drift
13 Sport
14 Flip
15 AutoTune
16 PosHold
17 Brake
18 Throw
19 Avoid_ADSB
20 Guided_NoGPS
21 Smart_RTL
22 FlowHold
23 Follow
24 ZigZag
25 SystemID
26 Heli_Autorotate

FLTMODE4: Flight Mode 4

Flight mode when Channel 5 pwm is >1490, <= 1620

Values
Value Meaning
0 Stabilize
1 Acro
2 AltHold
3 Auto
4 Guided
5 Loiter
6 RTL
7 Circle
9 Land
11 Drift
13 Sport
14 Flip
15 AutoTune
16 PosHold
17 Brake
18 Throw
19 Avoid_ADSB
20 Guided_NoGPS
21 Smart_RTL
22 FlowHold
23 Follow
24 ZigZag
25 SystemID
26 Heli_Autorotate

FLTMODE5: Flight Mode 5

Flight mode when Channel 5 pwm is >1620, <= 1749

Values
Value Meaning
0 Stabilize
1 Acro
2 AltHold
3 Auto
4 Guided
5 Loiter
6 RTL
7 Circle
9 Land
11 Drift
13 Sport
14 Flip
15 AutoTune
16 PosHold
17 Brake
18 Throw
19 Avoid_ADSB
20 Guided_NoGPS
21 Smart_RTL
22 FlowHold
23 Follow
24 ZigZag
25 SystemID
26 Heli_Autorotate

FLTMODE6: Flight Mode 6

Flight mode when Channel 5 pwm is >=1750

Values
Value Meaning
0 Stabilize
1 Acro
2 AltHold
3 Auto
4 Guided
5 Loiter
6 RTL
7 Circle
9 Land
11 Drift
13 Sport
14 Flip
15 AutoTune
16 PosHold
17 Brake
18 Throw
19 Avoid_ADSB
20 Guided_NoGPS
21 Smart_RTL
22 FlowHold
23 Follow
24 ZigZag
25 SystemID
26 Heli_Autorotate

FLTMODE_CH: Flightmode channel

Note: This parameter is for advanced users

RC Channel to use for flight mode control

Values
Value Meaning
0 Disabled
5 Channel5
6 Channel6
7 Channel7
8 Channel8
9 Channel9
10 Channel 10
11 Channel 11
12 Channel 12
13 Channel 13
14 Channel 14
15 Channel 15

INITIAL_MODE: Initial flight mode

Note: This parameter is for advanced users

This selects the mode to start in on boot. This is useful for when you want to start in AUTO mode on boot without a receiver.

Values
Value Meaning
0 Stabilize
1 Acro
2 AltHold
3 Auto
4 Guided
5 Loiter
6 RTL
7 Circle
9 Land
11 Drift
13 Sport
14 Flip
15 AutoTune
16 PosHold
17 Brake
18 Throw
19 Avoid_ADSB
20 Guided_NoGPS
21 Smart_RTL
22 FlowHold
23 Follow
24 ZigZag
25 SystemID
26 Heli_Autorotate

SIMPLE: Simple mode bitmask

Note: This parameter is for advanced users

Bitmask which holds which flight modes use simple heading mode (eg bit 0 = 1 means Flight Mode 0 uses simple mode)

LOG_BITMASK: Log bitmask

4 byte bitmap of log types to enable

Bitmask
Bit Meaning
0 ATTITUDE_FAST
1 ATTITUDE_MED
2 GPS
3 PM
4 CTUN
5 NTUN
6 RCIN
7 IMU
8 CMD
9 CURRENT
10 RCOUT
11 OPTFLOW
12 PID
13 COMPASS
14 INAV
15 CAMERA
17 MOTBATT
18 IMU_FAST
19 IMU_RAW

ESC_CALIBRATION: ESC Calibration

Note: This parameter is for advanced users

Controls whether ArduCopter will enter ESC calibration on the next restart. Do not adjust this parameter manually.

Values
Value Meaning
0 Normal Start-up
1 Start-up in ESC Calibration mode if throttle high
2 Start-up in ESC Calibration mode regardless of throttle
3 Start-up and automatically calibrate ESCs
9 Disabled

TUNE: Channel 6 Tuning

Controls which parameters (normally PID gains) are being tuned with transmitter’s channel 6 knob

Values
Value Meaning
0 None
1 Stab Roll/Pitch kP
4 Rate Roll/Pitch kP
5 Rate Roll/Pitch kI
21 Rate Roll/Pitch kD
3 Stab Yaw kP
6 Rate Yaw kP
26 Rate Yaw kD
56 Rate Yaw Filter
55 Motor Yaw Headroom
14 AltHold kP
7 Throttle Rate kP
34 Throttle Accel kP
35 Throttle Accel kI
36 Throttle Accel kD
12 Loiter Pos kP
22 Velocity XY kP
28 Velocity XY kI
10 WP Speed
25 Acro RollPitch kP
40 Acro Yaw kP
45 RC Feel
13 Heli Ext Gyro
38 Declination
39 Circle Rate
46 Rate Pitch kP
47 Rate Pitch kI
48 Rate Pitch kD
49 Rate Roll kP
50 Rate Roll kI
51 Rate Roll kD
52 Rate Pitch FF
53 Rate Roll FF
54 Rate Yaw FF
58 SysID Magnitude

FRAME_TYPE: Frame Type (+, X, V, etc)

Controls motor mixing for multicopters. Not used for Tri or Traditional Helicopters.

RebootRequired Values
True
Value Meaning
0 Plus
1 X
2 V
3 H
4 V-Tail
5 A-Tail
10 Y6B
11 Y6F
12 BetaFlightX
13 DJIX
14 ClockwiseX
15 I
18 BetaFlightXReversed

DISARM_DELAY: Disarm delay

Note: This parameter is for advanced users

Delay before automatic disarm in seconds. A value of zero disables auto disarm.

Range Units
0 - 127 seconds

ANGLE_MAX: Angle Max

Note: This parameter is for advanced users

Maximum lean angle in all flight modes

Increment Range Units
10 1000 - 8000 centidegrees

PHLD_BRAKE_RATE: PosHold braking rate

Note: This parameter is for advanced users

PosHold flight mode’s rotation rate during braking in deg/sec

Range Units
4 - 12 degrees per second

PHLD_BRAKE_ANGLE: PosHold braking angle max

Note: This parameter is for advanced users

PosHold flight mode’s max lean angle during braking in centi-degrees

Increment Range Units
10 2000 - 4500 centidegrees

LAND_REPOSITION: Land repositioning

Note: This parameter is for advanced users

Enables user input during LAND mode, the landing phase of RTL, and auto mode landings.

Values
Value Meaning
0 No repositioning
1 Repositioning

FS_EKF_ACTION: EKF Failsafe Action

Note: This parameter is for advanced users

Controls the action that will be taken when an EKF failsafe is invoked

Values
Value Meaning
1 Land
2 AltHold
3 Land even in Stabilize

FS_EKF_THRESH: EKF failsafe variance threshold

Note: This parameter is for advanced users

Allows setting the maximum acceptable compass and velocity variance

Values
0.6:Strict,0.8:Default,1.0:Relaxed

FS_CRASH_CHECK: Crash check enable

Note: This parameter is for advanced users

This enables automatic crash checking. When enabled the motors will disarm if a crash is detected.

Values
Value Meaning
0 Disabled
1 Enabled

RC_SPEED: ESC Update Speed

Note: This parameter is for advanced users

This is the speed in Hertz that your ESCs will receive updates

Increment Range Units
1 50 - 490 hertz

ACRO_RP_P: Acro Roll and Pitch P gain

Converts pilot roll and pitch into a desired rate of rotation in ACRO and SPORT mode. Higher values mean faster rate of rotation.

Range
1 - 10

ACRO_YAW_P: Acro Yaw P gain

Converts pilot yaw input into a desired rate of rotation. Higher values mean faster rate of rotation.

Range
1 - 10

ACRO_BAL_ROLL: Acro Balance Roll

Note: This parameter is for advanced users

rate at which roll angle returns to level in acro and sport mode. A higher value causes the vehicle to return to level faster. For helicopter sets the decay rate of the virtual flybar in the roll axis. A higher value causes faster decay of desired to actual attitude.

Increment Range
0.1 0 - 3

ACRO_BAL_PITCH: Acro Balance Pitch

Note: This parameter is for advanced users

rate at which pitch angle returns to level in acro and sport mode. A higher value causes the vehicle to return to level faster. For helicopter sets the decay rate of the virtual flybar in the pitch axis. A higher value causes faster decay of desired to actual attitude.

Increment Range
0.1 0 - 3

ACRO_TRAINER: Acro Trainer

Note: This parameter is for advanced users

Type of trainer used in acro mode

Values
Value Meaning
0 Disabled
1 Leveling
2 Leveling and Limited

ACRO_RP_EXPO: Acro Roll/Pitch Expo

Note: This parameter is for advanced users

Acro roll/pitch Expo to allow faster rotation when stick at edges

Range Values
-0.5 - 1.0
Value Meaning
0 Disabled
0.1 Very Low
0.2 Low
0.3 Medium
0.4 High
0.5 Very High

THROW_MOT_START: Start motors before throwing is detected

Used by Throw mode. Controls whether motors will run at the speed set by MOT_SPIN_MIN or will be stopped when armed and waiting for the throw.

Values
Value Meaning
0 Stopped
1 Running

THROW_NEXTMODE: Throw mode’s follow up mode

Vehicle will switch to this mode after the throw is successfully completed. Default is to stay in throw mode (18)

Values
Value Meaning
3 Auto
4 Guided
5 LOITER
6 RTL
9 Land
17 Brake
18 Throw

THROW_TYPE: Type of Type

Used by Throw mode. Specifies whether Copter is thrown upward or dropped.

Values
Value Meaning
0 Upward Throw
1 Drop

GND_EFFECT_COMP: Ground Effect Compensation Enable/Disable

Note: This parameter is for advanced users

Ground Effect Compensation Enable/Disable

Values
Value Meaning
0 Disabled
1 Enabled

DEV_OPTIONS: Development options

Note: This parameter is for advanced users

Bitmask of developer options. The meanings of the bit fields in this parameter may vary at any time. Developers should check the source code for current meaning

Bitmask
Bit Meaning
0 ADSBMavlinkProcessing
1 DevOptionVFR_HUDRelativeAlt

ACRO_Y_EXPO: Acro Yaw Expo

Note: This parameter is for advanced users

Acro yaw expo to allow faster rotation when stick at edges

Range Values
-0.5 - 1.0
Value Meaning
0 Disabled
0.1 Very Low
0.2 Low
0.3 Medium
0.4 High
0.5 Very High

ACRO_THR_MID: Acro Thr Mid

Note: This parameter is for advanced users

Acro Throttle Mid

Range
0 - 1

SYSID_ENFORCE: GCS sysid enforcement

Note: This parameter is for advanced users

This controls whether packets from other than the expected GCS system ID will be accepted

Values
Value Meaning
0 NotEnforced
1 Enforced

FRAME_CLASS: Frame Class

Controls major frame class for multicopter component

RebootRequired Values
True
Value Meaning
0 Undefined
1 Quad
2 Hexa
3 Octa
4 OctaQuad
5 Y6
6 Heli
7 Tri
8 SingleCopter
9 CoaxCopter
10 BiCopter
11 Heli_Dual
12 DodecaHexa
13 HeliQuad
14 Deca
15 Scripting Matrix
16 6DoF Scripting

PILOT_SPEED_DN: Pilot maximum vertical speed descending

The maximum vertical descending velocity the pilot may request in cm/s

Increment Range Units
10 50 - 500 centimeters per second

LAND_ALT_LOW: Land alt low

Note: This parameter is for advanced users

Altitude during Landing at which vehicle slows to LAND_SPEED

Increment Range Units
10 100 - 10000 centimeters

TUNE_MIN: Tuning minimum

Minimum value that the parameter currently being tuned with the transmitter’s channel 6 knob will be set to

TUNE_MAX: Tuning maximum

Maximum value that the parameter currently being tuned with the transmitter’s channel 6 knob will be set to

FS_VIBE_ENABLE: Vibration Failsafe enable

This enables the vibration failsafe which will use modified altitude estimation and control during high vibrations

Values
Value Meaning
0 Disabled
1 Enabled

FS_OPTIONS: Failsafe options bitmask

Note: This parameter is for advanced users

Bitmask of additional options for battery, radio, & GCS failsafes. 0 (default) disables all options.

Bitmask Values
Bit Meaning
0 Continue if in Auto on RC failsafe
1 Continue if in Auto on GCS failsafe
2 Continue if in Guided on RC failsafe
3 Continue if landing on any failsafe
4 Continue if in pilot controlled modes on GCS failsafe
5 Release Gripper
Value Meaning
0 Disabled
1 Continue if in Auto on RC failsafe only
2 Continue if in Auto on GCS failsafe only
3 Continue if in Auto on RC and/or GCS failsafe
4 Continue if in Guided on RC failsafe only
8 Continue if landing on any failsafe
16 Continue if in pilot controlled modes on GCS failsafe
19 Continue if in Auto on RC and/or GCS failsafe and continue if in pilot controlled modes on GCS failsafe

ACRO_OPTIONS: Acro mode options

Note: This parameter is for advanced users

A range of options that can be applied to change acro mode behaviour. Air-mode enables ATC_THR_MIX_MAN at all times (air-mode has no effect on helicopters). Rate Loop Only disables the use of angle stabilization and uses angular rate stabilization only.

Bitmask
Bit Meaning
0 Air-mode
1 Rate Loop Only

AUTO_OPTIONS: Auto mode options

Note: This parameter is for advanced users

A range of options that can be applied to change auto mode behaviour. Allow Arming allows the copter to be armed in Auto. Allow Takeoff Without Raising Throttle allows takeoff without the pilot having to raise the throttle. Ignore pilot yaw overrides the pilot’s yaw stick being used while in auto.

Bitmask
Bit Meaning
0 Allow Arming
1 Allow Takeoff Without Raising Throttle
2 Ignore pilot yaw

GUID_OPTIONS: Guided mode options

Note: This parameter is for advanced users

Options that can be applied to change guided mode behaviour

Bitmask
Bit Meaning
0 Allow Arming from Transmitter
2 Ignore pilot yaw
3 SetAttitudeTarget interprets Thrust As Thrust
4 Do not stabilize PositionXY
5 Do not stabilize VelocityXY
6 Waypoint navigation used for position targets

FS_GCS_TIMEOUT: GCS failsafe timeout

Timeout before triggering the GCS failsafe

Increment Range Units
1 2 - 120 seconds

RTL_OPTIONS: RTL mode options

Note: This parameter is for advanced users

Options that can be applied to change RTL mode behaviour

Bitmask
Bit Meaning
2 Ignore pilot yaw

FLIGHT_OPTIONS: Flight mode options

Note: This parameter is for advanced users

Flight mode specific options

Bitmask
Bit Meaning
0 Disable thrust loss check
1 Disable yaw imbalance warning

RNGFND_FILT: Rangefinder filter

Rangefinder filter to smooth distance. Set to zero to disable filtering

Increment Range RebootRequired Units
0.05 0 - 5 True hertz

GUID_TIMEOUT: Guided mode timeout

Note: This parameter is for advanced users

Guided mode timeout after which vehicle will stop or return to level if no updates are received from caller. Only applicable during velocity, acceleration or angle control

Range Units
0.1 - 5 seconds

ADSB_ Parameters

ADSB_TYPE: ADSB Type

Type of ADS-B hardware for ADSB-in and ADSB-out configuration and operation. If any type is selected then MAVLink based ADSB-in messages will always be enabled

RebootRequired Values
True
Value Meaning
0 Disabled
1 uAvionix-MAVLink
2 Sagetech

ADSB_LIST_MAX: ADSB vehicle list size

Note: This parameter is for advanced users

ADSB list size of nearest vehicles. Longer lists take longer to refresh with lower SRx_ADSB values.

Range RebootRequired
1 - 100 True

ADSB_LIST_RADIUS: ADSB vehicle list radius filter

Note: This parameter is for advanced users

ADSB vehicle list radius filter. Vehicles detected outside this radius will be completely ignored. They will not show up in the SRx_ADSB stream to the GCS and will not be considered in any avoidance calculations. A value of 0 will disable this filter.

Range Units
0 - 100000 meters

ADSB_ICAO_ID: ICAO_ID vehicle identification number

Note: This parameter is for advanced users

ICAO_ID unique vehicle identification number of this aircraft. This is a integer limited to 24bits. If set to 0 then one will be randomly generated. If set to -1 then static information is not sent, transceiver is assumed pre-programmed.

Range
-1 - 16777215

ADSB_EMIT_TYPE: Emitter type

Note: This parameter is for advanced users

ADSB classification for the type of vehicle emitting the transponder signal. Default value is 14 (UAV).

Values
Value Meaning
0 NoInfo
1 Light
2 Small
3 Large
4 HighVortexlarge
5 Heavy
6 HighlyManuv
7 Rotocraft
8 RESERVED
9 Glider
10 LightAir
11 Parachute
12 UltraLight
13 RESERVED
14 UAV
15 Space
16 RESERVED
17 EmergencySurface
18 ServiceSurface
19 PointObstacle

ADSB_LEN_WIDTH: Aircraft length and width

Note: This parameter is for advanced users

Aircraft length and width dimension options in Length and Width in meters. In most cases, use a value of 1 for smallest size.

Values
Value Meaning
0 NO_DATA
1 L15W23
2 L25W28P5
3 L25W34
4 L35W33
5 L35W38
6 L45W39P5
7 L45W45
8 L55W45
9 L55W52
10 L65W59P5
11 L65W67
12 L75W72P5
13 L75W80
14 L85W80
15 L85W90

ADSB_OFFSET_LAT: GPS antenna lateral offset

Note: This parameter is for advanced users

GPS antenna lateral offset. This describes the physical location offest from center of the GPS antenna on the aircraft.

Values
Value Meaning
0 NoData
1 Left2m
2 Left4m
3 Left6m
4 Center
5 Right2m
6 Right4m
7 Right6m

ADSB_OFFSET_LON: GPS antenna longitudinal offset

Note: This parameter is for advanced users

GPS antenna longitudinal offset. This is usually set to 1, Applied By Sensor

Values
Value Meaning
0 NO_DATA
1 AppliedBySensor

ADSB_RF_SELECT: Transceiver RF selection

Note: This parameter is for advanced users

Transceiver RF selection for Rx enable and/or Tx enable. This only effects devices that can Tx and/or Rx. Rx-only devices should override this to always be Rx-only.

Bitmask
Bit Meaning
0 Rx
1 Tx

ADSB_SQUAWK: Squawk code

Note: This parameter is for advanced users

VFR squawk (Mode 3/A) code is a pre-programmed default code when the pilot is flying VFR and not in contact with ATC. In the USA, the VFR squawk code is octal 1200 (hex 0x280, decimal 640) and in most parts of Europe the VFR squawk code is octal 7000. If an invalid octal number is set then it will be reset to 1200.

Range Units
0 - 7777 octal

ADSB_RF_CAPABLE: RF capabilities

Note: This parameter is for advanced users

Describes your hardware RF In/Out capabilities.

Bitmask
Bit Meaning
0 UAT_in
1 1090ES_in
2 UAT_out
3 1090ES_out

ADSB_LIST_ALT: ADSB vehicle list altitude filter

Note: This parameter is for advanced users

ADSB vehicle list altitude filter. Vehicles detected above this altitude will be completely ignored. They will not show up in the SRx_ADSB stream to the GCS and will not be considered in any avoidance calculations. A value of 0 will disable this filter.

Range Units
0 - 32767 meters

ADSB_ICAO_SPECL: ICAO_ID of special vehicle

Note: This parameter is for advanced users

ICAO_ID of special vehicle that ignores ADSB_LIST_RADIUS and ADSB_LIST_ALT. The vehicle is always tracked. Use 0 to disable.

ADSB_LOG: ADS-B logging

Note: This parameter is for advanced users

0: no logging, 1: log only special ID, 2:log all

Values
Value Meaning
0 no logging
1 log only special ID
2 log all

AFS_ Parameters

AFS_ENABLE: Enable Advanced Failsafe

Note: This parameter is for advanced users

This enables the advanced failsafe system. If this is set to zero (disable) then all the other AFS options have no effect

AFS_MAN_PIN: Manual Pin

Note: This parameter is for advanced users

This sets a digital output pin to set high when in manual mode

AFS_HB_PIN: Heartbeat Pin

Note: This parameter is for advanced users

This sets a digital output pin which is cycled at 10Hz when termination is not activated. Note that if a FS_TERM_PIN is set then the heartbeat pin will continue to cycle at 10Hz when termination is activated, to allow the termination board to distinguish between autopilot crash and termination.

Values
Value Meaning
-1 Disabled
49 BB Blue GP0 pin 4
50 AUXOUT1
51 AUXOUT2
52 AUXOUT3
53 AUXOUT4
54 AUXOUT5
55 AUXOUT6
57 BB Blue GP0 pin 3
113 BB Blue GP0 pin 6
116 BB Blue GP0 pin 5

AFS_WP_COMMS: Comms Waypoint

Note: This parameter is for advanced users

Waypoint number to navigate to on comms loss

AFS_WP_GPS_LOSS: GPS Loss Waypoint

Note: This parameter is for advanced users

Waypoint number to navigate to on GPS lock loss

AFS_TERMINATE: Force Terminate

Note: This parameter is for advanced users

Can be set in flight to force termination of the heartbeat signal

AFS_TERM_ACTION: Terminate action

Note: This parameter is for advanced users

This can be used to force an action on flight termination. Normally this is handled by an external failsafe board, but you can setup ArduPilot to handle it here. Please consult the wiki for more information on the possible values of the parameter

AFS_TERM_PIN: Terminate Pin

Note: This parameter is for advanced users

This sets a digital output pin to set high on flight termination

Values
Value Meaning
-1 Disabled
49 BB Blue GP0 pin 4
50 AUXOUT1
51 AUXOUT2
52 AUXOUT3
53 AUXOUT4
54 AUXOUT5
55 AUXOUT6
57 BB Blue GP0 pin 3
113 BB Blue GP0 pin 6
116 BB Blue GP0 pin 5

AFS_AMSL_LIMIT: AMSL limit

Note: This parameter is for advanced users

This sets the AMSL (above mean sea level) altitude limit. If the pressure altitude determined by QNH exceeds this limit then flight termination will be forced. Note that this limit is in meters, whereas pressure altitude limits are often quoted in feet. A value of zero disables the pressure altitude limit.

Units
meters

AFS_AMSL_ERR_GPS: Error margin for GPS based AMSL limit

Note: This parameter is for advanced users

This sets margin for error in GPS derived altitude limit. This error margin is only used if the barometer has failed. If the barometer fails then the GPS will be used to enforce the AMSL_LIMIT, but this margin will be subtracted from the AMSL_LIMIT first, to ensure that even with the given amount of GPS altitude error the pressure altitude is not breached. OBC users should set this to comply with their D2 safety case. A value of -1 will mean that barometer failure will lead to immediate termination.

Units
meters

AFS_QNH_PRESSURE: QNH pressure

Note: This parameter is for advanced users

This sets the QNH pressure in millibars to be used for pressure altitude in the altitude limit. A value of zero disables the altitude limit.

Units
hectopascal

AFS_MAX_GPS_LOSS: Maximum number of GPS loss events

Note: This parameter is for advanced users

Maximum number of GPS loss events before the aircraft stops returning to mission on GPS recovery. Use zero to allow for any number of GPS loss events.

AFS_MAX_COM_LOSS: Maximum number of comms loss events

Note: This parameter is for advanced users

Maximum number of comms loss events before the aircraft stops returning to mission on comms recovery. Use zero to allow for any number of comms loss events.

AFS_GEOFENCE: Enable geofence Advanced Failsafe

Note: This parameter is for advanced users

This enables the geofence part of the AFS. Will only be in effect if AFS_ENABLE is also 1

AFS_RC: Enable RC Advanced Failsafe

Note: This parameter is for advanced users

This enables the RC part of the AFS. Will only be in effect if AFS_ENABLE is also 1

AFS_RC_MAN_ONLY: Enable RC Termination only in manual control modes

Note: This parameter is for advanced users

If this parameter is set to 1, then an RC loss will only cause the plane to terminate in manual control modes. If it is 0, then the plane will terminate in any flight mode.

AFS_DUAL_LOSS: Enable dual loss terminate due to failure of both GCS and GPS simultaneously

Note: This parameter is for advanced users

This enables the dual loss termination part of the AFS system. If this parameter is 1 and both GPS and the ground control station fail simultaneously, this will be considered a “dual loss” and cause termination.

AFS_RC_FAIL_TIME: RC failure time

Note: This parameter is for advanced users

This is the time in seconds in manual mode that failsafe termination will activate if RC input is lost. For the OBC rules this should be (1.5). Use 0 to disable.

Units
seconds

AFS_MAX_RANGE: Max allowed range

Note: This parameter is for advanced users

This is the maximum range of the vehicle in kilometers from first arming. If the vehicle goes beyond this range then the TERM_ACTION is performed. A value of zero disables this feature.

Units
kilometers

AHRS_ Parameters

AHRS_GPS_GAIN: AHRS GPS gain

Note: This parameter is for advanced users

This controls how much to use the GPS to correct the attitude. This should never be set to zero for a plane as it would result in the plane losing control in turns. For a plane please use the default value of 1.0.

Increment Range
.01 0.0 - 1.0

AHRS_GPS_USE: AHRS use GPS for navigation

Note: This parameter is for advanced users

This controls whether to use dead-reckoning or GPS based navigation. If set to 0 then the GPS won’t be used for navigation, and only dead reckoning will be used. A value of zero should never be used for normal flight. Currently this affects only the DCM-based AHRS: the EKF uses GPS whenever it is available.

Values
Value Meaning
0 Disabled
1 Enabled

AHRS_YAW_P: Yaw P

Note: This parameter is for advanced users

This controls the weight the compass or GPS has on the heading. A higher value means the heading will track the yaw source (GPS or compass) more rapidly.

Increment Range
.01 0.1 - 0.4

AHRS_RP_P: AHRS RP_P

Note: This parameter is for advanced users

This controls how fast the accelerometers correct the attitude

Increment Range
.01 0.1 - 0.4

AHRS_WIND_MAX: Maximum wind

Note: This parameter is for advanced users

This sets the maximum allowable difference between ground speed and airspeed. This allows the plane to cope with a failing airspeed sensor. A value of zero means to use the airspeed as is. See ARSPD_OPTIONS and ARSPD_MAX_WIND to disable airspeed sensors.

Increment Range Units
1 0 - 127 meters per second

AHRS_TRIM_X: AHRS Trim Roll

Compensates for the roll angle difference between the control board and the frame. Positive values make the vehicle roll right.

Increment Range Units
0.01 -0.1745 - +0.1745 radians

AHRS_TRIM_Y: AHRS Trim Pitch

Compensates for the pitch angle difference between the control board and the frame. Positive values make the vehicle pitch up/back.

Increment Range Units
0.01 -0.1745 - +0.1745 radians

AHRS_TRIM_Z: AHRS Trim Yaw

Note: This parameter is for advanced users

Not Used

Increment Range Units
0.01 -0.1745 - +0.1745 radians

AHRS_ORIENTATION: Board Orientation

Note: This parameter is for advanced users

Overall board orientation relative to the standard orientation for the board type. This rotates the IMU and compass readings to allow the board to be oriented in your vehicle at any 90 or 45 degree angle. This option takes affect on next boot. After changing you will need to re-level your vehicle.

Values
Value Meaning
0 None
1 Yaw45
2 Yaw90
3 Yaw135
4 Yaw180
5 Yaw225
6 Yaw270
7 Yaw315
8 Roll180
9 Roll180Yaw45
10 Roll180Yaw90
11 Roll180Yaw135
12 Pitch180
13 Roll180Yaw225
14 Roll180Yaw270
15 Roll180Yaw315
16 Roll90
17 Roll90Yaw45
18 Roll90Yaw90
19 Roll90Yaw135
20 Roll270
21 Roll270Yaw45
22 Roll270Yaw90
23 Roll270Yaw135
24 Pitch90
25 Pitch270
26 Pitch180Yaw90
27 Pitch180Yaw270
28 Roll90Pitch90
29 Roll180Pitch90
30 Roll270Pitch90
31 Roll90Pitch180
32 Roll270Pitch180
33 Roll90Pitch270
34 Roll180Pitch270
35 Roll270Pitch270
36 Roll90Pitch180Yaw90
37 Roll90Yaw270
38 Yaw293Pitch68Roll180
39 Pitch315
40 Roll90Pitch315
100 Custom

AHRS_COMP_BETA: AHRS Velocity Complementary Filter Beta Coefficient

Note: This parameter is for advanced users

This controls the time constant for the cross-over frequency used to fuse AHRS (airspeed and heading) and GPS data to estimate ground velocity. Time constant is 0.1/beta. A larger time constant will use GPS data less and a small time constant will use air data less.

Increment Range
.01 0.001 - 0.5

AHRS_GPS_MINSATS: AHRS GPS Minimum satellites

Note: This parameter is for advanced users

Minimum number of satellites visible to use GPS for velocity based corrections attitude correction. This defaults to 6, which is about the point at which the velocity numbers from a GPS become too unreliable for accurate correction of the accelerometers.

Increment Range
1 0 - 10

AHRS_EKF_TYPE: Use NavEKF Kalman filter for attitude and position estimation

Note: This parameter is for advanced users

This controls which NavEKF Kalman filter version is used for attitude and position estimation

Values
Value Meaning
0 Disabled
2 Enable EKF2
3 Enable EKF3
11 ExternalAHRS

AHRS_CUSTOM_ROLL: Board orientation roll offset

Note: This parameter is for advanced users

Autopilot mounting position roll offset. Positive values = roll right, negative values = roll left. This parameter is only used when AHRS_ORIENTATION is set to CUSTOM.

Increment Range Units
1 -180 - 180 degrees

AHRS_CUSTOM_PIT: Board orientation pitch offset

Note: This parameter is for advanced users

Autopilot mounting position pitch offset. Positive values = pitch up, negative values = pitch down. This parameter is only used when AHRS_ORIENTATION is set to CUSTOM.

Increment Range Units
1 -180 - 180 degrees

AHRS_CUSTOM_YAW: Board orientation yaw offset

Note: This parameter is for advanced users

Autopilot mounting position yaw offset. Positive values = yaw right, negative values = yaw left. This parameter is only used when AHRS_ORIENTATION is set to CUSTOM.

Increment Range Units
1 -180 - 180 degrees

ARMING_ Parameters

ARMING_ACCTHRESH: Accelerometer error threshold

Note: This parameter is for advanced users

Accelerometer error threshold used to determine inconsistent accelerometers. Compares this error range to other accelerometers to detect a hardware or calibration error. Lower value means tighter check and harder to pass arming check. Not all accelerometers are created equal.

Range Units
0.25 - 3.0 meters per square second

ARMING_RUDDER: Arming with Rudder enable/disable

Note: This parameter is for advanced users

Allow arm/disarm by rudder input. When enabled arming can be done with right rudder, disarming with left rudder. Rudder arming only works in manual throttle modes with throttle at zero +- deadzone (RCx_DZ)

Values
Value Meaning
0 Disabled
1 ArmingOnly
2 ArmOrDisarm

ARMING_MIS_ITEMS: Required mission items

Note: This parameter is for advanced users

Bitmask of mission items that are required to be planned in order to arm the aircraft

Bitmask
Bit Meaning
0 Land
1 VTOL Land
2 DO_LAND_START
3 Takeoff
4 VTOL Takeoff
5 Rallypoint

ARMING_CHECK: Arm Checks to Perform (bitmask)

Checks prior to arming motor. This is a bitmask of checks that will be performed before allowing arming. For most users it is recommended to leave this at the default of 1 (all checks enabled). You can select whatever checks you prefer by adding together the values of each check type to set this parameter. For example, to only allow arming when you have GPS lock and no RC failsafe you would set ARMING_CHECK to 72.

Bitmask
Bit Meaning
0 All
1 Barometer
2 Compass
3 GPS lock
4 INS
5 Parameters
6 RC Channels
7 Board voltage
8 Battery Level
10 Logging Available
11 Hardware safety switch
12 GPS Configuration
13 System
14 Mission
15 Rangefinder
16 Camera
17 AuxAuth
18 VisualOdometry
19 FFT

AROT_ Parameters

AROT_ENABLE: Enable settings for RSC Setpoint

Note: This parameter is for advanced users

Allows you to enable (1) or disable (0) the autonomous autorotation capability.

Values
Value Meaning
0 Disabled
1 Enabled

AROT_HS_P: P gain for head speed controller

Note: This parameter is for advanced users

Increase value to increase sensitivity of head speed controller during autonomous autorotation.

Increment Range
0.01 0.3 - 1

AROT_HS_SET_PT: Target Head Speed

Note: This parameter is for advanced users

The target head speed in RPM during autorotation. Start by setting to desired hover speed and tune from there as necessary.

Increment Range Units
1 1000 - 2800 Revolutions Per Minute

AROT_TARG_SP: Target Glide Ground Speed

Note: This parameter is for advanced users

Target ground speed in cm/s for the autorotation controller to try and achieve/ maintain during the glide phase.

Increment Range Units
50 800 - 2000 centimeters per second

AROT_COL_FILT_E: Entry Phase Collective Filter

Note: This parameter is for advanced users

Cut-off frequency for collective low pass filter. For the entry phase. Acts as a following trim. Must be higher than AROT_COL_FILT_G.

Increment Range Units
0.01 0.2 - 0.5 hertz

AROT_COL_FILT_G: Glide Phase Collective Filter

Note: This parameter is for advanced users

Cut-off frequency for collective low pass filter. For the glide phase. Acts as a following trim. Must be lower than AROT_COL_FILT_E.

Increment Range Units
0.01 0.03 - 0.15 hertz

AROT_AS_ACC_MAX: Forward Acceleration Limit

Note: This parameter is for advanced users

Maximum forward acceleration to apply in speed controller.

Increment Range Units
10 30 - 60 centimeters per square second

AROT_BAIL_TIME: Bail Out Timer

Note: This parameter is for advanced users

Time in seconds from bail out initiated to the exit of autorotation flight mode.

Increment Range Units
0.1 0.5 - 4 seconds

AROT_HS_SENSOR: Main Rotor RPM Sensor

Note: This parameter is for advanced users

Allocate the RPM sensor instance to use for measuring head speed. RPM1 = 0. RPM2 = 1.

Increment Range Units
0.1 0.5 - 3 seconds

AROT_FW_V_P: Velocity (horizontal) P gain

Note: This parameter is for advanced users

Velocity (horizontal) P gain. Determines the propotion of the target acceleration based on the velocity error.

Increment Range
0.1 0.1 - 6.0

AROT_FW_V_FF: Velocity (horizontal) feed forward

Note: This parameter is for advanced users

Velocity (horizontal) input filter. Corrects the target acceleration proportionally to the desired velocity.

Increment Range
0.01 0 - 1

ATC_ Parameters

ATC_SLEW_YAW: Yaw target slew rate

Note: This parameter is for advanced users

Maximum rate the yaw target can be updated in Loiter, RTL, Auto flight modes

Increment Range Units
100 500 - 18000 centidegrees per second

ATC_ACCEL_Y_MAX: Acceleration Max for Yaw

Note: This parameter is for advanced users

Maximum acceleration in yaw axis

Increment Range Units Values
1000 0 - 72000 centidegrees per square second
Value Meaning
0 Disabled
9000 VerySlow
18000 Slow
36000 Medium
54000 Fast

ATC_RATE_FF_ENAB: Rate Feedforward Enable

Note: This parameter is for advanced users

Controls whether body-frame rate feedfoward is enabled or disabled

Values
Value Meaning
0 Disabled
1 Enabled

ATC_ACCEL_R_MAX: Acceleration Max for Roll

Note: This parameter is for advanced users

Maximum acceleration in roll axis

Increment Range Units Values
1000 0 - 180000 centidegrees per square second
Value Meaning
0 Disabled
30000 VerySlow
72000 Slow
108000 Medium
162000 Fast

ATC_ACCEL_P_MAX: Acceleration Max for Pitch

Note: This parameter is for advanced users

Maximum acceleration in pitch axis

Increment Range Units Values
1000 0 - 180000 centidegrees per square second
Value Meaning
0 Disabled
30000 VerySlow
72000 Slow
108000 Medium
162000 Fast

ATC_ANGLE_BOOST: Angle Boost

Note: This parameter is for advanced users

Angle Boost increases output throttle as the vehicle leans to reduce loss of altitude

Values
Value Meaning
0 Disabled
1 Enabled

ATC_ANG_RLL_P: Roll axis angle controller P gain

Roll axis angle controller P gain. Converts the error between the desired roll angle and actual angle to a desired roll rate

Range
3.000 - 12.000

ATC_ANG_PIT_P: Pitch axis angle controller P gain

Pitch axis angle controller P gain. Converts the error between the desired pitch angle and actual angle to a desired pitch rate

Range
3.000 - 12.000

ATC_ANG_YAW_P: Yaw axis angle controller P gain

Yaw axis angle controller P gain. Converts the error between the desired yaw angle and actual angle to a desired yaw rate

Range
3.000 - 12.000

ATC_ANG_LIM_TC: Angle Limit (to maintain altitude) Time Constant

Note: This parameter is for advanced users

Angle Limit (to maintain altitude) Time Constant

Range
0.5 - 10.0

ATC_RATE_R_MAX: Angular Velocity Max for Roll

Note: This parameter is for advanced users

Maximum angular velocity in roll axis

Increment Range Units Values
1 0 - 1080 degrees per second
Value Meaning
0 Disabled
360 Slow
720 Medium
1080 Fast

ATC_RATE_P_MAX: Angular Velocity Max for Pitch

Note: This parameter is for advanced users

Maximum angular velocity in pitch axis

Increment Range Units Values
1 0 - 1080 degrees per second
Value Meaning
0 Disabled
360 Slow
720 Medium
1080 Fast

ATC_RATE_Y_MAX: Angular Velocity Max for Yaw

Note: This parameter is for advanced users

Maximum angular velocity in yaw axis

Increment Range Units Values
1 0 - 1080 degrees per second
Value Meaning
0 Disabled
360 Slow
720 Medium
1080 Fast

ATC_INPUT_TC: Attitude control input time constant

Attitude control input time constant. Low numbers lead to sharper response, higher numbers to softer response

Increment Range Units Values
0.01 0 - 1 seconds 0.5:Very Soft,0.2:Soft,0.15:Medium,0.1:Crisp,0.05:Very Crisp

ATC_RAT_RLL_P (AC_AttitudeControl_Multi): Roll axis rate controller P gain

Roll axis rate controller P gain. Converts the difference between desired roll rate and actual roll rate into a motor speed output

Increment Range
0.005 0.01 - 0.5

ATC_RAT_RLL_I (AC_AttitudeControl_Multi): Roll axis rate controller I gain

Roll axis rate controller I gain. Corrects long-term difference in desired roll rate vs actual roll rate

Increment Range
0.01 0.01 - 2.0

ATC_RAT_RLL_IMAX (AC_AttitudeControl_Multi): Roll axis rate controller I gain maximum

Roll axis rate controller I gain maximum. Constrains the maximum motor output that the I gain will output

Increment Range
0.01 0 - 1

ATC_RAT_RLL_D (AC_AttitudeControl_Multi): Roll axis rate controller D gain

Roll axis rate controller D gain. Compensates for short-term change in desired roll rate vs actual roll rate

Increment Range
0.001 0.0 - 0.05

ATC_RAT_RLL_FF: Roll axis rate controller feed forward

Roll axis rate controller feed forward

Increment Range
0.001 0 - 0.5

ATC_RAT_RLL_FLTT (AC_AttitudeControl_Multi): Roll axis rate controller target frequency in Hz

Roll axis rate controller target frequency in Hz

Increment Range Units
1 5 - 100 hertz

ATC_RAT_RLL_FLTE (AC_AttitudeControl_Multi): Roll axis rate controller error frequency in Hz

Roll axis rate controller error frequency in Hz

Increment Range Units
1 0 - 100 hertz

ATC_RAT_RLL_FLTD (AC_AttitudeControl_Multi): Roll axis rate controller derivative frequency in Hz

Roll axis rate controller derivative frequency in Hz

Increment Range Units
1 5 - 100 hertz

ATC_RAT_RLL_SMAX (AC_AttitudeControl_Multi): Roll slew rate limit

Note: This parameter is for advanced users

Sets an upper limit on the slew rate produced by the combined P and D gains. If the amplitude of the control action produced by the rate feedback exceeds this value, then the D+P gain is reduced to respect the limit. This limits the amplitude of high frequency oscillations caused by an excessive gain. The limit should be set to no more than 25% of the actuators maximum slew rate to allow for load effects. Note: The gain will not be reduced to less than 10% of the nominal value. A value of zero will disable this feature.

Increment Range
0.5 0 - 200

ATC_RAT_PIT_P (AC_AttitudeControl_Multi): Pitch axis rate controller P gain

Pitch axis rate controller P gain. Converts the difference between desired pitch rate and actual pitch rate into a motor speed output

Increment Range
0.005 0.01 - 0.50

ATC_RAT_PIT_I (AC_AttitudeControl_Multi): Pitch axis rate controller I gain

Pitch axis rate controller I gain. Corrects long-term difference in desired pitch rate vs actual pitch rate

Increment Range
0.01 0.01 - 2.0

ATC_RAT_PIT_IMAX (AC_AttitudeControl_Multi): Pitch axis rate controller I gain maximum

Pitch axis rate controller I gain maximum. Constrains the maximum motor output that the I gain will output

Increment Range
0.01 0 - 1

ATC_RAT_PIT_D (AC_AttitudeControl_Multi): Pitch axis rate controller D gain

Pitch axis rate controller D gain. Compensates for short-term change in desired pitch rate vs actual pitch rate

Increment Range
0.001 0.0 - 0.05

ATC_RAT_PIT_FF: Pitch axis rate controller feed forward

Pitch axis rate controller feed forward

Increment Range
0.001 0 - 0.5

ATC_RAT_PIT_FLTT (AC_AttitudeControl_Multi): Pitch axis rate controller target frequency in Hz

Pitch axis rate controller target frequency in Hz

Increment Range Units
1 5 - 100 hertz

ATC_RAT_PIT_FLTE (AC_AttitudeControl_Multi): Pitch axis rate controller error frequency in Hz

Pitch axis rate controller error frequency in Hz

Increment Range Units
1 0 - 100 hertz

ATC_RAT_PIT_FLTD (AC_AttitudeControl_Multi): Pitch axis rate controller derivative frequency in Hz

Pitch axis rate controller derivative frequency in Hz

Increment Range Units
1 5 - 100 hertz

ATC_RAT_PIT_SMAX (AC_AttitudeControl_Multi): Pitch slew rate limit

Note: This parameter is for advanced users

Sets an upper limit on the slew rate produced by the combined P and D gains. If the amplitude of the control action produced by the rate feedback exceeds this value, then the D+P gain is reduced to respect the limit. This limits the amplitude of high frequency oscillations caused by an excessive gain. The limit should be set to no more than 25% of the actuators maximum slew rate to allow for load effects. Note: The gain will not be reduced to less than 10% of the nominal value. A value of zero will disable this feature.

Increment Range
0.5 0 - 200

ATC_RAT_YAW_P (AC_AttitudeControl_Multi): Yaw axis rate controller P gain

Yaw axis rate controller P gain. Converts the difference between desired yaw rate and actual yaw rate into a motor speed output

Increment Range
0.005 0.10 - 2.50

ATC_RAT_YAW_I (AC_AttitudeControl_Multi): Yaw axis rate controller I gain

Yaw axis rate controller I gain. Corrects long-term difference in desired yaw rate vs actual yaw rate

Increment Range
0.01 0.010 - 1.0

ATC_RAT_YAW_IMAX (AC_AttitudeControl_Multi): Yaw axis rate controller I gain maximum

Yaw axis rate controller I gain maximum. Constrains the maximum motor output that the I gain will output

Increment Range
0.01 0 - 1

ATC_RAT_YAW_D (AC_AttitudeControl_Multi): Yaw axis rate controller D gain

Yaw axis rate controller D gain. Compensates for short-term change in desired yaw rate vs actual yaw rate

Increment Range
0.001 0.000 - 0.02

ATC_RAT_YAW_FF: Yaw axis rate controller feed forward

Yaw axis rate controller feed forward

Increment Range
0.001 0 - 0.5

ATC_RAT_YAW_FLTT (AC_AttitudeControl_Multi): Yaw axis rate controller target frequency in Hz

Yaw axis rate controller target frequency in Hz

Increment Range Units
1 1 - 50 hertz

ATC_RAT_YAW_FLTE (AC_AttitudeControl_Multi): Yaw axis rate controller error frequency in Hz

Yaw axis rate controller error frequency in Hz

Increment Range Units
1 0 - 20 hertz

ATC_RAT_YAW_FLTD (AC_AttitudeControl_Multi): Yaw axis rate controller derivative frequency in Hz

Yaw axis rate controller derivative frequency in Hz

Increment Range Units
1 5 - 50 hertz

ATC_RAT_YAW_SMAX (AC_AttitudeControl_Multi): Yaw slew rate limit

Note: This parameter is for advanced users

Sets an upper limit on the slew rate produced by the combined P and D gains. If the amplitude of the control action produced by the rate feedback exceeds this value, then the D+P gain is reduced to respect the limit. This limits the amplitude of high frequency oscillations caused by an excessive gain. The limit should be set to no more than 25% of the actuators maximum slew rate to allow for load effects. Note: The gain will not be reduced to less than 10% of the nominal value. A value of zero will disable this feature.

Increment Range
0.5 0 - 200

ATC_THR_MIX_MIN: Throttle Mix Minimum

Note: This parameter is for advanced users

Throttle vs attitude control prioritisation used when landing (higher values mean we prioritise attitude control over throttle)

Range
0.1 - 0.25

ATC_THR_MIX_MAX: Throttle Mix Maximum

Note: This parameter is for advanced users

Throttle vs attitude control prioritisation used during active flight (higher values mean we prioritise attitude control over throttle)

Range
0.5 - 0.9

ATC_THR_MIX_MAN: Throttle Mix Manual

Note: This parameter is for advanced users

Throttle vs attitude control prioritisation used during manual flight (higher values mean we prioritise attitude control over throttle)

Range
0.1 - 0.9

ATC_HOVR_ROL_TRM: Hover Roll Trim

Note: This parameter is for advanced users

Trim the hover roll angle to counter tail rotor thrust in a hover

Increment Range Units
10 0 - 1000 centidegrees

ATC_RAT_RLL_P (AC_AttitudeControl_Heli): Roll axis rate controller P gain

Roll axis rate controller P gain. Converts the difference between desired roll rate and actual roll rate into a motor speed output

Increment Range
0.005 0.0 - 0.35

ATC_RAT_RLL_I (AC_AttitudeControl_Heli): Roll axis rate controller I gain

Roll axis rate controller I gain. Corrects long-term difference in desired roll rate vs actual roll rate

Increment Range
0.01 0.0 - 0.6

ATC_RAT_RLL_IMAX (AC_AttitudeControl_Heli): Roll axis rate controller I gain maximum

Roll axis rate controller I gain maximum. Constrains the maximum motor output that the I gain will output

Increment Range
0.01 0 - 1

ATC_RAT_RLL_ILMI: Roll axis rate controller I-term leak minimum

Note: This parameter is for advanced users

Point below which I-term will not leak down

Range
0 - 1

ATC_RAT_RLL_D (AC_AttitudeControl_Heli): Roll axis rate controller D gain

Roll axis rate controller D gain. Compensates for short-term change in desired roll rate vs actual roll rate

Increment Range
0.001 0.0 - 0.03

ATC_RAT_RLL_VFF: Roll axis rate controller feed forward

Roll axis rate controller feed forward

Increment Range
0.001 0.05 - 0.5

ATC_RAT_RLL_FLTT (AC_AttitudeControl_Heli): Roll axis rate controller target frequency in Hz

Roll axis rate controller target frequency in Hz

Increment Range Units
1 5 - 50 hertz

ATC_RAT_RLL_FLTE (AC_AttitudeControl_Heli): Roll axis rate controller error frequency in Hz

Roll axis rate controller error frequency in Hz

Increment Range Units
1 5 - 50 hertz

ATC_RAT_RLL_FLTD (AC_AttitudeControl_Heli): Roll axis rate controller derivative frequency in Hz

Roll axis rate controller derivative frequency in Hz

Increment Range Units
1 0 - 50 hertz

ATC_RAT_RLL_SMAX (AC_AttitudeControl_Heli): Roll slew rate limit

Note: This parameter is for advanced users

Sets an upper limit on the slew rate produced by the combined P and D gains. If the amplitude of the control action produced by the rate feedback exceeds this value, then the D+P gain is reduced to respect the limit. This limits the amplitude of high frequency oscillations caused by an excessive gain. The limit should be set to no more than 25% of the actuators maximum slew rate to allow for load effects. Note: The gain will not be reduced to less than 10% of the nominal value. A value of zero will disable this feature.

Increment Range
0.5 0 - 200

ATC_RAT_PIT_P (AC_AttitudeControl_Heli): Pitch axis rate controller P gain

Pitch axis rate controller P gain. Converts the difference between desired pitch rate and actual pitch rate into a motor speed output

Increment Range
0.005 0.0 - 0.35

ATC_RAT_PIT_I (AC_AttitudeControl_Heli): Pitch axis rate controller I gain

Pitch axis rate controller I gain. Corrects long-term difference in desired pitch rate vs actual pitch rate

Increment Range
0.01 0.0 - 0.6

ATC_RAT_PIT_IMAX (AC_AttitudeControl_Heli): Pitch axis rate controller I gain maximum

Pitch axis rate controller I gain maximum. Constrains the maximum motor output that the I gain will output

Increment Range
0.01 0 - 1

ATC_RAT_PIT_ILMI: Pitch axis rate controller I-term leak minimum

Note: This parameter is for advanced users

Point below which I-term will not leak down

Range
0 - 1

ATC_RAT_PIT_D (AC_AttitudeControl_Heli): Pitch axis rate controller D gain

Pitch axis rate controller D gain. Compensates for short-term change in desired pitch rate vs actual pitch rate

Increment Range
0.001 0.0 - 0.03

ATC_RAT_PIT_VFF: Pitch axis rate controller feed forward

Pitch axis rate controller feed forward

Increment Range
0.001 0.05 - 0.5

ATC_RAT_PIT_FLTT (AC_AttitudeControl_Heli): Pitch axis rate controller target frequency in Hz

Pitch axis rate controller target frequency in Hz

Increment Range Units
1 5 - 50 hertz

ATC_RAT_PIT_FLTE (AC_AttitudeControl_Heli): Pitch axis rate controller error frequency in Hz

Pitch axis rate controller error frequency in Hz

Increment Range Units
1 5 - 50 hertz

ATC_RAT_PIT_FLTD (AC_AttitudeControl_Heli): Pitch axis rate controller derivative frequency in Hz

Pitch axis rate controller derivative frequency in Hz

Increment Range Units
1 0 - 50 hertz

ATC_RAT_PIT_SMAX (AC_AttitudeControl_Heli): Pitch slew rate limit

Note: This parameter is for advanced users

Sets an upper limit on the slew rate produced by the combined P and D gains. If the amplitude of the control action produced by the rate feedback exceeds this value, then the D+P gain is reduced to respect the limit. This limits the amplitude of high frequency oscillations caused by an excessive gain. The limit should be set to no more than 25% of the actuators maximum slew rate to allow for load effects. Note: The gain will not be reduced to less than 10% of the nominal value. A value of zero will disable this feature.

Increment Range
0.5 0 - 200

ATC_RAT_YAW_P (AC_AttitudeControl_Heli): Yaw axis rate controller P gain

Yaw axis rate controller P gain. Converts the difference between desired yaw rate and actual yaw rate into a motor speed output

Increment Range
0.005 0.180 - 0.60

ATC_RAT_YAW_I (AC_AttitudeControl_Heli): Yaw axis rate controller I gain

Yaw axis rate controller I gain. Corrects long-term difference in desired yaw rate vs actual yaw rate

Increment Range
0.01 0.01 - 0.2

ATC_RAT_YAW_IMAX (AC_AttitudeControl_Heli): Yaw axis rate controller I gain maximum

Yaw axis rate controller I gain maximum. Constrains the maximum motor output that the I gain will output

Increment Range
0.01 0 - 1

ATC_RAT_YAW_ILMI: Yaw axis rate controller I-term leak minimum

Note: This parameter is for advanced users

Point below which I-term will not leak down

Range
0 - 1

ATC_RAT_YAW_D (AC_AttitudeControl_Heli): Yaw axis rate controller D gain

Yaw axis rate controller D gain. Compensates for short-term change in desired yaw rate vs actual yaw rate

Increment Range
0.001 0.000 - 0.02

ATC_RAT_YAW_VFF: Yaw axis rate controller feed forward

Yaw axis rate controller feed forward

Increment Range
0.001 0 - 0.5

ATC_RAT_YAW_FLTT (AC_AttitudeControl_Heli): Yaw axis rate controller target frequency in Hz

Yaw axis rate controller target frequency in Hz

Increment Range Units
1 5 - 50 hertz

ATC_RAT_YAW_FLTE (AC_AttitudeControl_Heli): Yaw axis rate controller error frequency in Hz

Yaw axis rate controller error frequency in Hz

Increment Range Units
1 5 - 50 hertz

ATC_RAT_YAW_FLTD (AC_AttitudeControl_Heli): Yaw axis rate controller derivative frequency in Hz

Yaw axis rate controller derivative frequency in Hz

Increment Range Units
1 0 - 50 hertz

ATC_RAT_YAW_SMAX (AC_AttitudeControl_Heli): Yaw slew rate limit

Note: This parameter is for advanced users

Sets an upper limit on the slew rate produced by the combined P and D gains. If the amplitude of the control action produced by the rate feedback exceeds this value, then the D+P gain is reduced to respect the limit. This limits the amplitude of high frequency oscillations caused by an excessive gain. The limit should be set to no more than 25% of the actuators maximum slew rate to allow for load effects. Note: The gain will not be reduced to less than 10% of the nominal value. A value of zero will disable this feature.

Increment Range
0.5 0 - 200

ATC_PIRO_COMP: Piro Comp Enable

Note: This parameter is for advanced users

Pirouette compensation enabled

Values
Value Meaning
0 Disabled
1 Enabled

AUTOTUNE_ Parameters

AUTOTUNE_AXES: Autotune axis bitmask

1-byte bitmap of axes to autotune

Bitmask
Bit Meaning
0 Roll
1 Pitch
2 Yaw

AUTOTUNE_AGGR: Autotune aggressiveness

Autotune aggressiveness. Defines the bounce back used to detect size of the D term.

Range
0.05 - 0.10

AUTOTUNE_MIN_D: AutoTune minimum D

Defines the minimum D gain

Range
0.001 - 0.006

AVD_ Parameters

AVD_ENABLE: Enable Avoidance using ADSB

Note: This parameter is for advanced users

Enable Avoidance using ADSB

Values
Value Meaning
0 Disabled
1 Enabled

AVD_F_ACTION: Collision Avoidance Behavior

Note: This parameter is for advanced users

Specifies aircraft behaviour when a collision is imminent

Values
Value Meaning
0 None
1 Report
2 Climb Or Descend
3 Move Horizontally
4 Move Perpendicularly in 3D
5 RTL
6 Hover

AVD_W_ACTION: Collision Avoidance Behavior - Warn

Note: This parameter is for advanced users

Specifies aircraft behaviour when a collision may occur

Values
Value Meaning
0 None
1 Report

AVD_F_RCVRY: Recovery behaviour after a fail event

Note: This parameter is for advanced users

Determines what the aircraft will do after a fail event is resolved

Values
Value Meaning
0 Remain in AVOID_ADSB
1 Resume previous flight mode
2 RTL
3 Resume if AUTO else Loiter

AVD_OBS_MAX: Maximum number of obstacles to track

Note: This parameter is for advanced users

Maximum number of obstacles to track

AVD_W_TIME: Time Horizon Warn

Note: This parameter is for advanced users

Aircraft velocity vectors are multiplied by this time to determine closest approach. If this results in an approach closer than W_DIST_XY or W_DIST_Z then W_ACTION is undertaken (assuming F_ACTION is not undertaken)

Units
seconds

AVD_F_TIME: Time Horizon Fail

Note: This parameter is for advanced users

Aircraft velocity vectors are multiplied by this time to determine closest approach. If this results in an approach closer than F_DIST_XY or F_DIST_Z then F_ACTION is undertaken

Units
seconds

AVD_W_DIST_XY: Distance Warn XY

Note: This parameter is for advanced users

Closest allowed projected distance before W_ACTION is undertaken

Units
meters

AVD_F_DIST_XY: Distance Fail XY

Note: This parameter is for advanced users

Closest allowed projected distance before F_ACTION is undertaken

Units
meters

AVD_W_DIST_Z: Distance Warn Z

Note: This parameter is for advanced users

Closest allowed projected distance before BEHAVIOUR_W is undertaken

Units
meters

AVD_F_DIST_Z: Distance Fail Z

Note: This parameter is for advanced users

Closest allowed projected distance before BEHAVIOUR_F is undertaken

Units
meters

AVD_F_ALT_MIN: ADS-B avoidance minimum altitude

Note: This parameter is for advanced users

Minimum AMSL (above mean sea level) altitude for ADS-B avoidance. If the vehicle is below this altitude, no avoidance action will take place. Useful to prevent ADS-B avoidance from activating while below the tree line or around structures. Default of 0 is no minimum.

Units
meters

AVOID_ Parameters

AVOID_ENABLE: Avoidance control enable/disable

Enabled/disable avoidance input sources

Bitmask
Bit Meaning
0 UseFence
1 UseProximitySensor
2 UseBeaconFence

AVOID_ANGLE_MAX: Avoidance max lean angle in non-GPS flight modes

Max lean angle used to avoid obstacles while in non-GPS modes

Increment Range Units
10 0 - 4500 centidegrees

AVOID_DIST_MAX: Avoidance distance maximum in non-GPS flight modes

Distance from object at which obstacle avoidance will begin in non-GPS modes

Range Units
1 - 30 meters

AVOID_MARGIN: Avoidance distance margin in GPS modes

Vehicle will attempt to stay at least this distance (in meters) from objects while in GPS modes

Range Units
1 - 10 meters

AVOID_BEHAVE: Avoidance behaviour

Avoidance behaviour (slide or stop)

Values
Value Meaning
0 Slide
1 Stop

AVOID_BACKUP_SPD: Avoidance maximum backup speed

Maximum speed that will be used to back away from obstacles in GPS modes (m/s). Set zero to disable

Range Units
0 - 2 meters per second

AVOID_ALT_MIN: Avoidance minimum altitude

Minimum altitude above which proximity based avoidance will start working. This requires a valid downward facing rangefinder reading to work. Set zero to disable

Range Units
0 - 6 meters

AVOID_ACCEL_MAX: Avoidance maximum acceleration

Maximum acceleration with which obstacles will be avoided with. Set zero to disable acceleration limits

Range Units
0 - 9 meters per square second

AVOID_BACKUP_DZ: Avoidance deadzone between stopping and backing away from obstacle

Distance beyond AVOID_MARGIN parameter, after which vehicle will backaway from obstacles. Increase this parameter if you see vehicle going back and forth in front of obstacle.

Range Units
0 - 2 meters

BARO Parameters

BARO1_GND_PRESS: Ground Pressure

Note: This parameter is for advanced users

calibrated ground pressure in Pascals

Increment ReadOnly Units Volatile
1 True pascal True

BARO_GND_TEMP: ground temperature

Note: This parameter is for advanced users

User provided ambient ground temperature in degrees Celsius. This is used to improve the calculation of the altitude the vehicle is at. This parameter is not persistent and will be reset to 0 every time the vehicle is rebooted. A value of 0 means use the internal measurement ambient temperature.

Increment Units Volatile
1 degrees Celsius True

BARO_ALT_OFFSET: altitude offset

Note: This parameter is for advanced users

altitude offset in meters added to barometric altitude. This is used to allow for automatic adjustment of the base barometric altitude by a ground station equipped with a barometer. The value is added to the barometric altitude read by the aircraft. It is automatically reset to 0 when the barometer is calibrated on each reboot or when a preflight calibration is performed.

Increment Units
0.1 meters

BARO_PRIMARY: Primary barometer

Note: This parameter is for advanced users

This selects which barometer will be the primary if multiple barometers are found

Values
Value Meaning
0 FirstBaro
1 2ndBaro
2 3rdBaro

BARO_EXT_BUS: External baro bus

Note: This parameter is for advanced users

This selects the bus number for looking for an I2C barometer. When set to -1 it will probe all external i2c buses based on the GND_PROBE_EXT parameter.

Values
Value Meaning
-1 Disabled
0 Bus0
1 Bus1

BARO_SPEC_GRAV: Specific Gravity (For water depth measurement)

This sets the specific gravity of the fluid when flying an underwater ROV.

Values
1.0:Freshwater,1.024:Saltwater

BARO2_GND_PRESS: Ground Pressure

Note: This parameter is for advanced users

calibrated ground pressure in Pascals

Increment ReadOnly Units Volatile
1 True pascal True

BARO3_GND_PRESS: Absolute Pressure

Note: This parameter is for advanced users

calibrated ground pressure in Pascals

Increment ReadOnly Units Volatile
1 True pascal True

BARO_FLTR_RNG: Range in which sample is accepted

This sets the range around the average value that new samples must be within to be accepted. This can help reduce the impact of noise on sensors that are on long I2C cables. The value is a percentage from the average value. A value of zero disables this filter.

Increment Range Units
1 0 - 100 percent

BARO_PROBE_EXT: External barometers to probe

Note: This parameter is for advanced users

This sets which types of external i2c barometer to look for. It is a bitmask of barometer types. The I2C buses to probe is based on GND_EXT_BUS. If BARO_EXT_BUS is -1 then it will probe all external buses, otherwise it will probe just the bus number given in GND_EXT_BUS.

Bitmask
Bit Meaning
0 BMP085
1 BMP280
2 MS5611
3 MS5607
4 MS5637
5 FBM320
6 DPS280
7 LPS25H
8 Keller
9 MS5837
10 BMP388
11 SPL06
12 MSP

BARO1_DEVID: Baro ID

Note: This parameter is for advanced users

Barometer sensor ID, taking into account its type, bus and instance

ReadOnly
True

BARO2_DEVID: Baro ID2

Note: This parameter is for advanced users

Barometer2 sensor ID, taking into account its type, bus and instance

ReadOnly
True

BARO3_DEVID: Baro ID3

Note: This parameter is for advanced users

Barometer3 sensor ID, taking into account its type, bus and instance

ReadOnly
True

BARO1_WCF_ Parameters

BARO1_WCF_ENABLE: Wind coefficient enable

Note: This parameter is for advanced users

This enables the use of wind coefficients for barometer compensation

Values
Value Meaning
0 Disabled
1 Enabled

BARO1_WCF_FWD: Pressure error coefficient in positive X direction (forward)

Note: This parameter is for advanced users

This is the ratio of static pressure error to dynamic pressure generated by a positive wind relative velocity along the X body axis. If the baro height estimate rises during forwards flight, then this will be a negative number. Multirotors can use this feature only if using EKF3 and if the EK3_BCOEF_X and EK3_BCOEF_Y parameters have been tuned.

Increment Range
0.05 -1.0 - 1.0

BARO1_WCF_BCK: Pressure error coefficient in negative X direction (backwards)

Note: This parameter is for advanced users

This is the ratio of static pressure error to dynamic pressure generated by a negative wind relative velocity along the X body axis. If the baro height estimate rises during backwards flight, then this will be a negative number. Multirotors can use this feature only if using EKF3 and if the EK3_BCOEF_X and EK3_BCOEF_Y parameters have been tuned.

Increment Range
0.05 -1.0 - 1.0

BARO1_WCF_RGT: Pressure error coefficient in positive Y direction (right)

Note: This parameter is for advanced users

This is the ratio of static pressure error to dynamic pressure generated by a positive wind relative velocity along the Y body axis. If the baro height estimate rises during sideways flight to the right, then this should be a negative number. Multirotors can use this feature only if using EKF3 and if the EK3_BCOEF_X and EK3_BCOEF_Y parameters have been tuned.

Increment Range
0.05 -1.0 - 1.0

BARO1_WCF_LFT: Pressure error coefficient in negative Y direction (left)

Note: This parameter is for advanced users

This is the ratio of static pressure error to dynamic pressure generated by a negative wind relative velocity along the Y body axis. If the baro height estimate rises during sideways flight to the left, then this should be a negative number. Multirotors can use this feature only if using EKF3 and if the EK3_BCOEF_X and EK3_BCOEF_Y parameters have been tuned.

Increment Range
0.05 -1.0 - 1.0

BARO2_WCF_ Parameters

BARO2_WCF_ENABLE: Wind coefficient enable

Note: This parameter is for advanced users

This enables the use of wind coefficients for barometer compensation

Values
Value Meaning
0 Disabled
1 Enabled

BARO2_WCF_FWD: Pressure error coefficient in positive X direction (forward)

Note: This parameter is for advanced users

This is the ratio of static pressure error to dynamic pressure generated by a positive wind relative velocity along the X body axis. If the baro height estimate rises during forwards flight, then this will be a negative number. Multirotors can use this feature only if using EKF3 and if the EK3_BCOEF_X and EK3_BCOEF_Y parameters have been tuned.

Increment Range
0.05 -1.0 - 1.0

BARO2_WCF_BCK: Pressure error coefficient in negative X direction (backwards)

Note: This parameter is for advanced users

This is the ratio of static pressure error to dynamic pressure generated by a negative wind relative velocity along the X body axis. If the baro height estimate rises during backwards flight, then this will be a negative number. Multirotors can use this feature only if using EKF3 and if the EK3_BCOEF_X and EK3_BCOEF_Y parameters have been tuned.

Increment Range
0.05 -1.0 - 1.0

BARO2_WCF_RGT: Pressure error coefficient in positive Y direction (right)

Note: This parameter is for advanced users

This is the ratio of static pressure error to dynamic pressure generated by a positive wind relative velocity along the Y body axis. If the baro height estimate rises during sideways flight to the right, then this should be a negative number. Multirotors can use this feature only if using EKF3 and if the EK3_BCOEF_X and EK3_BCOEF_Y parameters have been tuned.

Increment Range
0.05 -1.0 - 1.0

BARO2_WCF_LFT: Pressure error coefficient in negative Y direction (left)

Note: This parameter is for advanced users

This is the ratio of static pressure error to dynamic pressure generated by a negative wind relative velocity along the Y body axis. If the baro height estimate rises during sideways flight to the left, then this should be a negative number. Multirotors can use this feature only if using EKF3 and if the EK3_BCOEF_X and EK3_BCOEF_Y parameters have been tuned.

Increment Range
0.05 -1.0 - 1.0

BARO3_WCF_ Parameters

BARO3_WCF_ENABLE: Wind coefficient enable

Note: This parameter is for advanced users

This enables the use of wind coefficients for barometer compensation

Values
Value Meaning
0 Disabled
1 Enabled

BARO3_WCF_FWD: Pressure error coefficient in positive X direction (forward)

Note: This parameter is for advanced users

This is the ratio of static pressure error to dynamic pressure generated by a positive wind relative velocity along the X body axis. If the baro height estimate rises during forwards flight, then this will be a negative number. Multirotors can use this feature only if using EKF3 and if the EK3_BCOEF_X and EK3_BCOEF_Y parameters have been tuned.

Increment Range
0.05 -1.0 - 1.0

BARO3_WCF_BCK: Pressure error coefficient in negative X direction (backwards)

Note: This parameter is for advanced users

This is the ratio of static pressure error to dynamic pressure generated by a negative wind relative velocity along the X body axis. If the baro height estimate rises during backwards flight, then this will be a negative number. Multirotors can use this feature only if using EKF3 and if the EK3_BCOEF_X and EK3_BCOEF_Y parameters have been tuned.

Increment Range
0.05 -1.0 - 1.0

BARO3_WCF_RGT: Pressure error coefficient in positive Y direction (right)

Note: This parameter is for advanced users

This is the ratio of static pressure error to dynamic pressure generated by a positive wind relative velocity along the Y body axis. If the baro height estimate rises during sideways flight to the right, then this should be a negative number. Multirotors can use this feature only if using EKF3 and if the EK3_BCOEF_X and EK3_BCOEF_Y parameters have been tuned.

Increment Range
0.05 -1.0 - 1.0

BARO3_WCF_LFT: Pressure error coefficient in negative Y direction (left)

Note: This parameter is for advanced users

This is the ratio of static pressure error to dynamic pressure generated by a negative wind relative velocity along the Y body axis. If the baro height estimate rises during sideways flight to the left, then this should be a negative number. Multirotors can use this feature only if using EKF3 and if the EK3_BCOEF_X and EK3_BCOEF_Y parameters have been tuned.

Increment Range
0.05 -1.0 - 1.0

BATT2_ Parameters

BATT2_MONITOR: Battery monitoring

Controls enabling monitoring of the battery’s voltage and current

RebootRequired Values
True
Value Meaning
0 Disabled
3 Analog Voltage Only
4 Analog Voltage and Current
5 Solo
6 Bebop
7 SMBus-Generic
8 UAVCAN-BatteryInfo
9 ESC
10 SumOfFollowing
11 FuelFlow
12 FuelLevelPWM
13 SMBUS-SUI3
14 SMBUS-SUI6
15 NeoDesign
16 SMBus-Maxell
17 Generator-Elec
18 Generator-Fuel
19 Rotoye

BATT2_VOLT_PIN: Battery Voltage sensing pin

Sets the analog input pin that should be used for voltage monitoring.

RebootRequired Values
True
Value Meaning
-1 Disabled
2 Pixhawk/Pixracer/Navio2/Pixhawk2_PM1
13 Pixhawk2_PM2/CubeOrange_PM2
14 CubeOrange
16 Durandal
100 PX4-v1

BATT2_CURR_PIN: Battery Current sensing pin

Sets the analog input pin that should be used for current monitoring.

RebootRequired Values
True
Value Meaning
-1 Disabled
3 Pixhawk/Pixracer/Navio2/Pixhawk2_PM1
4 CubeOrange_PM2
14 Pixhawk2_PM2
15 CubeOrange
17 Durandal
101 PX4-v1

BATT2_VOLT_MULT: Voltage Multiplier

Note: This parameter is for advanced users

Used to convert the voltage of the voltage sensing pin (BATT2_VOLT_PIN) to the actual battery’s voltage (pin_voltage * VOLT_MULT). For the 3DR Power brick with a Pixhawk, this should be set to 10.1. For the Pixhawk with the 3DR 4in1 ESC this should be 12.02. For the PX using the PX4IO power supply this should be set to 1.

BATT2_AMP_PERVLT: Amps per volt

Number of amps that a 1V reading on the current sensor corresponds to. With a Pixhawk using the 3DR Power brick this should be set to 17. For the Pixhawk with the 3DR 4in1 ESC this should be 17.

Units
ampere per volt

BATT2_AMP_OFFSET: AMP offset

Voltage offset at zero current on current sensor

Units
volt

BATT2_CAPACITY: Battery capacity

Capacity of the battery in mAh when full

Increment Units
50 milliampere hour

BATT2_SERIAL_NUM: Battery serial number

Note: This parameter is for advanced users

Battery serial number, automatically filled in for SMBus batteries, otherwise will be -1. With UAVCAN it is the battery_id.

BATT2_LOW_TIMER: Low voltage timeout

Note: This parameter is for advanced users

This is the timeout in seconds before a low voltage event will be triggered. For aircraft with low C batteries it may be necessary to raise this in order to cope with low voltage on long takeoffs. A value of zero disables low voltage errors.

Increment Range Units
1 0 - 120 seconds

BATT2_FS_VOLTSRC: Failsafe voltage source

Note: This parameter is for advanced users

Voltage type used for detection of low voltage event

Values
Value Meaning
0 Raw Voltage
1 Sag Compensated Voltage

BATT2_LOW_VOLT: Low battery voltage

Battery voltage that triggers a low battery failsafe. Set to 0 to disable. If the battery voltage drops below this voltage continuously for more then the period specified by the BATT2_LOW_TIMER parameter then the vehicle will perform the failsafe specified by the BATT2_FS_LOW_ACT parameter.

Increment Units
0.1 volt

BATT2_LOW_MAH: Low battery capacity

Battery capacity at which the low battery failsafe is triggered. Set to 0 to disable battery remaining failsafe. If the battery capacity drops below this level the vehicle will perform the failsafe specified by the BATT2_FS_LOW_ACT parameter.

Increment Units
50 milliampere hour

BATT2_CRT_VOLT: Critical battery voltage

Battery voltage that triggers a critical battery failsafe. Set to 0 to disable. If the battery voltage drops below this voltage continuously for more then the period specified by the BATT2_LOW_TIMER parameter then the vehicle will perform the failsafe specified by the BATT2_FS_CRT_ACT parameter.

Increment Units
0.1 volt

BATT2_CRT_MAH: Battery critical capacity

Battery capacity at which the critical battery failsafe is triggered. Set to 0 to disable battery remaining failsafe. If the battery capacity drops below this level the vehicle will perform the failsafe specified by the BATT2__FS_CRT_ACT parameter.

Increment Units
50 milliampere hour

BATT2_FS_LOW_ACT: Low battery failsafe action

What action the vehicle should perform if it hits a low battery failsafe

Values
Value Meaning
0 None
1 Land
2 RTL
3 SmartRTL or RTL
4 SmartRTL or Land
5 Terminate

BATT2_FS_CRT_ACT: Critical battery failsafe action

What action the vehicle should perform if it hits a critical battery failsafe

Values
Value Meaning
0 None
1 Land
2 RTL
3 SmartRTL or RTL
4 SmartRTL or Land
5 Terminate

BATT2_ARM_VOLT: Required arming voltage

Note: This parameter is for advanced users

Battery voltage level which is required to arm the aircraft. Set to 0 to allow arming at any voltage.

Increment Units
0.1 volt

BATT2_ARM_MAH: Required arming remaining capacity

Note: This parameter is for advanced users

Battery capacity remaining which is required to arm the aircraft. Set to 0 to allow arming at any capacity. Note that execept for smart batteries rebooting the vehicle will always reset the remaining capacity estimate, which can lead to this check not providing sufficent protection, it is recommended to always use this in conjunction with the BATT2__ARM_VOLT parameter.

Increment Units
50 milliampere hour

BATT2_BUS: Battery monitor I2C bus number

Battery monitor I2C bus number

Range
0 - 3

BATT2_OPTIONS: Battery monitor options

Note: This parameter is for advanced users

This sets options to change the behaviour of the battery monitor

Bitmask
Bit Meaning
0 Ignore UAVCAN SoC

BATT3_ Parameters

BATT3_MONITOR: Battery monitoring

Controls enabling monitoring of the battery’s voltage and current

RebootRequired Values
True
Value Meaning
0 Disabled
3 Analog Voltage Only
4 Analog Voltage and Current
5 Solo
6 Bebop
7 SMBus-Generic
8 UAVCAN-BatteryInfo
9 ESC
10 SumOfFollowing
11 FuelFlow
12 FuelLevelPWM
13 SMBUS-SUI3
14 SMBUS-SUI6
15 NeoDesign
16 SMBus-Maxell
17 Generator-Elec
18 Generator-Fuel
19 Rotoye

BATT3_VOLT_PIN: Battery Voltage sensing pin

Sets the analog input pin that should be used for voltage monitoring.

RebootRequired Values
True
Value Meaning
-1 Disabled
2 Pixhawk/Pixracer/Navio2/Pixhawk2_PM1
13 Pixhawk2_PM2/CubeOrange_PM2
14 CubeOrange
16 Durandal
100 PX4-v1

BATT3_CURR_PIN: Battery Current sensing pin

Sets the analog input pin that should be used for current monitoring.

RebootRequired Values
True
Value Meaning
-1 Disabled
3 Pixhawk/Pixracer/Navio2/Pixhawk2_PM1
4 CubeOrange_PM2
14 Pixhawk2_PM2
15 CubeOrange
17 Durandal
101 PX4-v1

BATT3_VOLT_MULT: Voltage Multiplier

Note: This parameter is for advanced users

Used to convert the voltage of the voltage sensing pin (BATT3_VOLT_PIN) to the actual battery’s voltage (pin_voltage * VOLT_MULT). For the 3DR Power brick with a Pixhawk, this should be set to 10.1. For the Pixhawk with the 3DR 4in1 ESC this should be 12.02. For the PX using the PX4IO power supply this should be set to 1.

BATT3_AMP_PERVLT: Amps per volt

Number of amps that a 1V reading on the current sensor corresponds to. With a Pixhawk using the 3DR Power brick this should be set to 17. For the Pixhawk with the 3DR 4in1 ESC this should be 17.

Units
ampere per volt

BATT3_AMP_OFFSET: AMP offset

Voltage offset at zero current on current sensor

Units
volt

BATT3_CAPACITY: Battery capacity

Capacity of the battery in mAh when full

Increment Units
50 milliampere hour

BATT3_SERIAL_NUM: Battery serial number

Note: This parameter is for advanced users

Battery serial number, automatically filled in for SMBus batteries, otherwise will be -1. With UAVCAN it is the battery_id.

BATT3_LOW_TIMER: Low voltage timeout

Note: This parameter is for advanced users

This is the timeout in seconds before a low voltage event will be triggered. For aircraft with low C batteries it may be necessary to raise this in order to cope with low voltage on long takeoffs. A value of zero disables low voltage errors.

Increment Range Units
1 0 - 120 seconds

BATT3_FS_VOLTSRC: Failsafe voltage source

Note: This parameter is for advanced users

Voltage type used for detection of low voltage event

Values
Value Meaning
0 Raw Voltage
1 Sag Compensated Voltage

BATT3_LOW_VOLT: Low battery voltage

Battery voltage that triggers a low battery failsafe. Set to 0 to disable. If the battery voltage drops below this voltage continuously for more then the period specified by the BATT3_LOW_TIMER parameter then the vehicle will perform the failsafe specified by the BATT3_FS_LOW_ACT parameter.

Increment Units
0.1 volt

BATT3_LOW_MAH: Low battery capacity

Battery capacity at which the low battery failsafe is triggered. Set to 0 to disable battery remaining failsafe. If the battery capacity drops below this level the vehicle will perform the failsafe specified by the BATT3_FS_LOW_ACT parameter.

Increment Units
50 milliampere hour

BATT3_CRT_VOLT: Critical battery voltage

Battery voltage that triggers a critical battery failsafe. Set to 0 to disable. If the battery voltage drops below this voltage continuously for more then the period specified by the BATT3_LOW_TIMER parameter then the vehicle will perform the failsafe specified by the BATT3_FS_CRT_ACT parameter.

Increment Units
0.1 volt

BATT3_CRT_MAH: Battery critical capacity

Battery capacity at which the critical battery failsafe is triggered. Set to 0 to disable battery remaining failsafe. If the battery capacity drops below this level the vehicle will perform the failsafe specified by the BATT3__FS_CRT_ACT parameter.

Increment Units
50 milliampere hour

BATT3_FS_LOW_ACT: Low battery failsafe action

What action the vehicle should perform if it hits a low battery failsafe

Values
Value Meaning
0 None
1 Land
2 RTL
3 SmartRTL or RTL
4 SmartRTL or Land
5 Terminate

BATT3_FS_CRT_ACT: Critical battery failsafe action

What action the vehicle should perform if it hits a critical battery failsafe

Values
Value Meaning
0 None
1 Land
2 RTL
3 SmartRTL or RTL
4 SmartRTL or Land
5 Terminate

BATT3_ARM_VOLT: Required arming voltage

Note: This parameter is for advanced users

Battery voltage level which is required to arm the aircraft. Set to 0 to allow arming at any voltage.

Increment Units
0.1 volt

BATT3_ARM_MAH: Required arming remaining capacity

Note: This parameter is for advanced users

Battery capacity remaining which is required to arm the aircraft. Set to 0 to allow arming at any capacity. Note that execept for smart batteries rebooting the vehicle will always reset the remaining capacity estimate, which can lead to this check not providing sufficent protection, it is recommended to always use this in conjunction with the BATT3__ARM_VOLT parameter.

Increment Units
50 milliampere hour

BATT3_BUS: Battery monitor I2C bus number

Battery monitor I2C bus number

Range
0 - 3

BATT3_OPTIONS: Battery monitor options

Note: This parameter is for advanced users

This sets options to change the behaviour of the battery monitor

Bitmask
Bit Meaning
0 Ignore UAVCAN SoC

BATT4_ Parameters

BATT4_MONITOR: Battery monitoring

Controls enabling monitoring of the battery’s voltage and current

RebootRequired Values
True
Value Meaning
0 Disabled
3 Analog Voltage Only
4 Analog Voltage and Current
5 Solo
6 Bebop
7 SMBus-Generic
8 UAVCAN-BatteryInfo
9 ESC
10 SumOfFollowing
11 FuelFlow
12 FuelLevelPWM
13 SMBUS-SUI3
14 SMBUS-SUI6
15 NeoDesign
16 SMBus-Maxell
17 Generator-Elec
18 Generator-Fuel
19 Rotoye

BATT4_VOLT_PIN: Battery Voltage sensing pin

Sets the analog input pin that should be used for voltage monitoring.

RebootRequired Values
True
Value Meaning
-1 Disabled
2 Pixhawk/Pixracer/Navio2/Pixhawk2_PM1
13 Pixhawk2_PM2/CubeOrange_PM2
14 CubeOrange
16 Durandal
100 PX4-v1

BATT4_CURR_PIN: Battery Current sensing pin

Sets the analog input pin that should be used for current monitoring.

RebootRequired Values
True
Value Meaning
-1 Disabled
3 Pixhawk/Pixracer/Navio2/Pixhawk2_PM1
4 CubeOrange_PM2
14 Pixhawk2_PM2
15 CubeOrange
17 Durandal
101 PX4-v1

BATT4_VOLT_MULT: Voltage Multiplier

Note: This parameter is for advanced users

Used to convert the voltage of the voltage sensing pin (BATT4_VOLT_PIN) to the actual battery’s voltage (pin_voltage * VOLT_MULT). For the 3DR Power brick with a Pixhawk, this should be set to 10.1. For the Pixhawk with the 3DR 4in1 ESC this should be 12.02. For the PX using the PX4IO power supply this should be set to 1.

BATT4_AMP_PERVLT: Amps per volt

Number of amps that a 1V reading on the current sensor corresponds to. With a Pixhawk using the 3DR Power brick this should be set to 17. For the Pixhawk with the 3DR 4in1 ESC this should be 17.

Units
ampere per volt

BATT4_AMP_OFFSET: AMP offset

Voltage offset at zero current on current sensor

Units
volt

BATT4_CAPACITY: Battery capacity

Capacity of the battery in mAh when full

Increment Units
50 milliampere hour

BATT4_SERIAL_NUM: Battery serial number

Note: This parameter is for advanced users

Battery serial number, automatically filled in for SMBus batteries, otherwise will be -1. With UAVCAN it is the battery_id.

BATT4_LOW_TIMER: Low voltage timeout

Note: This parameter is for advanced users

This is the timeout in seconds before a low voltage event will be triggered. For aircraft with low C batteries it may be necessary to raise this in order to cope with low voltage on long takeoffs. A value of zero disables low voltage errors.

Increment Range Units
1 0 - 120 seconds

BATT4_FS_VOLTSRC: Failsafe voltage source

Note: This parameter is for advanced users

Voltage type used for detection of low voltage event

Values
Value Meaning
0 Raw Voltage
1 Sag Compensated Voltage

BATT4_LOW_VOLT: Low battery voltage

Battery voltage that triggers a low battery failsafe. Set to 0 to disable. If the battery voltage drops below this voltage continuously for more then the period specified by the BATT4_LOW_TIMER parameter then the vehicle will perform the failsafe specified by the BATT4_FS_LOW_ACT parameter.

Increment Units
0.1 volt

BATT4_LOW_MAH: Low battery capacity

Battery capacity at which the low battery failsafe is triggered. Set to 0 to disable battery remaining failsafe. If the battery capacity drops below this level the vehicle will perform the failsafe specified by the BATT4_FS_LOW_ACT parameter.

Increment Units
50 milliampere hour

BATT4_CRT_VOLT: Critical battery voltage

Battery voltage that triggers a critical battery failsafe. Set to 0 to disable. If the battery voltage drops below this voltage continuously for more then the period specified by the BATT4_LOW_TIMER parameter then the vehicle will perform the failsafe specified by the BATT4_FS_CRT_ACT parameter.

Increment Units
0.1 volt

BATT4_CRT_MAH: Battery critical capacity

Battery capacity at which the critical battery failsafe is triggered. Set to 0 to disable battery remaining failsafe. If the battery capacity drops below this level the vehicle will perform the failsafe specified by the BATT4__FS_CRT_ACT parameter.

Increment Units
50 milliampere hour

BATT4_FS_LOW_ACT: Low battery failsafe action

What action the vehicle should perform if it hits a low battery failsafe

Values
Value Meaning
0 None
1 Land
2 RTL
3 SmartRTL or RTL
4 SmartRTL or Land
5 Terminate

BATT4_FS_CRT_ACT: Critical battery failsafe action

What action the vehicle should perform if it hits a critical battery failsafe

Values
Value Meaning
0 None
1 Land
2 RTL
3 SmartRTL or RTL
4 SmartRTL or Land
5 Terminate

BATT4_ARM_VOLT: Required arming voltage

Note: This parameter is for advanced users

Battery voltage level which is required to arm the aircraft. Set to 0 to allow arming at any voltage.

Increment Units
0.1 volt

BATT4_ARM_MAH: Required arming remaining capacity

Note: This parameter is for advanced users

Battery capacity remaining which is required to arm the aircraft. Set to 0 to allow arming at any capacity. Note that execept for smart batteries rebooting the vehicle will always reset the remaining capacity estimate, which can lead to this check not providing sufficent protection, it is recommended to always use this in conjunction with the BATT4__ARM_VOLT parameter.

Increment Units
50 milliampere hour

BATT4_BUS: Battery monitor I2C bus number

Battery monitor I2C bus number

Range
0 - 3

BATT4_OPTIONS: Battery monitor options

Note: This parameter is for advanced users

This sets options to change the behaviour of the battery monitor

Bitmask
Bit Meaning
0 Ignore UAVCAN SoC

BATT5_ Parameters

BATT5_MONITOR: Battery monitoring

Controls enabling monitoring of the battery’s voltage and current

RebootRequired Values
True
Value Meaning
0 Disabled
3 Analog Voltage Only
4 Analog Voltage and Current
5 Solo
6 Bebop
7 SMBus-Generic
8 UAVCAN-BatteryInfo
9 ESC
10 SumOfFollowing
11 FuelFlow
12 FuelLevelPWM
13 SMBUS-SUI3
14 SMBUS-SUI6
15 NeoDesign
16 SMBus-Maxell
17 Generator-Elec
18 Generator-Fuel
19 Rotoye

BATT5_VOLT_PIN: Battery Voltage sensing pin

Sets the analog input pin that should be used for voltage monitoring.

RebootRequired Values
True
Value Meaning
-1 Disabled
2 Pixhawk/Pixracer/Navio2/Pixhawk2_PM1
13 Pixhawk2_PM2/CubeOrange_PM2
14 CubeOrange
16 Durandal
100 PX4-v1

BATT5_CURR_PIN: Battery Current sensing pin

Sets the analog input pin that should be used for current monitoring.

RebootRequired Values
True
Value Meaning
-1 Disabled
3 Pixhawk/Pixracer/Navio2/Pixhawk2_PM1
4 CubeOrange_PM2
14 Pixhawk2_PM2
15 CubeOrange
17 Durandal
101 PX4-v1

BATT5_VOLT_MULT: Voltage Multiplier

Note: This parameter is for advanced users

Used to convert the voltage of the voltage sensing pin (BATT5_VOLT_PIN) to the actual battery’s voltage (pin_voltage * VOLT_MULT). For the 3DR Power brick with a Pixhawk, this should be set to 10.1. For the Pixhawk with the 3DR 4in1 ESC this should be 12.02. For the PX using the PX4IO power supply this should be set to 1.

BATT5_AMP_PERVLT: Amps per volt

Number of amps that a 1V reading on the current sensor corresponds to. With a Pixhawk using the 3DR Power brick this should be set to 17. For the Pixhawk with the 3DR 4in1 ESC this should be 17.

Units
ampere per volt

BATT5_AMP_OFFSET: AMP offset

Voltage offset at zero current on current sensor

Units
volt

BATT5_CAPACITY: Battery capacity

Capacity of the battery in mAh when full

Increment Units
50 milliampere hour

BATT5_SERIAL_NUM: Battery serial number

Note: This parameter is for advanced users

Battery serial number, automatically filled in for SMBus batteries, otherwise will be -1. With UAVCAN it is the battery_id.

BATT5_LOW_TIMER: Low voltage timeout

Note: This parameter is for advanced users

This is the timeout in seconds before a low voltage event will be triggered. For aircraft with low C batteries it may be necessary to raise this in order to cope with low voltage on long takeoffs. A value of zero disables low voltage errors.

Increment Range Units
1 0 - 120 seconds

BATT5_FS_VOLTSRC: Failsafe voltage source

Note: This parameter is for advanced users

Voltage type used for detection of low voltage event

Values
Value Meaning
0 Raw Voltage
1 Sag Compensated Voltage

BATT5_LOW_VOLT: Low battery voltage

Battery voltage that triggers a low battery failsafe. Set to 0 to disable. If the battery voltage drops below this voltage continuously for more then the period specified by the BATT5_LOW_TIMER parameter then the vehicle will perform the failsafe specified by the BATT5_FS_LOW_ACT parameter.

Increment Units
0.1 volt

BATT5_LOW_MAH: Low battery capacity

Battery capacity at which the low battery failsafe is triggered. Set to 0 to disable battery remaining failsafe. If the battery capacity drops below this level the vehicle will perform the failsafe specified by the BATT5_FS_LOW_ACT parameter.

Increment Units
50 milliampere hour

BATT5_CRT_VOLT: Critical battery voltage

Battery voltage that triggers a critical battery failsafe. Set to 0 to disable. If the battery voltage drops below this voltage continuously for more then the period specified by the BATT5_LOW_TIMER parameter then the vehicle will perform the failsafe specified by the BATT5_FS_CRT_ACT parameter.

Increment Units
0.1 volt

BATT5_CRT_MAH: Battery critical capacity

Battery capacity at which the critical battery failsafe is triggered. Set to 0 to disable battery remaining failsafe. If the battery capacity drops below this level the vehicle will perform the failsafe specified by the BATT5__FS_CRT_ACT parameter.

Increment Units
50 milliampere hour

BATT5_FS_LOW_ACT: Low battery failsafe action

What action the vehicle should perform if it hits a low battery failsafe

Values
Value Meaning
0 None
1 Land
2 RTL
3 SmartRTL or RTL
4 SmartRTL or Land
5 Terminate

BATT5_FS_CRT_ACT: Critical battery failsafe action

What action the vehicle should perform if it hits a critical battery failsafe

Values
Value Meaning
0 None
1 Land
2 RTL
3 SmartRTL or RTL
4 SmartRTL or Land
5 Terminate

BATT5_ARM_VOLT: Required arming voltage

Note: This parameter is for advanced users

Battery voltage level which is required to arm the aircraft. Set to 0 to allow arming at any voltage.

Increment Units
0.1 volt

BATT5_ARM_MAH: Required arming remaining capacity

Note: This parameter is for advanced users

Battery capacity remaining which is required to arm the aircraft. Set to 0 to allow arming at any capacity. Note that execept for smart batteries rebooting the vehicle will always reset the remaining capacity estimate, which can lead to this check not providing sufficent protection, it is recommended to always use this in conjunction with the BATT5__ARM_VOLT parameter.

Increment Units
50 milliampere hour

BATT5_BUS: Battery monitor I2C bus number

Battery monitor I2C bus number

Range
0 - 3

BATT5_OPTIONS: Battery monitor options

Note: This parameter is for advanced users

This sets options to change the behaviour of the battery monitor

Bitmask
Bit Meaning
0 Ignore UAVCAN SoC

BATT6_ Parameters

BATT6_MONITOR: Battery monitoring

Controls enabling monitoring of the battery’s voltage and current

RebootRequired Values
True
Value Meaning
0 Disabled
3 Analog Voltage Only
4 Analog Voltage and Current
5 Solo
6 Bebop
7 SMBus-Generic
8 UAVCAN-BatteryInfo
9 ESC
10 SumOfFollowing
11 FuelFlow
12 FuelLevelPWM
13 SMBUS-SUI3
14 SMBUS-SUI6
15 NeoDesign
16 SMBus-Maxell
17 Generator-Elec
18 Generator-Fuel
19 Rotoye

BATT6_VOLT_PIN: Battery Voltage sensing pin

Sets the analog input pin that should be used for voltage monitoring.

RebootRequired Values
True
Value Meaning
-1 Disabled
2 Pixhawk/Pixracer/Navio2/Pixhawk2_PM1
13 Pixhawk2_PM2/CubeOrange_PM2
14 CubeOrange
16 Durandal
100 PX4-v1

BATT6_CURR_PIN: Battery Current sensing pin

Sets the analog input pin that should be used for current monitoring.

RebootRequired Values
True
Value Meaning
-1 Disabled
3 Pixhawk/Pixracer/Navio2/Pixhawk2_PM1
4 CubeOrange_PM2
14 Pixhawk2_PM2
15 CubeOrange
17 Durandal
101 PX4-v1

BATT6_VOLT_MULT: Voltage Multiplier

Note: This parameter is for advanced users

Used to convert the voltage of the voltage sensing pin (BATT6_VOLT_PIN) to the actual battery’s voltage (pin_voltage * VOLT_MULT). For the 3DR Power brick with a Pixhawk, this should be set to 10.1. For the Pixhawk with the 3DR 4in1 ESC this should be 12.02. For the PX using the PX4IO power supply this should be set to 1.

BATT6_AMP_PERVLT: Amps per volt

Number of amps that a 1V reading on the current sensor corresponds to. With a Pixhawk using the 3DR Power brick this should be set to 17. For the Pixhawk with the 3DR 4in1 ESC this should be 17.

Units
ampere per volt

BATT6_AMP_OFFSET: AMP offset

Voltage offset at zero current on current sensor

Units
volt

BATT6_CAPACITY: Battery capacity

Capacity of the battery in mAh when full

Increment Units
50 milliampere hour

BATT6_SERIAL_NUM: Battery serial number

Note: This parameter is for advanced users

Battery serial number, automatically filled in for SMBus batteries, otherwise will be -1. With UAVCAN it is the battery_id.

BATT6_LOW_TIMER: Low voltage timeout

Note: This parameter is for advanced users

This is the timeout in seconds before a low voltage event will be triggered. For aircraft with low C batteries it may be necessary to raise this in order to cope with low voltage on long takeoffs. A value of zero disables low voltage errors.

Increment Range Units
1 0 - 120 seconds

BATT6_FS_VOLTSRC: Failsafe voltage source

Note: This parameter is for advanced users

Voltage type used for detection of low voltage event

Values
Value Meaning
0 Raw Voltage
1 Sag Compensated Voltage

BATT6_LOW_VOLT: Low battery voltage

Battery voltage that triggers a low battery failsafe. Set to 0 to disable. If the battery voltage drops below this voltage continuously for more then the period specified by the BATT6_LOW_TIMER parameter then the vehicle will perform the failsafe specified by the BATT6_FS_LOW_ACT parameter.

Increment Units
0.1 volt

BATT6_LOW_MAH: Low battery capacity

Battery capacity at which the low battery failsafe is triggered. Set to 0 to disable battery remaining failsafe. If the battery capacity drops below this level the vehicle will perform the failsafe specified by the BATT6_FS_LOW_ACT parameter.

Increment Units
50 milliampere hour

BATT6_CRT_VOLT: Critical battery voltage

Battery voltage that triggers a critical battery failsafe. Set to 0 to disable. If the battery voltage drops below this voltage continuously for more then the period specified by the BATT6_LOW_TIMER parameter then the vehicle will perform the failsafe specified by the BATT6_FS_CRT_ACT parameter.

Increment Units
0.1 volt

BATT6_CRT_MAH: Battery critical capacity

Battery capacity at which the critical battery failsafe is triggered. Set to 0 to disable battery remaining failsafe. If the battery capacity drops below this level the vehicle will perform the failsafe specified by the BATT6__FS_CRT_ACT parameter.

Increment Units
50 milliampere hour

BATT6_FS_LOW_ACT: Low battery failsafe action

What action the vehicle should perform if it hits a low battery failsafe

Values
Value Meaning
0 None
1 Land
2 RTL
3 SmartRTL or RTL
4 SmartRTL or Land
5 Terminate

BATT6_FS_CRT_ACT: Critical battery failsafe action

What action the vehicle should perform if it hits a critical battery failsafe

Values
Value Meaning
0 None
1 Land
2 RTL
3 SmartRTL or RTL
4 SmartRTL or Land
5 Terminate

BATT6_ARM_VOLT: Required arming voltage

Note: This parameter is for advanced users

Battery voltage level which is required to arm the aircraft. Set to 0 to allow arming at any voltage.

Increment Units
0.1 volt

BATT6_ARM_MAH: Required arming remaining capacity

Note: This parameter is for advanced users

Battery capacity remaining which is required to arm the aircraft. Set to 0 to allow arming at any capacity. Note that execept for smart batteries rebooting the vehicle will always reset the remaining capacity estimate, which can lead to this check not providing sufficent protection, it is recommended to always use this in conjunction with the BATT6__ARM_VOLT parameter.

Increment Units
50 milliampere hour

BATT6_BUS: Battery monitor I2C bus number

Battery monitor I2C bus number

Range
0 - 3

BATT6_OPTIONS: Battery monitor options

Note: This parameter is for advanced users

This sets options to change the behaviour of the battery monitor

Bitmask
Bit Meaning
0 Ignore UAVCAN SoC

BATT7_ Parameters

BATT7_MONITOR: Battery monitoring

Controls enabling monitoring of the battery’s voltage and current

RebootRequired Values
True
Value Meaning
0 Disabled
3 Analog Voltage Only
4 Analog Voltage and Current
5 Solo
6 Bebop
7 SMBus-Generic
8 UAVCAN-BatteryInfo
9 ESC
10 SumOfFollowing
11 FuelFlow
12 FuelLevelPWM
13 SMBUS-SUI3
14 SMBUS-SUI6
15 NeoDesign
16 SMBus-Maxell
17 Generator-Elec
18 Generator-Fuel
19 Rotoye

BATT7_VOLT_PIN: Battery Voltage sensing pin

Sets the analog input pin that should be used for voltage monitoring.

RebootRequired Values
True
Value Meaning
-1 Disabled
2 Pixhawk/Pixracer/Navio2/Pixhawk2_PM1
13 Pixhawk2_PM2/CubeOrange_PM2
14 CubeOrange
16 Durandal
100 PX4-v1

BATT7_CURR_PIN: Battery Current sensing pin

Sets the analog input pin that should be used for current monitoring.

RebootRequired Values
True
Value Meaning
-1 Disabled
3 Pixhawk/Pixracer/Navio2/Pixhawk2_PM1
4 CubeOrange_PM2
14 Pixhawk2_PM2
15 CubeOrange
17 Durandal
101 PX4-v1

BATT7_VOLT_MULT: Voltage Multiplier

Note: This parameter is for advanced users

Used to convert the voltage of the voltage sensing pin (BATT7_VOLT_PIN) to the actual battery’s voltage (pin_voltage * VOLT_MULT). For the 3DR Power brick with a Pixhawk, this should be set to 10.1. For the Pixhawk with the 3DR 4in1 ESC this should be 12.02. For the PX using the PX4IO power supply this should be set to 1.

BATT7_AMP_PERVLT: Amps per volt

Number of amps that a 1V reading on the current sensor corresponds to. With a Pixhawk using the 3DR Power brick this should be set to 17. For the Pixhawk with the 3DR 4in1 ESC this should be 17.

Units
ampere per volt

BATT7_AMP_OFFSET: AMP offset

Voltage offset at zero current on current sensor

Units
volt

BATT7_CAPACITY: Battery capacity

Capacity of the battery in mAh when full

Increment Units
50 milliampere hour

BATT7_SERIAL_NUM: Battery serial number

Note: This parameter is for advanced users

Battery serial number, automatically filled in for SMBus batteries, otherwise will be -1. With UAVCAN it is the battery_id.

BATT7_LOW_TIMER: Low voltage timeout

Note: This parameter is for advanced users

This is the timeout in seconds before a low voltage event will be triggered. For aircraft with low C batteries it may be necessary to raise this in order to cope with low voltage on long takeoffs. A value of zero disables low voltage errors.

Increment Range Units
1 0 - 120 seconds

BATT7_FS_VOLTSRC: Failsafe voltage source

Note: This parameter is for advanced users

Voltage type used for detection of low voltage event

Values
Value Meaning
0 Raw Voltage
1 Sag Compensated Voltage

BATT7_LOW_VOLT: Low battery voltage

Battery voltage that triggers a low battery failsafe. Set to 0 to disable. If the battery voltage drops below this voltage continuously for more then the period specified by the BATT7_LOW_TIMER parameter then the vehicle will perform the failsafe specified by the BATT7_FS_LOW_ACT parameter.

Increment Units
0.1 volt

BATT7_LOW_MAH: Low battery capacity

Battery capacity at which the low battery failsafe is triggered. Set to 0 to disable battery remaining failsafe. If the battery capacity drops below this level the vehicle will perform the failsafe specified by the BATT7_FS_LOW_ACT parameter.

Increment Units
50 milliampere hour

BATT7_CRT_VOLT: Critical battery voltage

Battery voltage that triggers a critical battery failsafe. Set to 0 to disable. If the battery voltage drops below this voltage continuously for more then the period specified by the BATT7_LOW_TIMER parameter then the vehicle will perform the failsafe specified by the BATT7_FS_CRT_ACT parameter.

Increment Units
0.1 volt

BATT7_CRT_MAH: Battery critical capacity

Battery capacity at which the critical battery failsafe is triggered. Set to 0 to disable battery remaining failsafe. If the battery capacity drops below this level the vehicle will perform the failsafe specified by the BATT7__FS_CRT_ACT parameter.

Increment Units
50 milliampere hour

BATT7_FS_LOW_ACT: Low battery failsafe action

What action the vehicle should perform if it hits a low battery failsafe

Values
Value Meaning
0 None
1 Land
2 RTL
3 SmartRTL or RTL
4 SmartRTL or Land
5 Terminate

BATT7_FS_CRT_ACT: Critical battery failsafe action

What action the vehicle should perform if it hits a critical battery failsafe

Values
Value Meaning
0 None
1 Land
2 RTL
3 SmartRTL or RTL
4 SmartRTL or Land
5 Terminate

BATT7_ARM_VOLT: Required arming voltage

Note: This parameter is for advanced users

Battery voltage level which is required to arm the aircraft. Set to 0 to allow arming at any voltage.

Increment Units
0.1 volt

BATT7_ARM_MAH: Required arming remaining capacity

Note: This parameter is for advanced users

Battery capacity remaining which is required to arm the aircraft. Set to 0 to allow arming at any capacity. Note that execept for smart batteries rebooting the vehicle will always reset the remaining capacity estimate, which can lead to this check not providing sufficent protection, it is recommended to always use this in conjunction with the BATT7__ARM_VOLT parameter.

Increment Units
50 milliampere hour

BATT7_BUS: Battery monitor I2C bus number

Battery monitor I2C bus number

Range
0 - 3

BATT7_OPTIONS: Battery monitor options

Note: This parameter is for advanced users

This sets options to change the behaviour of the battery monitor

Bitmask
Bit Meaning
0 Ignore UAVCAN SoC

BATT8_ Parameters

BATT8_MONITOR: Battery monitoring

Controls enabling monitoring of the battery’s voltage and current

RebootRequired Values
True
Value Meaning
0 Disabled
3 Analog Voltage Only
4 Analog Voltage and Current
5 Solo
6 Bebop
7 SMBus-Generic
8 UAVCAN-BatteryInfo
9 ESC
10 SumOfFollowing
11 FuelFlow
12 FuelLevelPWM
13 SMBUS-SUI3
14 SMBUS-SUI6
15 NeoDesign
16 SMBus-Maxell
17 Generator-Elec
18 Generator-Fuel
19 Rotoye

BATT8_VOLT_PIN: Battery Voltage sensing pin

Sets the analog input pin that should be used for voltage monitoring.

RebootRequired Values
True
Value Meaning
-1 Disabled
2 Pixhawk/Pixracer/Navio2/Pixhawk2_PM1
13 Pixhawk2_PM2/CubeOrange_PM2
14 CubeOrange
16 Durandal
100 PX4-v1

BATT8_CURR_PIN: Battery Current sensing pin

Sets the analog input pin that should be used for current monitoring.

RebootRequired Values
True
Value Meaning
-1 Disabled
3 Pixhawk/Pixracer/Navio2/Pixhawk2_PM1
4 CubeOrange_PM2
14 Pixhawk2_PM2
15 CubeOrange
17 Durandal
101 PX4-v1

BATT8_VOLT_MULT: Voltage Multiplier

Note: This parameter is for advanced users

Used to convert the voltage of the voltage sensing pin (BATT8_VOLT_PIN) to the actual battery’s voltage (pin_voltage * VOLT_MULT). For the 3DR Power brick with a Pixhawk, this should be set to 10.1. For the Pixhawk with the 3DR 4in1 ESC this should be 12.02. For the PX using the PX4IO power supply this should be set to 1.

BATT8_AMP_PERVLT: Amps per volt

Number of amps that a 1V reading on the current sensor corresponds to. With a Pixhawk using the 3DR Power brick this should be set to 17. For the Pixhawk with the 3DR 4in1 ESC this should be 17.

Units
ampere per volt

BATT8_AMP_OFFSET: AMP offset

Voltage offset at zero current on current sensor

Units
volt

BATT8_CAPACITY: Battery capacity

Capacity of the battery in mAh when full

Increment Units
50 milliampere hour

BATT8_SERIAL_NUM: Battery serial number

Note: This parameter is for advanced users

Battery serial number, automatically filled in for SMBus batteries, otherwise will be -1. With UAVCAN it is the battery_id.

BATT8_LOW_TIMER: Low voltage timeout

Note: This parameter is for advanced users

This is the timeout in seconds before a low voltage event will be triggered. For aircraft with low C batteries it may be necessary to raise this in order to cope with low voltage on long takeoffs. A value of zero disables low voltage errors.

Increment Range Units
1 0 - 120 seconds

BATT8_FS_VOLTSRC: Failsafe voltage source

Note: This parameter is for advanced users

Voltage type used for detection of low voltage event

Values
Value Meaning
0 Raw Voltage
1 Sag Compensated Voltage

BATT8_LOW_VOLT: Low battery voltage

Battery voltage that triggers a low battery failsafe. Set to 0 to disable. If the battery voltage drops below this voltage continuously for more then the period specified by the BATT8_LOW_TIMER parameter then the vehicle will perform the failsafe specified by the BATT8_FS_LOW_ACT parameter.

Increment Units
0.1 volt

BATT8_LOW_MAH: Low battery capacity

Battery capacity at which the low battery failsafe is triggered. Set to 0 to disable battery remaining failsafe. If the battery capacity drops below this level the vehicle will perform the failsafe specified by the BATT8_FS_LOW_ACT parameter.

Increment Units
50 milliampere hour

BATT8_CRT_VOLT: Critical battery voltage

Battery voltage that triggers a critical battery failsafe. Set to 0 to disable. If the battery voltage drops below this voltage continuously for more then the period specified by the BATT8_LOW_TIMER parameter then the vehicle will perform the failsafe specified by the BATT8_FS_CRT_ACT parameter.

Increment Units
0.1 volt

BATT8_CRT_MAH: Battery critical capacity

Battery capacity at which the critical battery failsafe is triggered. Set to 0 to disable battery remaining failsafe. If the battery capacity drops below this level the vehicle will perform the failsafe specified by the BATT8__FS_CRT_ACT parameter.

Increment Units
50 milliampere hour

BATT8_FS_LOW_ACT: Low battery failsafe action

What action the vehicle should perform if it hits a low battery failsafe

Values
Value Meaning
0 None
1 Land
2 RTL
3 SmartRTL or RTL
4 SmartRTL or Land
5 Terminate

BATT8_FS_CRT_ACT: Critical battery failsafe action

What action the vehicle should perform if it hits a critical battery failsafe

Values
Value Meaning
0 None
1 Land
2 RTL
3 SmartRTL or RTL
4 SmartRTL or Land
5 Terminate

BATT8_ARM_VOLT: Required arming voltage

Note: This parameter is for advanced users

Battery voltage level which is required to arm the aircraft. Set to 0 to allow arming at any voltage.

Increment Units
0.1 volt

BATT8_ARM_MAH: Required arming remaining capacity

Note: This parameter is for advanced users

Battery capacity remaining which is required to arm the aircraft. Set to 0 to allow arming at any capacity. Note that execept for smart batteries rebooting the vehicle will always reset the remaining capacity estimate, which can lead to this check not providing sufficent protection, it is recommended to always use this in conjunction with the BATT8__ARM_VOLT parameter.

Increment Units
50 milliampere hour

BATT8_BUS: Battery monitor I2C bus number

Battery monitor I2C bus number

Range
0 - 3

BATT8_OPTIONS: Battery monitor options

Note: This parameter is for advanced users

This sets options to change the behaviour of the battery monitor

Bitmask
Bit Meaning
0 Ignore UAVCAN SoC

BATT9_ Parameters

BATT9_MONITOR: Battery monitoring

Controls enabling monitoring of the battery’s voltage and current

RebootRequired Values
True
Value Meaning
0 Disabled
3 Analog Voltage Only
4 Analog Voltage and Current
5 Solo
6 Bebop
7 SMBus-Generic
8 UAVCAN-BatteryInfo
9 ESC
10 SumOfFollowing
11 FuelFlow
12 FuelLevelPWM
13 SMBUS-SUI3
14 SMBUS-SUI6
15 NeoDesign
16 SMBus-Maxell
17 Generator-Elec
18 Generator-Fuel
19 Rotoye

BATT9_VOLT_PIN: Battery Voltage sensing pin

Sets the analog input pin that should be used for voltage monitoring.

RebootRequired Values
True
Value Meaning
-1 Disabled
2 Pixhawk/Pixracer/Navio2/Pixhawk2_PM1
13 Pixhawk2_PM2/CubeOrange_PM2
14 CubeOrange
16 Durandal
100 PX4-v1

BATT9_CURR_PIN: Battery Current sensing pin

Sets the analog input pin that should be used for current monitoring.

RebootRequired Values
True
Value Meaning
-1 Disabled
3 Pixhawk/Pixracer/Navio2/Pixhawk2_PM1
4 CubeOrange_PM2
14 Pixhawk2_PM2
15 CubeOrange
17 Durandal
101 PX4-v1

BATT9_VOLT_MULT: Voltage Multiplier

Note: This parameter is for advanced users

Used to convert the voltage of the voltage sensing pin (BATT9_VOLT_PIN) to the actual battery’s voltage (pin_voltage * VOLT_MULT). For the 3DR Power brick with a Pixhawk, this should be set to 10.1. For the Pixhawk with the 3DR 4in1 ESC this should be 12.02. For the PX using the PX4IO power supply this should be set to 1.

BATT9_AMP_PERVLT: Amps per volt

Number of amps that a 1V reading on the current sensor corresponds to. With a Pixhawk using the 3DR Power brick this should be set to 17. For the Pixhawk with the 3DR 4in1 ESC this should be 17.

Units
ampere per volt

BATT9_AMP_OFFSET: AMP offset

Voltage offset at zero current on current sensor

Units
volt

BATT9_CAPACITY: Battery capacity

Capacity of the battery in mAh when full

Increment Units
50 milliampere hour

BATT9_SERIAL_NUM: Battery serial number

Note: This parameter is for advanced users

Battery serial number, automatically filled in for SMBus batteries, otherwise will be -1. With UAVCAN it is the battery_id.

BATT9_LOW_TIMER: Low voltage timeout

Note: This parameter is for advanced users

This is the timeout in seconds before a low voltage event will be triggered. For aircraft with low C batteries it may be necessary to raise this in order to cope with low voltage on long takeoffs. A value of zero disables low voltage errors.

Increment Range Units
1 0 - 120 seconds

BATT9_FS_VOLTSRC: Failsafe voltage source

Note: This parameter is for advanced users

Voltage type used for detection of low voltage event

Values
Value Meaning
0 Raw Voltage
1 Sag Compensated Voltage

BATT9_LOW_VOLT: Low battery voltage

Battery voltage that triggers a low battery failsafe. Set to 0 to disable. If the battery voltage drops below this voltage continuously for more then the period specified by the BATT9_LOW_TIMER parameter then the vehicle will perform the failsafe specified by the BATT9_FS_LOW_ACT parameter.

Increment Units
0.1 volt

BATT9_LOW_MAH: Low battery capacity

Battery capacity at which the low battery failsafe is triggered. Set to 0 to disable battery remaining failsafe. If the battery capacity drops below this level the vehicle will perform the failsafe specified by the BATT9_FS_LOW_ACT parameter.

Increment Units
50 milliampere hour

BATT9_CRT_VOLT: Critical battery voltage

Battery voltage that triggers a critical battery failsafe. Set to 0 to disable. If the battery voltage drops below this voltage continuously for more then the period specified by the BATT9_LOW_TIMER parameter then the vehicle will perform the failsafe specified by the BATT9_FS_CRT_ACT parameter.

Increment Units
0.1 volt

BATT9_CRT_MAH: Battery critical capacity

Battery capacity at which the critical battery failsafe is triggered. Set to 0 to disable battery remaining failsafe. If the battery capacity drops below this level the vehicle will perform the failsafe specified by the BATT9__FS_CRT_ACT parameter.

Increment Units
50 milliampere hour

BATT9_FS_LOW_ACT: Low battery failsafe action

What action the vehicle should perform if it hits a low battery failsafe

Values
Value Meaning
0 None
1 Land
2 RTL
3 SmartRTL or RTL
4 SmartRTL or Land
5 Terminate

BATT9_FS_CRT_ACT: Critical battery failsafe action

What action the vehicle should perform if it hits a critical battery failsafe

Values
Value Meaning
0 None
1 Land
2 RTL
3 SmartRTL or RTL
4 SmartRTL or Land
5 Terminate

BATT9_ARM_VOLT: Required arming voltage

Note: This parameter is for advanced users

Battery voltage level which is required to arm the aircraft. Set to 0 to allow arming at any voltage.

Increment Units
0.1 volt

BATT9_ARM_MAH: Required arming remaining capacity

Note: This parameter is for advanced users

Battery capacity remaining which is required to arm the aircraft. Set to 0 to allow arming at any capacity. Note that execept for smart batteries rebooting the vehicle will always reset the remaining capacity estimate, which can lead to this check not providing sufficent protection, it is recommended to always use this in conjunction with the BATT9__ARM_VOLT parameter.

Increment Units
50 milliampere hour

BATT9_BUS: Battery monitor I2C bus number

Battery monitor I2C bus number

Range
0 - 3

BATT9_OPTIONS: Battery monitor options

Note: This parameter is for advanced users

This sets options to change the behaviour of the battery monitor

Bitmask
Bit Meaning
0 Ignore UAVCAN SoC

BATT_ Parameters

BATT_MONITOR: Battery monitoring

Controls enabling monitoring of the battery’s voltage and current

RebootRequired Values
True
Value Meaning
0 Disabled
3 Analog Voltage Only
4 Analog Voltage and Current
5 Solo
6 Bebop
7 SMBus-Generic
8 UAVCAN-BatteryInfo
9 ESC
10 SumOfFollowing
11 FuelFlow
12 FuelLevelPWM
13 SMBUS-SUI3
14 SMBUS-SUI6
15 NeoDesign
16 SMBus-Maxell
17 Generator-Elec
18 Generator-Fuel
19 Rotoye

BATT_VOLT_PIN: Battery Voltage sensing pin

Sets the analog input pin that should be used for voltage monitoring.

RebootRequired Values
True
Value Meaning
-1 Disabled
2 Pixhawk/Pixracer/Navio2/Pixhawk2_PM1
13 Pixhawk2_PM2/CubeOrange_PM2
14 CubeOrange
16 Durandal
100 PX4-v1

BATT_CURR_PIN: Battery Current sensing pin

Sets the analog input pin that should be used for current monitoring.

RebootRequired Values
True
Value Meaning
-1 Disabled
3 Pixhawk/Pixracer/Navio2/Pixhawk2_PM1
4 CubeOrange_PM2
14 Pixhawk2_PM2
15 CubeOrange
17 Durandal
101 PX4-v1

BATT_VOLT_MULT: Voltage Multiplier

Note: This parameter is for advanced users

Used to convert the voltage of the voltage sensing pin (BATT_VOLT_PIN) to the actual battery’s voltage (pin_voltage * VOLT_MULT). For the 3DR Power brick with a Pixhawk, this should be set to 10.1. For the Pixhawk with the 3DR 4in1 ESC this should be 12.02. For the PX using the PX4IO power supply this should be set to 1.

BATT_AMP_PERVLT: Amps per volt

Number of amps that a 1V reading on the current sensor corresponds to. With a Pixhawk using the 3DR Power brick this should be set to 17. For the Pixhawk with the 3DR 4in1 ESC this should be 17.

Units
ampere per volt

BATT_AMP_OFFSET: AMP offset

Voltage offset at zero current on current sensor

Units
volt

BATT_CAPACITY: Battery capacity

Capacity of the battery in mAh when full

Increment Units
50 milliampere hour

BATT_SERIAL_NUM: Battery serial number

Note: This parameter is for advanced users

Battery serial number, automatically filled in for SMBus batteries, otherwise will be -1. With UAVCAN it is the battery_id.

BATT_LOW_TIMER: Low voltage timeout

Note: This parameter is for advanced users

This is the timeout in seconds before a low voltage event will be triggered. For aircraft with low C batteries it may be necessary to raise this in order to cope with low voltage on long takeoffs. A value of zero disables low voltage errors.

Increment Range Units
1 0 - 120 seconds

BATT_FS_VOLTSRC: Failsafe voltage source

Note: This parameter is for advanced users

Voltage type used for detection of low voltage event

Values
Value Meaning
0 Raw Voltage
1 Sag Compensated Voltage

BATT_LOW_VOLT: Low battery voltage

Battery voltage that triggers a low battery failsafe. Set to 0 to disable. If the battery voltage drops below this voltage continuously for more then the period specified by the BATT_LOW_TIMER parameter then the vehicle will perform the failsafe specified by the BATT_FS_LOW_ACT parameter.

Increment Units
0.1 volt

BATT_LOW_MAH: Low battery capacity

Battery capacity at which the low battery failsafe is triggered. Set to 0 to disable battery remaining failsafe. If the battery capacity drops below this level the vehicle will perform the failsafe specified by the BATT_FS_LOW_ACT parameter.

Increment Units
50 milliampere hour

BATT_CRT_VOLT: Critical battery voltage

Battery voltage that triggers a critical battery failsafe. Set to 0 to disable. If the battery voltage drops below this voltage continuously for more then the period specified by the BATT_LOW_TIMER parameter then the vehicle will perform the failsafe specified by the BATT_FS_CRT_ACT parameter.

Increment Units
0.1 volt

BATT_CRT_MAH: Battery critical capacity

Battery capacity at which the critical battery failsafe is triggered. Set to 0 to disable battery remaining failsafe. If the battery capacity drops below this level the vehicle will perform the failsafe specified by the BATT__FS_CRT_ACT parameter.

Increment Units
50 milliampere hour

BATT_FS_LOW_ACT: Low battery failsafe action

What action the vehicle should perform if it hits a low battery failsafe

Values
Value Meaning
0 None
1 Land
2 RTL
3 SmartRTL or RTL
4 SmartRTL or Land
5 Terminate

BATT_FS_CRT_ACT: Critical battery failsafe action

What action the vehicle should perform if it hits a critical battery failsafe

Values
Value Meaning
0 None
1 Land
2 RTL
3 SmartRTL or RTL
4 SmartRTL or Land
5 Terminate

BATT_ARM_VOLT: Required arming voltage

Note: This parameter is for advanced users

Battery voltage level which is required to arm the aircraft. Set to 0 to allow arming at any voltage.

Increment Units
0.1 volt

BATT_ARM_MAH: Required arming remaining capacity

Note: This parameter is for advanced users

Battery capacity remaining which is required to arm the aircraft. Set to 0 to allow arming at any capacity. Note that execept for smart batteries rebooting the vehicle will always reset the remaining capacity estimate, which can lead to this check not providing sufficent protection, it is recommended to always use this in conjunction with the BATT__ARM_VOLT parameter.

Increment Units
50 milliampere hour

BATT_BUS: Battery monitor I2C bus number

Battery monitor I2C bus number

Range
0 - 3

BATT_OPTIONS: Battery monitor options

Note: This parameter is for advanced users

This sets options to change the behaviour of the battery monitor

Bitmask
Bit Meaning
0 Ignore UAVCAN SoC

BCN Parameters

BCN_TYPE: Beacon based position estimation device type

Note: This parameter is for advanced users

What type of beacon based position estimation device is connected

Values
Value Meaning
0 None
1 Pozyx
2 Marvelmind
3 Nooploop
10 SITL

BCN_LATITUDE: Beacon origin’s latitude

Note: This parameter is for advanced users

Beacon origin’s latitude

Increment Range Units
0.000001 -90 - 90 degrees

BCN_LONGITUDE: Beacon origin’s longitude

Note: This parameter is for advanced users

Beacon origin’s longitude

Increment Range Units
0.000001 -180 - 180 degrees

BCN_ALT: Beacon origin’s altitude above sealevel in meters

Note: This parameter is for advanced users

Beacon origin’s altitude above sealevel in meters

Increment Range Units
1 0 - 10000 meters

BCN_ORIENT_YAW: Beacon systems rotation from north in degrees

Note: This parameter is for advanced users

Beacon systems rotation from north in degrees

Increment Range Units
1 -180 - +180 degrees

BRD_ Parameters

BRD_PWM_COUNT: Auxiliary pin config

Note: This parameter is for advanced users

Controls number of FMU outputs which are setup for PWM. All unassigned pins can be used for GPIO

RebootRequired Values
True
Value Meaning
0 No PWMs
1 One PWMs
2 Two PWMs
3 Three PWMs
4 Four PWMs
5 Five PWMs
6 Six PWMs
7 Seven PWMs
8 Eight PWMs

BRD_SER1_RTSCTS: Serial 1 flow control

Note: This parameter is for advanced users

Enable flow control on serial 1 (telemetry 1) on Pixhawk. You must have the RTS and CTS pins connected to your radio. The standard DF13 6 pin connector for a 3DR radio does have those pins connected. If this is set to 2 then flow control will be auto-detected by checking for the output buffer filling on startup. Note that the PX4v1 does not have hardware flow control pins on this port, so you should leave this disabled.

RebootRequired Values
True
Value Meaning
0 Disabled
1 Enabled
2 Auto

BRD_SER2_RTSCTS: Serial 2 flow control

Note: This parameter is for advanced users

Enable flow control on serial 2 (telemetry 2) on Pixhawk and STATE. You must have the RTS and CTS pins connected to your radio. The standard DF13 6 pin connector for a 3DR radio does have those pins connected. If this is set to 2 then flow control will be auto-detected by checking for the output buffer filling on startup.

RebootRequired Values
True
Value Meaning
0 Disabled
1 Enabled
2 Auto

BRD_SER3_RTSCTS: Serial 3 flow control

Note: This parameter is for advanced users

Enable flow control on serial 3. You must have the RTS and CTS pins connected to your radio. The standard DF13 6 pin connector for a 3DR radio does have those pins connected. If this is set to 2 then flow control will be auto-detected by checking for the output buffer filling on startup.

RebootRequired Values
True
Value Meaning
0 Disabled
1 Enabled
2 Auto

BRD_SER4_RTSCTS: Serial 4 flow control

Note: This parameter is for advanced users

Enable flow control on serial 4. You must have the RTS and CTS pins connected to your radio. The standard DF13 6 pin connector for a 3DR radio does have those pins connected. If this is set to 2 then flow control will be auto-detected by checking for the output buffer filling on startup.

RebootRequired Values
True
Value Meaning
0 Disabled
1 Enabled
2 Auto

BRD_SER5_RTSCTS: Serial 5 flow control

Note: This parameter is for advanced users

Enable flow control on serial 5. You must have the RTS and CTS pins connected to your radio. The standard DF13 6 pin connector for a 3DR radio does have those pins connected. If this is set to 2 then flow control will be auto-detected by checking for the output buffer filling on startup.

RebootRequired Values
True
Value Meaning
0 Disabled
1 Enabled
2 Auto

BRD_SAFETYENABLE: Enable use of safety arming switch

This controls the default state of the safety switch at startup. When set to 1 the safety switch will start in the safe state (flashing) at boot. When set to zero the safety switch will start in the unsafe state (solid) at startup. Note that if a safety switch is fitted the user can still control the safety state after startup using the switch. The safety state can also be controlled in software using a MAVLink message.

RebootRequired Values
True
Value Meaning
0 Disabled
1 Enabled

BRD_SBUS_OUT: SBUS output rate

Note: This parameter is for advanced users

This sets the SBUS output frame rate in Hz

RebootRequired Values
True
Value Meaning
0 Disabled
1 50Hz
2 75Hz
3 100Hz
4 150Hz
5 200Hz
6 250Hz
7 300Hz

BRD_SERIAL_NUM: User-defined serial number

User-defined serial number of this vehicle, it can be any arbitrary number you want and has no effect on the autopilot

Range
-32768 - 32767

BRD_SAFETY_MASK: Outputs which ignore the safety switch state

Note: This parameter is for advanced users

A bitmask which controls what outputs can move while the safety switch has not been pressed

Bitmask RebootRequired
Bit Meaning
0 Output1
1 Output2
2 Output3
3 Output4
4 Output5
5 Output6
6 Output7
7 Output8
8 Output9
9 Output10
10 Output11
11 Output12
12 Output13
13 Output14
True

BRD_IMU_TARGTEMP: Target IMU temperature

Note: This parameter is for advanced users

This sets the target IMU temperature for boards with controllable IMU heating units. DO NOT SET to -1 on the Cube. Set to -1 to disable the heater, please reboot after setting to -1.

Range Units
-1 - 80 degrees Celsius

BRD_TYPE: Board type

Note: This parameter is for advanced users

This allows selection of a PX4 or VRBRAIN board type. If set to zero then the board type is auto-detected (PX4)

RebootRequired Values
True
Value Meaning
0 AUTO
1 PX4V1
2 Pixhawk
3 Cube/Pixhawk2
4 Pixracer
5 PixhawkMini
6 Pixhawk2Slim
13 Intel Aero FC
14 Pixhawk Pro
20 AUAV2.1
21 PCNC1
22 MINDPXV2
23 SP01
24 CUAVv5/FMUV5
30 VRX BRAIN51
32 VRX BRAIN52
33 VRX BRAIN52E
34 VRX UBRAIN51
35 VRX UBRAIN52
36 VRX CORE10
38 VRX BRAIN54
39 PX4 FMUV6
100 PX4 OLDDRIVERS

BRD_IO_ENABLE: Enable IO co-processor

Note: This parameter is for advanced users

This allows for the IO co-processor on FMUv1 and FMUv2 to be disabled

RebootRequired Values
True
Value Meaning
0 Disabled
1 Enabled

BRD_SAFETYOPTION: Options for safety button behavior

This controls the activation of the safety button. It allows you to control if the safety button can be used for safety enable and/or disable, and whether the button is only active when disarmed

Bitmask
Bit Meaning
0 ActiveForSafetyEnable
1 ActiveForSafetyDisable
2 ActiveWhenArmed
3 Force safety on when the aircraft disarms

BRD_VBUS_MIN: Autopilot board voltage requirement

Note: This parameter is for advanced users

Minimum voltage on the autopilot power rail to allow the aircraft to arm. 0 to disable the check.

Increment Range Units
0.1 4.0 - 5.5 volt

BRD_VSERVO_MIN: Servo voltage requirement

Note: This parameter is for advanced users

Minimum voltage on the servo rail to allow the aircraft to arm. 0 to disable the check.

Increment Range Units
0.1 3.3 - 12.0 volt

BRD_SD_SLOWDOWN: microSD slowdown

Note: This parameter is for advanced users

This is a scaling factor to slow down microSD operation. It can be used on flight board and microSD card combinations where full speed is not reliable. For normal full speed operation a value of 0 should be used.

Increment Range
1 0 - 32

BRD_PWM_VOLT_SEL: Set PWM Out Voltage

Note: This parameter is for advanced users

This sets the voltage max for PWM output pulses. 0 for 3.3V and 1 for 5V output.

Values
Value Meaning
0 3.3V
1 5V

BRD_OPTIONS: Board options

Note: This parameter is for advanced users

Board specific option flags

Bitmask
Bit Meaning
0 Enable hardware watchdog
1 Disable MAVftp
2 Enable set of internal parameters
3 Enable Debug Pins

BRD_BOOT_DELAY: Boot delay

Note: This parameter is for advanced users

This adds a delay in milliseconds to boot to ensure peripherals initialise fully

Range Units
0 - 10000 milliseconds

BRD_IMUHEAT_P: IMU Heater P gain

Note: This parameter is for advanced users

IMU Heater P gain

Increment Range
1 1 - 500

BRD_IMUHEAT_I: IMU Heater I gain

Note: This parameter is for advanced users

IMU Heater integrator gain

Increment Range
0.1 0 - 1

BRD_IMUHEAT_IMAX: IMU Heater IMAX

Note: This parameter is for advanced users

IMU Heater integrator maximum

Increment Range
1 0 - 100

BRD_ALT_CONFIG: Alternative HW config

Note: This parameter is for advanced users

Select an alternative hardware configuration. A value of zero selects the default configuration for this board. Other values are board specific. Please see the documentation for your board for details on any alternative configuration values that may be available.

Increment Range RebootRequired
1 0 - 10 True

BRD_RADIO Parameters

BRD_RADIO_TYPE: Set type of direct attached radio

This enables support for direct attached radio receivers

Values
Value Meaning
0 None
1 CYRF6936
2 CC2500
3 BK2425

BRD_RADIO_PROT: protocol

Note: This parameter is for advanced users

Select air protocol

Values
Value Meaning
0 Auto
1 DSM2
2 DSMX

BRD_RADIO_DEBUG: debug level

Note: This parameter is for advanced users

radio debug level

Range
0 - 4

BRD_RADIO_DISCRC: disable receive CRC

Note: This parameter is for advanced users

disable receive CRC (for debug)

Values
Value Meaning
0 NotDisabled
1 Disabled

BRD_RADIO_SIGCH: RSSI signal strength

Note: This parameter is for advanced users

Channel to show receive RSSI signal strength, or zero for disabled

Range
0 - 16

BRD_RADIO_PPSCH: Packet rate channel

Note: This parameter is for advanced users

Channel to show received packet-per-second rate, or zero for disabled

Range
0 - 16

BRD_RADIO_TELEM: Enable telemetry

Note: This parameter is for advanced users

If this is non-zero then telemetry packets will be sent over DSM

Values
Value Meaning
0 Disabled
1 Enabled

BRD_RADIO_TXPOW: Telemetry Transmit power

Note: This parameter is for advanced users

Set telemetry transmit power. This is the power level (from 1 to 8) for telemetry packets sent from the RX to the TX

Range
1 - 8

BRD_RADIO_FCCTST: Put radio into FCC test mode

Note: This parameter is for advanced users

If this is enabled then the radio will continuously transmit as required for FCC testing. The transmit channel is set by the value of the parameter. The radio will not work for RC input while this is enabled

Values
Value Meaning
0 Disabled
1 MinChannel
2 MidChannel
3 MaxChannel
4 MinChannelCW
5 MidChannelCW
6 MaxChannelCW

BRD_RADIO_STKMD: Stick input mode

Note: This parameter is for advanced users

This selects between different stick input modes. The default is mode2, which has throttle on the left stick and pitch on the right stick. You can instead set mode1, which has throttle on the right stick and pitch on the left stick.

Values
Value Meaning
1 Mode1
2 Mode2

BRD_RADIO_TESTCH: Set radio to factory test channel

Note: This parameter is for advanced users

This sets the radio to a fixed test channel for factory testing. Using a fixed channel avoids the need for binding in factory testing.

Values
Value Meaning
0 Disabled
1 TestChan1
2 TestChan2
3 TestChan3
4 TestChan4
5 TestChan5
6 TestChan6
7 TestChan7
8 TestChan8

BRD_RADIO_TSIGCH: RSSI value channel for telemetry data on transmitter

Note: This parameter is for advanced users

Channel to show telemetry RSSI value as received by TX

Range
0 - 16

BRD_RADIO_TPPSCH: Telemetry PPS channel

Note: This parameter is for advanced users

Channel to show telemetry packets-per-second value, as received at TX

Range
0 - 16

BRD_RADIO_TXMAX: Transmitter transmit power

Note: This parameter is for advanced users

Set transmitter maximum transmit power (from 1 to 8)

Range
1 - 8

BRD_RADIO_BZOFS: Transmitter buzzer adjustment

Note: This parameter is for advanced users

Set transmitter buzzer note adjustment (adjust frequency up)

Range
0 - 40

BRD_RADIO_ABTIME: Auto-bind time

Note: This parameter is for advanced users

When non-zero this sets the time with no transmitter packets before we start looking for auto-bind packets.

Range
0 - 120

BRD_RADIO_ABLVL: Auto-bind level

Note: This parameter is for advanced users

This sets the minimum RSSI of an auto-bind packet for it to be accepted. This should be set so that auto-bind will only happen at short range to minimise the change of an auto-bind happening accidentially

Range
0 - 31

BRD_RTC Parameters

BRD_RTC_TYPES: Allowed sources of RTC time

Note: This parameter is for advanced users

Specifies which sources of UTC time will be accepted

Bitmask
Bit Meaning
0 GPS
1 MAVLINK_SYSTEM_TIME
2 HW

BRD_RTC_TZ_MIN: Timezone offset from UTC

Note: This parameter is for advanced users

Adds offset in +- minutes from UTC to calculate local time

Range
-720 - +840

BTN_ Parameters

BTN_ENABLE: Enable button reporting

Note: This parameter is for advanced users

This enables the button checking module. When this is disabled the parameters for setting button inputs are not visible

Values
Value Meaning
0 Disabled
1 Enabled

BTN_PIN1: First button Pin

Digital pin number for first button input.

Values
Value Meaning
-1 Disabled
50 AUXOUT1
51 AUXOUT2
52 AUXOUT3
53 AUXOUT4
54 AUXOUT5
55 AUXOUT6

BTN_PIN2: Second button Pin

Digital pin number for second button input.

Values
Value Meaning
-1 Disabled
50 AUXOUT1
51 AUXOUT2
52 AUXOUT3
53 AUXOUT4
54 AUXOUT5
55 AUXOUT6

BTN_PIN3: Third button Pin

Digital pin number for third button input.

Values
Value Meaning
-1 Disabled
50 AUXOUT1
51 AUXOUT2
52 AUXOUT3
53 AUXOUT4
54 AUXOUT5
55 AUXOUT6

BTN_PIN4: Fourth button Pin

Digital pin number for fourth button input.

Values
Value Meaning
-1 Disabled
50 AUXOUT1
51 AUXOUT2
52 AUXOUT3
53 AUXOUT4
54 AUXOUT5
55 AUXOUT6

BTN_REPORT_SEND: Report send time

The duration in seconds that a BUTTON_CHANGE report is repeatedly sent to the GCS regarding a button changing state. Note that the BUTTON_CHANGE message is MAVLink2 only.

Range
0 - 3600

BTN_OPTIONS1: Button Pin 1 Options

Options for Pin 1. PWM input detects PWM above or below 1800/1200us instead of logic level. Invert changes HIGH state to be logic low voltage on pin, or below 1200us, if PWM input.

Bitmask
Bit Meaning
0 PWM Input
1 InvertInput

BTN_OPTIONS2: Button Pin 2 Options

Options for Pin 2. PWM input detects PWM above or below 1800/1200us instead of logic level. Invert changes HIGH state to be logic low voltage on pin, or below 1200us, if PWM input.

Bitmask
Bit Meaning
0 PWM Input
1 InvertInput

BTN_OPTIONS3: Button Pin 3 Options

Options for Pin 3. PWM input detects PWM above or below 1800/1200us instead of logic level. Invert changes HIGH state to be logic low voltage on pin, or below 1200us, if PWM input.

Bitmask
Bit Meaning
0 PWM Input
1 InvertInput

BTN_OPTIONS4: Button Pin 4 Options

Options for Pin 4. PWM input detects PWM above or below 1800/1200us instead of logic level. Invert changes HIGH state to be logic low voltage on pin, or below 1200us, if PWM input.

Bitmask
Bit Meaning
0 PWM Input
1 InvertInput

BTN_FUNC1: Button Pin 1 RC Channel function

Auxiliary RC Options function executed on pin change

Values
Value Meaning
0 Do Nothing
2 Flip
3 Simple Mode
4 RTL
5 Save Trim
7 Save WP
9 Camera Trigger
10 RangeFinder
11 Fence
13 Super Simple Mode
14 Acro Trainer
15 Sprayer
16 Auto
17 AutoTune
18 Land
19 Gripper
21 Parachute Enable
22 Parachute Release
23 Parachute 3pos
24 Auto Mission Reset
25 AttCon Feed Forward
26 AttCon Accel Limits
27 Retract Mount
28 Relay On/Off
29 Landing Gear
30 Lost Copter Sound
31 Motor Emergency Stop
32 Motor Interlock
33 Brake
34 Relay2 On/Off
35 Relay3 On/Off
36 Relay4 On/Off
37 Throw
38 ADSB Avoidance En
39 PrecLoiter
40 Proximity Avoidance
41 ArmDisarm
42 SmartRTL
43 InvertedFlight
46 RC Override Enable
47 User Function 1
48 User Function 2
49 User Function 3
52 Acro
55 Guided
56 Loiter
57 Follow
58 Clear Waypoints
60 ZigZag
61 ZigZag SaveWP
62 Compass Learn
65 GPS Disable
66 Relay5
67 Relay6
68 Stabilize
69 PosHold
70 AltHold
71 FlowHold
72 Circle
73 Drift
75 SurfaceTrackingUpDown
76 Standby Mode
78 RunCam Control
79 RunCam OSD Control
80 Viso Align
81 Disarm
83 ZigZag Auto
84 Air Mode
85 Generator
90 EKF Pos Source
100 KillIMU1
101 KillIMU2
102 Camera Mode Toggle
105 GPS Disable Yaw
300 Scripting1
301 Scripting2
302 Scripting3
303 Scripting4
304 Scripting5
305 Scripting6
306 Scripting7
307 Scripting8

BTN_FUNC2: Button Pin 2 RC Channel function

Auxiliary RC Options function executed on pin change

Values
Value Meaning
0 Do Nothing
2 Flip
3 Simple Mode
4 RTL
5 Save Trim
7 Save WP
9 Camera Trigger
10 RangeFinder
11 Fence
13 Super Simple Mode
14 Acro Trainer
15 Sprayer
16 Auto
17 AutoTune
18 Land
19 Gripper
21 Parachute Enable
22 Parachute Release
23 Parachute 3pos
24 Auto Mission Reset
25 AttCon Feed Forward
26 AttCon Accel Limits
27 Retract Mount
28 Relay On/Off
29 Landing Gear
30 Lost Copter Sound
31 Motor Emergency Stop
32 Motor Interlock
33 Brake
34 Relay2 On/Off
35 Relay3 On/Off
36 Relay4 On/Off
37 Throw
38 ADSB Avoidance En
39 PrecLoiter
40 Proximity Avoidance
41 ArmDisarm
42 SmartRTL
43 InvertedFlight
46 RC Override Enable
47 User Function 1
48 User Function 2
49 User Function 3
52 Acro
55 Guided
56 Loiter
57 Follow
58 Clear Waypoints
60 ZigZag
61 ZigZag SaveWP
62 Compass Learn
65 GPS Disable
66 Relay5
67 Relay6
68 Stabilize
69 PosHold
70 AltHold
71 FlowHold
72 Circle
73 Drift
75 SurfaceTrackingUpDown
76 Standby Mode
78 RunCam Control
79 RunCam OSD Control
80 Viso Align
81 Disarm
83 ZigZag Auto
84 Air Mode
85 Generator
90 EKF Pos Source
100 KillIMU1
101 KillIMU2
102 Camera Mode Toggle
105 GPS Disable Yaw
300 Scripting1
301 Scripting2
302 Scripting3
303 Scripting4
304 Scripting5
305 Scripting6
306 Scripting7
307 Scripting8

BTN_FUNC3: Button Pin 3 RC Channel function

Auxiliary RC Options function executed on pin change

Values
Value Meaning
0 Do Nothing
2 Flip
3 Simple Mode
4 RTL
5 Save Trim
7 Save WP
9 Camera Trigger
10 RangeFinder
11 Fence
13 Super Simple Mode
14 Acro Trainer
15 Sprayer
16 Auto
17 AutoTune
18 Land
19 Gripper
21 Parachute Enable
22 Parachute Release
23 Parachute 3pos
24 Auto Mission Reset
25 AttCon Feed Forward
26 AttCon Accel Limits
27 Retract Mount
28 Relay On/Off
29 Landing Gear
30 Lost Copter Sound
31 Motor Emergency Stop
32 Motor Interlock
33 Brake
34 Relay2 On/Off
35 Relay3 On/Off
36 Relay4 On/Off
37 Throw
38 ADSB Avoidance En
39 PrecLoiter
40 Proximity Avoidance
41 ArmDisarm
42 SmartRTL
43 InvertedFlight
46 RC Override Enable
47 User Function 1
48 User Function 2
49 User Function 3
52 Acro
55 Guided
56 Loiter
57 Follow
58 Clear Waypoints
60 ZigZag
61 ZigZag SaveWP
62 Compass Learn
65 GPS Disable
66 Relay5
67 Relay6
68 Stabilize
69 PosHold
70 AltHold
71 FlowHold
72 Circle
73 Drift
75 SurfaceTrackingUpDown
76 Standby Mode
78 RunCam Control
79 RunCam OSD Control
80 Viso Align
81 Disarm
83 ZigZag Auto
84 Air Mode
85 Generator
90 EKF Pos Source
100 KillIMU1
101 KillIMU2
102 Camera Mode Toggle
105 GPS Disable Yaw
300 Scripting1
301 Scripting2
302 Scripting3
303 Scripting4
304 Scripting5
305 Scripting6
306 Scripting7
307 Scripting8

BTN_FUNC4: Button Pin 4 RC Channel function

Auxiliary RC Options function executed on pin change

Values
Value Meaning
0 Do Nothing
2 Flip
3 Simple Mode
4 RTL
5 Save Trim
7 Save WP
9 Camera Trigger
10 RangeFinder
11 Fence
13 Super Simple Mode
14 Acro Trainer
15 Sprayer
16 Auto
17 AutoTune
18 Land
19 Gripper
21 Parachute Enable
22 Parachute Release
23 Parachute 3pos
24 Auto Mission Reset
25 AttCon Feed Forward
26 AttCon Accel Limits
27 Retract Mount
28 Relay On/Off
29 Landing Gear
30 Lost Copter Sound
31 Motor Emergency Stop
32 Motor Interlock
33 Brake
34 Relay2 On/Off
35 Relay3 On/Off
36 Relay4 On/Off
37 Throw
38 ADSB Avoidance En
39 PrecLoiter
40 Proximity Avoidance
41 ArmDisarm
42 SmartRTL
43 InvertedFlight
46 RC Override Enable
47 User Function 1
48 User Function 2
49 User Function 3
52 Acro
55 Guided
56 Loiter
57 Follow
58 Clear Waypoints
60 ZigZag
61 ZigZag SaveWP
62 Compass Learn
65 GPS Disable
66 Relay5
67 Relay6
68 Stabilize
69 PosHold
70 AltHold
71 FlowHold
72 Circle
73 Drift
75 SurfaceTrackingUpDown
76 Standby Mode
78 RunCam Control
79 RunCam OSD Control
80 Viso Align
81 Disarm
83 ZigZag Auto
84 Air Mode
85 Generator
90 EKF Pos Source
100 KillIMU1
101 KillIMU2
102 Camera Mode Toggle
105 GPS Disable Yaw
300 Scripting1
301 Scripting2
302 Scripting3
303 Scripting4
304 Scripting5
305 Scripting6
306 Scripting7
307 Scripting8

CAM_ Parameters

CAM_TRIGG_TYPE: Camera shutter (trigger) type

how to trigger the camera to take a picture

Values
Value Meaning
0 Servo
1 Relay
2 GoPro in Solo Gimbal

CAM_DURATION: Duration that shutter is held open

How long the shutter will be held open in 10ths of a second (i.e. enter 10 for 1second, 50 for 5seconds)

Range Units
0 - 50 deciseconds

CAM_SERVO_ON: Servo ON PWM value

PWM value in microseconds to move servo to when shutter is activated

Range Units
1000 - 2000 PWM in microseconds

CAM_SERVO_OFF: Servo OFF PWM value

PWM value in microseconds to move servo to when shutter is deactivated

Range Units
1000 - 2000 PWM in microseconds

CAM_TRIGG_DIST: Camera trigger distance

Distance in meters between camera triggers. If this value is non-zero then the camera will trigger whenever the position changes by this number of meters regardless of what mode the APM is in. Note that this parameter can also be set in an auto mission using the DO_SET_CAM_TRIGG_DIST command, allowing you to enable/disable the triggering of the camera during the flight.

Range Units
0 - 1000 meters

CAM_RELAY_ON: Relay ON value

This sets whether the relay goes high or low when it triggers. Note that you should also set RELAY_DEFAULT appropriately for your camera

Values
Value Meaning
0 Low
1 High

CAM_MIN_INTERVAL: Minimum time between photos

Postpone shooting if previous picture was taken less than preset time(ms) ago.

Range Units
0 - 10000 milliseconds

CAM_MAX_ROLL: Maximum photo roll angle.

Postpone shooting if roll is greater than limit. (0=Disable, will shoot regardless of roll).

Range Units
0 - 180 degrees

CAM_FEEDBACK_PIN: Camera feedback pin

pin number to use for save accurate camera feedback messages. If set to -1 then don’t use a pin flag for this, otherwise this is a pin number which if held high after a picture trigger order, will save camera messages when camera really takes a picture. A universal camera hot shoe is needed. The pin should be held high for at least 2 milliseconds for reliable trigger detection. See also the CAM_FEEDBACK_POL option.

RebootRequired Values
True
Value Meaning
-1 Disabled
50 AUX1
51 AUX2
52 AUX3
53 AUX4
54 AUX5
55 AUX6

CAM_FEEDBACK_POL: Camera feedback pin polarity

Polarity for feedback pin. If this is 1 then the feedback pin should go high on trigger. If set to 0 then it should go low

Values
Value Meaning
0 TriggerLow
1 TriggerHigh

CAM_AUTO_ONLY: Distance-trigging in AUTO mode only

When enabled, trigging by distance is done in AUTO mode only.

Values
Value Meaning
0 Always
1 Only when in AUTO

CAM_TYPE: Type of camera (0: None, 1: BMMCC)

Set the camera type that is being used, certain cameras have custom functions that need further configuration, this enables that.

Values
Value Meaning
0 Default
1 BMMCC

CAM_RC_ Parameters

CAM_RC_TYPE: RunCam device type

RunCam deviee type used to determine OSD menu structure and shutter options.

Values
Value Meaning
0 Disabled
1 RunCam Split Micro/RunCam with UART
2 RunCam Split
3 RunCam Split4 4k
4 RunCam Hybrid

CAM_RC_FEATURES: RunCam features available

Note: This parameter is for advanced users

The available features of the attached RunCam device. If 0 then the RunCam device will be queried for the features it supports, otherwise this setting is used.

Bitmask
Bit Meaning
0 Power Button
1 WiFi Button
2 Change Mode
3 5-Key OSD
4 Settings Access
5 DisplayPort
6 Start Recording
7 Stop Recording

CAM_RC_BT_DELAY: RunCam boot delay before allowing updates

Note: This parameter is for advanced users

Time it takes for the RunCam to become fully ready in ms. If this is too short then commands can get out of sync.

CAM_RC_BTN_DELAY: RunCam button delay before allowing further button presses

Note: This parameter is for advanced users

Time it takes for the a RunCam button press to be actived in ms. If this is too short then commands can get out of sync.

CAM_RC_MDE_DELAY: RunCam mode delay before allowing further button presses

Note: This parameter is for advanced users

Time it takes for the a RunCam mode button press to be actived in ms. If a mode change first requires a video recording change then double this value is used. If this is too short then commands can get out of sync.

CAM_RC_CONTROL: RunCam control option

Note: This parameter is for advanced users

Specifies the allowed actions required to enter the OSD menu

Bitmask
Bit Meaning
0 Stick yaw right
1 Stick roll right
2 3-position switch
3 2-position switch
4 Autorecording enabled

CAN_ Parameters

CAN_LOGLEVEL: Loglevel

Note: This parameter is for advanced users

Loglevel for recording initialisation and debug information from CAN Interface

Range Values
0 - 4
Value Meaning
0 Log None
1 Log Error
2 Log Warning and below
3 Log Info and below
4 Log Everything

CAN_D1_ Parameters

CAN_D1_PROTOCOL: Enable use of specific protocol over virtual driver

Note: This parameter is for advanced users

Enabling this option starts selected protocol that will use this virtual driver

RebootRequired Values
True
Value Meaning
0 Disabled
1 UAVCAN
3 ToshibaCAN
4 PiccoloCAN
5 CANTester
8 KDECAN
9 PacketDigitalCAN

CAN_D1_KDE_ Parameters

CAN_D1_KDE_NPOLE: Number of motor poles

Sets the number of motor poles to calculate the correct RPM value

CAN_D1_PC_ Parameters

CAN_D1_PC_ESC_BM: ESC channels

Note: This parameter is for advanced users

Bitmask defining which ESC (motor) channels are to be transmitted over Piccolo CAN

Bitmask
0: ESC 1, 1: ESC 2, 2: ESC 3, 3: ESC 4, 4: ESC 5, 5: ESC 6, 6: ESC 7, 7: ESC 8, 8: ESC 9, 9: ESC 10, 10: ESC 11, 11: ESC 12, 12: ESC 13, 13: ESC 14, 14: ESC 15, 15: ESC 16

CAN_D1_PC_ESC_RT: ESC output rate

Note: This parameter is for advanced users

Output rate of ESC command messages

Range Units
1 - 500 hertz

CAN_D1_PC_SRV_BM: Servo channels

Note: This parameter is for advanced users

Bitmask defining which servo channels are to be transmitted over Piccolo CAN

Bitmask
0: Servo 1, 1: Servo 2, 2: Servo 3, 3: Servo 4, 4: Servo 5, 5: Servo 6, 6: Servo 7, 7: Servo 8, 8: Servo 9, 9: Servo 10, 10: Servo 11, 11: Servo 12, 12: Servo 13, 13: Servo 14, 14: Servo 15, 15: Servo 16

CAN_D1_PC_SRV_RT: Servo command output rate

Note: This parameter is for advanced users

Output rate of servo command messages

Range Units
1 - 500 hertz

CAN_D1_TST_ Parameters

CAN_D1_TST_ID: CAN Test Index

Note: This parameter is for advanced users

Selects the Index of Test that needs to be run recursively, this value gets reset to 0 at boot.

Range Values
0 - 4
Value Meaning
0 TEST_NONE
1 TEST_LOOPBACK
2 TEST_BUSOFF_RECOVERY
3 TEST_UAVCAN_DNA
4 TEST_TOSHIBA_CAN
5 TEST_KDE_CAN
6 TEST_UAVCAN_ESC

CAN_D1_TST_LPR8: CANTester LoopRate

Note: This parameter is for advanced users

Selects the Looprate of Test methods

Units
microseconds

CAN_D1_UC_ Parameters

CAN_D1_UC_NODE: UAVCAN node that is used for this network

Note: This parameter is for advanced users

UAVCAN node should be set implicitly

Range
1 - 250

CAN_D1_UC_SRV_BM: RC Out channels to be transmitted as servo over UAVCAN

Note: This parameter is for advanced users

Bitmask with one set for channel to be transmitted as a servo command over UAVCAN

Bitmask
0: Servo 1, 1: Servo 2, 2: Servo 3, 3: Servo 4, 4: Servo 5, 5: Servo 6, 6: Servo 7, 7: Servo 8, 8: Servo 9, 9: Servo 10, 10: Servo 11, 11: Servo 12, 12: Servo 13, 13: Servo 14, 14: Servo 15

CAN_D1_UC_ESC_BM: RC Out channels to be transmitted as ESC over UAVCAN

Note: This parameter is for advanced users

Bitmask with one set for channel to be transmitted as a ESC command over UAVCAN

Bitmask
0: ESC 1, 1: ESC 2, 2: ESC 3, 3: ESC 4, 4: ESC 5, 5: ESC 6, 6: ESC 7, 7: ESC 8, 8: ESC 9, 9: ESC 10, 10: ESC 11, 11: ESC 12, 12: ESC 13, 13: ESC 14, 14: ESC 15, 15: ESC 16

CAN_D1_UC_SRV_RT: Servo output rate

Note: This parameter is for advanced users

Maximum transmit rate for servo outputs

Range Units
1 - 200 hertz

CAN_D1_UC_OPTION: UAVCAN options

Note: This parameter is for advanced users

Option flags

Bitmask
Bit Meaning
0 ClearDNADatabase
1 IgnoreDNANodeConflicts

CAN_D2_ Parameters

CAN_D2_PROTOCOL: Enable use of specific protocol over virtual driver

Note: This parameter is for advanced users

Enabling this option starts selected protocol that will use this virtual driver

RebootRequired Values
True
Value Meaning
0 Disabled
1 UAVCAN
3 ToshibaCAN
4 PiccoloCAN
5 CANTester
8 KDECAN
9 PacketDigitalCAN

CAN_D2_KDE_ Parameters

CAN_D2_KDE_NPOLE: Number of motor poles

Sets the number of motor poles to calculate the correct RPM value

CAN_D2_PC_ Parameters

CAN_D2_PC_ESC_BM: ESC channels

Note: This parameter is for advanced users

Bitmask defining which ESC (motor) channels are to be transmitted over Piccolo CAN

Bitmask
0: ESC 1, 1: ESC 2, 2: ESC 3, 3: ESC 4, 4: ESC 5, 5: ESC 6, 6: ESC 7, 7: ESC 8, 8: ESC 9, 9: ESC 10, 10: ESC 11, 11: ESC 12, 12: ESC 13, 13: ESC 14, 14: ESC 15, 15: ESC 16

CAN_D2_PC_ESC_RT: ESC output rate

Note: This parameter is for advanced users

Output rate of ESC command messages

Range Units
1 - 500 hertz

CAN_D2_PC_SRV_BM: Servo channels

Note: This parameter is for advanced users

Bitmask defining which servo channels are to be transmitted over Piccolo CAN

Bitmask
0: Servo 1, 1: Servo 2, 2: Servo 3, 3: Servo 4, 4: Servo 5, 5: Servo 6, 6: Servo 7, 7: Servo 8, 8: Servo 9, 9: Servo 10, 10: Servo 11, 11: Servo 12, 12: Servo 13, 13: Servo 14, 14: Servo 15, 15: Servo 16

CAN_D2_PC_SRV_RT: Servo command output rate

Note: This parameter is for advanced users

Output rate of servo command messages

Range Units
1 - 500 hertz

CAN_D2_TST_ Parameters

CAN_D2_TST_ID: CAN Test Index

Note: This parameter is for advanced users

Selects the Index of Test that needs to be run recursively, this value gets reset to 0 at boot.

Range Values
0 - 4
Value Meaning
0 TEST_NONE
1 TEST_LOOPBACK
2 TEST_BUSOFF_RECOVERY
3 TEST_UAVCAN_DNA
4 TEST_TOSHIBA_CAN
5 TEST_KDE_CAN
6 TEST_UAVCAN_ESC

CAN_D2_TST_LPR8: CANTester LoopRate

Note: This parameter is for advanced users

Selects the Looprate of Test methods

Units
microseconds

CAN_D2_UC_ Parameters

CAN_D2_UC_NODE: UAVCAN node that is used for this network

Note: This parameter is for advanced users

UAVCAN node should be set implicitly

Range
1 - 250

CAN_D2_UC_SRV_BM: RC Out channels to be transmitted as servo over UAVCAN

Note: This parameter is for advanced users

Bitmask with one set for channel to be transmitted as a servo command over UAVCAN

Bitmask
0: Servo 1, 1: Servo 2, 2: Servo 3, 3: Servo 4, 4: Servo 5, 5: Servo 6, 6: Servo 7, 7: Servo 8, 8: Servo 9, 9: Servo 10, 10: Servo 11, 11: Servo 12, 12: Servo 13, 13: Servo 14, 14: Servo 15

CAN_D2_UC_ESC_BM: RC Out channels to be transmitted as ESC over UAVCAN

Note: This parameter is for advanced users

Bitmask with one set for channel to be transmitted as a ESC command over UAVCAN

Bitmask
0: ESC 1, 1: ESC 2, 2: ESC 3, 3: ESC 4, 4: ESC 5, 5: ESC 6, 6: ESC 7, 7: ESC 8, 8: ESC 9, 9: ESC 10, 10: ESC 11, 11: ESC 12, 12: ESC 13, 13: ESC 14, 14: ESC 15, 15: ESC 16

CAN_D2_UC_SRV_RT: Servo output rate

Note: This parameter is for advanced users

Maximum transmit rate for servo outputs

Range Units
1 - 200 hertz

CAN_D2_UC_OPTION: UAVCAN options

Note: This parameter is for advanced users

Option flags

Bitmask
Bit Meaning
0 ClearDNADatabase
1 IgnoreDNANodeConflicts

CAN_D3_ Parameters

CAN_D3_PROTOCOL: Enable use of specific protocol over virtual driver

Note: This parameter is for advanced users

Enabling this option starts selected protocol that will use this virtual driver

RebootRequired Values
True
Value Meaning
0 Disabled
1 UAVCAN
3 ToshibaCAN
4 PiccoloCAN
5 CANTester
8 KDECAN
9 PacketDigitalCAN

CAN_D3_KDE_ Parameters

CAN_D3_KDE_NPOLE: Number of motor poles

Sets the number of motor poles to calculate the correct RPM value

CAN_D3_PC_ Parameters

CAN_D3_PC_ESC_BM: ESC channels

Note: This parameter is for advanced users

Bitmask defining which ESC (motor) channels are to be transmitted over Piccolo CAN

Bitmask
0: ESC 1, 1: ESC 2, 2: ESC 3, 3: ESC 4, 4: ESC 5, 5: ESC 6, 6: ESC 7, 7: ESC 8, 8: ESC 9, 9: ESC 10, 10: ESC 11, 11: ESC 12, 12: ESC 13, 13: ESC 14, 14: ESC 15, 15: ESC 16

CAN_D3_PC_ESC_RT: ESC output rate

Note: This parameter is for advanced users

Output rate of ESC command messages

Range Units
1 - 500 hertz

CAN_D3_PC_SRV_BM: Servo channels

Note: This parameter is for advanced users

Bitmask defining which servo channels are to be transmitted over Piccolo CAN

Bitmask
0: Servo 1, 1: Servo 2, 2: Servo 3, 3: Servo 4, 4: Servo 5, 5: Servo 6, 6: Servo 7, 7: Servo 8, 8: Servo 9, 9: Servo 10, 10: Servo 11, 11: Servo 12, 12: Servo 13, 13: Servo 14, 14: Servo 15, 15: Servo 16

CAN_D3_PC_SRV_RT: Servo command output rate

Note: This parameter is for advanced users

Output rate of servo command messages

Range Units
1 - 500 hertz

CAN_D3_TST_ Parameters

CAN_D3_TST_ID: CAN Test Index

Note: This parameter is for advanced users

Selects the Index of Test that needs to be run recursively, this value gets reset to 0 at boot.

Range Values
0 - 4
Value Meaning
0 TEST_NONE
1 TEST_LOOPBACK
2 TEST_BUSOFF_RECOVERY
3 TEST_UAVCAN_DNA
4 TEST_TOSHIBA_CAN
5 TEST_KDE_CAN
6 TEST_UAVCAN_ESC

CAN_D3_TST_LPR8: CANTester LoopRate

Note: This parameter is for advanced users

Selects the Looprate of Test methods

Units
microseconds

CAN_D3_UC_ Parameters

CAN_D3_UC_NODE: UAVCAN node that is used for this network

Note: This parameter is for advanced users

UAVCAN node should be set implicitly

Range
1 - 250

CAN_D3_UC_SRV_BM: RC Out channels to be transmitted as servo over UAVCAN

Note: This parameter is for advanced users

Bitmask with one set for channel to be transmitted as a servo command over UAVCAN

Bitmask
0: Servo 1, 1: Servo 2, 2: Servo 3, 3: Servo 4, 4: Servo 5, 5: Servo 6, 6: Servo 7, 7: Servo 8, 8: Servo 9, 9: Servo 10, 10: Servo 11, 11: Servo 12, 12: Servo 13, 13: Servo 14, 14: Servo 15

CAN_D3_UC_ESC_BM: RC Out channels to be transmitted as ESC over UAVCAN

Note: This parameter is for advanced users

Bitmask with one set for channel to be transmitted as a ESC command over UAVCAN

Bitmask
0: ESC 1, 1: ESC 2, 2: ESC 3, 3: ESC 4, 4: ESC 5, 5: ESC 6, 6: ESC 7, 7: ESC 8, 8: ESC 9, 9: ESC 10, 10: ESC 11, 11: ESC 12, 12: ESC 13, 13: ESC 14, 14: ESC 15, 15: ESC 16

CAN_D3_UC_SRV_RT: Servo output rate

Note: This parameter is for advanced users

Maximum transmit rate for servo outputs

Range Units
1 - 200 hertz

CAN_D3_UC_OPTION: UAVCAN options

Note: This parameter is for advanced users

Option flags

Bitmask
Bit Meaning
0 ClearDNADatabase
1 IgnoreDNANodeConflicts

CAN_P1_ Parameters

CAN_P1_DRIVER: Index of virtual driver to be used with physical CAN interface

Enabling this option enables use of CAN buses.

RebootRequired Values
True
Value Meaning
0 Disabled
1 First driver
2 Second driver

CAN_P1_BITRATE: Bitrate of CAN interface

Note: This parameter is for advanced users

Bit rate can be set up to from 10000 to 1000000

Range
10000 - 1000000

CAN_P2_ Parameters

CAN_P2_DRIVER: Index of virtual driver to be used with physical CAN interface

Enabling this option enables use of CAN buses.

RebootRequired Values
True
Value Meaning
0 Disabled
1 First driver
2 Second driver

CAN_P2_BITRATE: Bitrate of CAN interface

Note: This parameter is for advanced users

Bit rate can be set up to from 10000 to 1000000

Range
10000 - 1000000

CAN_P3_ Parameters

CAN_P3_DRIVER: Index of virtual driver to be used with physical CAN interface

Enabling this option enables use of CAN buses.

RebootRequired Values
True
Value Meaning
0 Disabled
1 First driver
2 Second driver

CAN_P3_BITRATE: Bitrate of CAN interface

Note: This parameter is for advanced users

Bit rate can be set up to from 10000 to 1000000

Range
10000 - 1000000

CAN_SLCAN_ Parameters

CAN_SLCAN_CPORT: SLCAN Route

CAN Interface ID to be routed to SLCAN, 0 means no routing

RebootRequired Values
True
Value Meaning
0 Disabled
1 First interface
2 Second interface

CAN_SLCAN_SERNUM: SLCAN Serial Port

Serial Port ID to be used for temporary SLCAN iface, -1 means no temporary serial. This parameter is automatically reset on reboot or on timeout. See CAN_SLCAN_TIMOUT for timeout details

Values
Value Meaning
-1 Disabled
0 Serial0
1 Serial1
2 Serial2
3 Serial3
4 Serial4
5 Serial5
6 Serial6

CAN_SLCAN_TIMOUT: SLCAN Timeout

Duration of inactivity after which SLCAN is switched back to original driver in seconds.

Range
0 - 127

CAN_SLCAN_SDELAY: SLCAN Start Delay

Duration after which slcan starts after setting SERNUM in seconds.

Range
0 - 127

CHUTE_ Parameters

CHUTE_ENABLED: Parachute release enabled or disabled

Parachute release enabled or disabled

Values
Value Meaning
0 Disabled
1 Enabled

CHUTE_TYPE: Parachute release mechanism type (relay or servo)

Parachute release mechanism type (relay or servo)

Values
Value Meaning
0 First Relay
1 Second Relay
2 Third Relay
3 Fourth Relay
10 Servo

CHUTE_SERVO_ON: Parachute Servo ON PWM value

Parachute Servo PWM value in microseconds when parachute is released

Increment Range Units
1 1000 - 2000 PWM in microseconds

CHUTE_SERVO_OFF: Servo OFF PWM value

Parachute Servo PWM value in microseconds when parachute is not released

Increment Range Units
1 1000 - 2000 PWM in microseconds

CHUTE_ALT_MIN: Parachute min altitude in meters above home

Parachute min altitude above home. Parachute will not be released below this altitude. 0 to disable alt check.

Increment Range Units
1 0 - 32000 meters

CHUTE_DELAY_MS: Parachute release delay

Delay in millseconds between motor stop and chute release

Increment Range Units
1 0 - 5000 milliseconds

CHUTE_CRT_SINK: Critical sink speed rate in m/s to trigger emergency parachute

Release parachute when critical sink rate is reached

Increment Range Units
1 0 - 15 meters per second

CIRCLE_ Parameters

CIRCLE_RADIUS: Circle Radius

Defines the radius of the circle the vehicle will fly when in Circle flight mode

Increment Range Units
100 0 - 200000 centimeters

CIRCLE_RATE: Circle rate

Circle mode’s turn rate in deg/sec. Positive to turn clockwise, negative for counter clockwise

Increment Range Units
1 -90 - 90 degrees per second

CIRCLE_OPTIONS: Circle options

0:Enable or disable using the pitch/roll stick control circle mode’s radius and rate

Bitmask
Bit Meaning
0 manual control
1 face direction of travel
2 Start at center rather than on perimeter

COMPASS_ Parameters

COMPASS_OFS_X: Compass offsets in milligauss on the X axis

Note: This parameter is for advanced users

Offset to be added to the compass x-axis values to compensate for metal in the frame

Calibration Increment Range Units
1 1 -400 - 400 milligauss

COMPASS_OFS_Y: Compass offsets in milligauss on the Y axis

Note: This parameter is for advanced users

Offset to be added to the compass y-axis values to compensate for metal in the frame

Calibration Increment Range Units
1 1 -400 - 400 milligauss

COMPASS_OFS_Z: Compass offsets in milligauss on the Z axis

Note: This parameter is for advanced users

Offset to be added to the compass z-axis values to compensate for metal in the frame

Increment Range Units
1 -400 - 400 milligauss

COMPASS_DEC: Compass declination

An angle to compensate between the true north and magnetic north

Increment Range Units
0.01 -3.142 - 3.142 radians

COMPASS_LEARN: Learn compass offsets automatically

Note: This parameter is for advanced users

Enable or disable the automatic learning of compass offsets. You can enable learning either using a compass-only method that is suitable only for fixed wing aircraft or using the offsets learnt by the active EKF state estimator. If this option is enabled then the learnt offsets are saved when you disarm the vehicle. If InFlight learning is enabled then the compass with automatically start learning once a flight starts (must be armed). While InFlight learning is running you cannot use position control modes.

Values
Value Meaning
0 Disabled
1 Internal-Learning
2 EKF-Learning
3 InFlight-Learning

COMPASS_USE: Use compass for yaw

Note: This parameter is for advanced users

Enable or disable the use of the compass (instead of the GPS) for determining heading

Values
Value Meaning
0 Disabled
1 Enabled

COMPASS_AUTODEC: Auto Declination

Note: This parameter is for advanced users

Enable or disable the automatic calculation of the declination based on gps location

Values
Value Meaning
0 Disabled
1 Enabled

COMPASS_MOTCT: Motor interference compensation type

Note: This parameter is for advanced users

Set motor interference compensation type to disabled, throttle or current. Do not change manually.

Calibration Values
1
Value Meaning
0 Disabled
1 Use Throttle
2 Use Current

COMPASS_MOT_X: Motor interference compensation for body frame X axis

Note: This parameter is for advanced users

Multiplied by the current throttle and added to the compass’s x-axis values to compensate for motor interference (Offset per Amp or at Full Throttle)

Calibration Increment Range Units
1 1 -1000 - 1000 milligauss per ampere

COMPASS_MOT_Y: Motor interference compensation for body frame Y axis

Note: This parameter is for advanced users

Multiplied by the current throttle and added to the compass’s y-axis values to compensate for motor interference (Offset per Amp or at Full Throttle)

Calibration Increment Range Units
1 1 -1000 - 1000 milligauss per ampere

COMPASS_MOT_Z: Motor interference compensation for body frame Z axis

Note: This parameter is for advanced users

Multiplied by the current throttle and added to the compass’s z-axis values to compensate for motor interference (Offset per Amp or at Full Throttle)

Increment Range Units
1 -1000 - 1000 milligauss per ampere

COMPASS_ORIENT: Compass orientation

Note: This parameter is for advanced users

The orientation of the first external compass relative to the vehicle frame. This value will be ignored unless this compass is set as an external compass. When set correctly in the northern hemisphere, pointing the nose and right side down should increase the MagX and MagY values respectively. Rolling the vehicle upside down should decrease the MagZ value. For southern hemisphere, switch increase and decrease. NOTE: For internal compasses, AHRS_ORIENT is used.

Values
Value Meaning
0 None
1 Yaw45
2 Yaw90
3 Yaw135
4 Yaw180
5 Yaw225
6 Yaw270
7 Yaw315
8 Roll180
9 Roll180Yaw45
10 Roll180Yaw90
11 Roll180Yaw135
12 Pitch180
13 Roll180Yaw225
14 Roll180Yaw270
15 Roll180Yaw315
16 Roll90
17 Roll90Yaw45
18 Roll90Yaw90
19 Roll90Yaw135
20 Roll270
21 Roll270Yaw45
22 Roll270Yaw90
23 Roll270Yaw135
24 Pitch90
25 Pitch270
26 Pitch180Yaw90
27 Pitch180Yaw270
28 Roll90Pitch90
29 Roll180Pitch90
30 Roll270Pitch90
31 Roll90Pitch180
32 Roll270Pitch180
33 Roll90Pitch270
34 Roll180Pitch270
35 Roll270Pitch270
36 Roll90Pitch180Yaw90
37 Roll90Yaw270
38 Yaw293Pitch68Roll180
39 Pitch315
40 Roll90Pitch315
100 Custom

COMPASS_EXTERNAL: Compass is attached via an external cable

Note: This parameter is for advanced users

Configure compass so it is attached externally. This is auto-detected on PX4 and Pixhawk. Set to 1 if the compass is externally connected. When externally connected the COMPASS_ORIENT option operates independently of the AHRS_ORIENTATION board orientation option. If set to 0 or 1 then auto-detection by bus connection can override the value. If set to 2 then auto-detection will be disabled.

Values
Value Meaning
0 Internal
1 External
2 ForcedExternal

COMPASS_OFS2_X: Compass2 offsets in milligauss on the X axis

Note: This parameter is for advanced users

Offset to be added to compass2’s x-axis values to compensate for metal in the frame

Calibration Increment Range Units
1 1 -400 - 400 milligauss

COMPASS_OFS2_Y: Compass2 offsets in milligauss on the Y axis

Note: This parameter is for advanced users

Offset to be added to compass2’s y-axis values to compensate for metal in the frame

Calibration Increment Range Units
1 1 -400 - 400 milligauss

COMPASS_OFS2_Z: Compass2 offsets in milligauss on the Z axis

Note: This parameter is for advanced users

Offset to be added to compass2’s z-axis values to compensate for metal in the frame

Increment Range Units
1 -400 - 400 milligauss

COMPASS_MOT2_X: Motor interference compensation to compass2 for body frame X axis

Note: This parameter is for advanced users

Multiplied by the current throttle and added to compass2’s x-axis values to compensate for motor interference (Offset per Amp or at Full Throttle)

Calibration Increment Range Units
1 1 -1000 - 1000 milligauss per ampere

COMPASS_MOT2_Y: Motor interference compensation to compass2 for body frame Y axis

Note: This parameter is for advanced users

Multiplied by the current throttle and added to compass2’s y-axis values to compensate for motor interference (Offset per Amp or at Full Throttle)

Calibration Increment Range Units
1 1 -1000 - 1000 milligauss per ampere

COMPASS_MOT2_Z: Motor interference compensation to compass2 for body frame Z axis

Note: This parameter is for advanced users

Multiplied by the current throttle and added to compass2’s z-axis values to compensate for motor interference (Offset per Amp or at Full Throttle)

Increment Range Units
1 -1000 - 1000 milligauss per ampere

COMPASS_OFS3_X: Compass3 offsets in milligauss on the X axis

Note: This parameter is for advanced users

Offset to be added to compass3’s x-axis values to compensate for metal in the frame

Calibration Increment Range Units
1 1 -400 - 400 milligauss

COMPASS_OFS3_Y: Compass3 offsets in milligauss on the Y axis

Note: This parameter is for advanced users

Offset to be added to compass3’s y-axis values to compensate for metal in the frame

Calibration Increment Range Units
1 1 -400 - 400 milligauss

COMPASS_OFS3_Z: Compass3 offsets in milligauss on the Z axis

Note: This parameter is for advanced users

Offset to be added to compass3’s z-axis values to compensate for metal in the frame

Increment Range Units
1 -400 - 400 milligauss

COMPASS_MOT3_X: Motor interference compensation to compass3 for body frame X axis

Note: This parameter is for advanced users

Multiplied by the current throttle and added to compass3’s x-axis values to compensate for motor interference (Offset per Amp or at Full Throttle)

Calibration Increment Range Units
1 1 -1000 - 1000 milligauss per ampere

COMPASS_MOT3_Y: Motor interference compensation to compass3 for body frame Y axis

Note: This parameter is for advanced users

Multiplied by the current throttle and added to compass3’s y-axis values to compensate for motor interference (Offset per Amp or at Full Throttle)

Calibration Increment Range Units
1 1 -1000 - 1000 milligauss per ampere

COMPASS_MOT3_Z: Motor interference compensation to compass3 for body frame Z axis

Note: This parameter is for advanced users

Multiplied by the current throttle and added to compass3’s z-axis values to compensate for motor interference (Offset per Amp or at Full Throttle)

Increment Range Units
1 -1000 - 1000 milligauss per ampere

COMPASS_DEV_ID: Compass device id

Note: This parameter is for advanced users

Compass device id. Automatically detected, do not set manually

ReadOnly
True

COMPASS_DEV_ID2: Compass2 device id

Note: This parameter is for advanced users

Second compass’s device id. Automatically detected, do not set manually

ReadOnly
True

COMPASS_DEV_ID3: Compass3 device id

Note: This parameter is for advanced users

Third compass’s device id. Automatically detected, do not set manually

ReadOnly
True

COMPASS_USE2: Compass2 used for yaw

Note: This parameter is for advanced users

Enable or disable the secondary compass for determining heading.

Values
Value Meaning
0 Disabled
1 Enabled

COMPASS_ORIENT2: Compass2 orientation

Note: This parameter is for advanced users

The orientation of a second external compass relative to the vehicle frame. This value will be ignored unless this compass is set as an external compass. When set correctly in the northern hemisphere, pointing the nose and right side down should increase the MagX and MagY values respectively. Rolling the vehicle upside down should decrease the MagZ value. For southern hemisphere, switch increase and decrease. NOTE: For internal compasses, AHRS_ORIENT is used.

Values
Value Meaning
0 None
1 Yaw45
2 Yaw90
3 Yaw135
4 Yaw180
5 Yaw225
6 Yaw270
7 Yaw315
8 Roll180
9 Roll180Yaw45
10 Roll180Yaw90
11 Roll180Yaw135
12 Pitch180
13 Roll180Yaw225
14 Roll180Yaw270
15 Roll180Yaw315
16 Roll90
17 Roll90Yaw45
18 Roll90Yaw90
19 Roll90Yaw135
20 Roll270
21 Roll270Yaw45
22 Roll270Yaw90
23 Roll270Yaw135
24 Pitch90
25 Pitch270
26 Pitch180Yaw90
27 Pitch180Yaw270
28 Roll90Pitch90
29 Roll180Pitch90
30 Roll270Pitch90
31 Roll90Pitch180
32 Roll270Pitch180
33 Roll90Pitch270
34 Roll180Pitch270
35 Roll270Pitch270
36 Roll90Pitch180Yaw90
37 Roll90Yaw270
38 Yaw293Pitch68Roll180
39 Pitch315
40 Roll90Pitch315
100 Custom

COMPASS_EXTERN2: Compass2 is attached via an external cable

Note: This parameter is for advanced users

Configure second compass so it is attached externally. This is auto-detected on PX4 and Pixhawk. If set to 0 or 1 then auto-detection by bus connection can override the value. If set to 2 then auto-detection will be disabled.

Values
Value Meaning
0 Internal
1 External
2 ForcedExternal

COMPASS_USE3: Compass3 used for yaw

Note: This parameter is for advanced users

Enable or disable the tertiary compass for determining heading.

Values
Value Meaning
0 Disabled
1 Enabled

COMPASS_ORIENT3: Compass3 orientation

Note: This parameter is for advanced users

The orientation of a third external compass relative to the vehicle frame. This value will be ignored unless this compass is set as an external compass. When set correctly in the northern hemisphere, pointing the nose and right side down should increase the MagX and MagY values respectively. Rolling the vehicle upside down should decrease the MagZ value. For southern hemisphere, switch increase and decrease. NOTE: For internal compasses, AHRS_ORIENT is used.

Values
Value Meaning
0 None
1 Yaw45
2 Yaw90
3 Yaw135
4 Yaw180
5 Yaw225
6 Yaw270
7 Yaw315
8 Roll180
9 Roll180Yaw45
10 Roll180Yaw90
11 Roll180Yaw135
12 Pitch180
13 Roll180Yaw225
14 Roll180Yaw270
15 Roll180Yaw315
16 Roll90
17 Roll90Yaw45
18 Roll90Yaw90
19 Roll90Yaw135
20 Roll270
21 Roll270Yaw45
22 Roll270Yaw90
23 Roll270Yaw135
24 Pitch90
25 Pitch270
26 Pitch180Yaw90
27 Pitch180Yaw270
28 Roll90Pitch90
29 Roll180Pitch90
30 Roll270Pitch90
31 Roll90Pitch180
32 Roll270Pitch180
33 Roll90Pitch270
34 Roll180Pitch270
35 Roll270Pitch270
36 Roll90Pitch180Yaw90
37 Roll90Yaw270
38 Yaw293Pitch68Roll180
39 Pitch315
40 Roll90Pitch315
100 Custom

COMPASS_EXTERN3: Compass3 is attached via an external cable

Note: This parameter is for advanced users

Configure third compass so it is attached externally. This is auto-detected on PX4 and Pixhawk. If set to 0 or 1 then auto-detection by bus connection can override the value. If set to 2 then auto-detection will be disabled.

Values
Value Meaning
0 Internal
1 External
2 ForcedExternal

COMPASS_DIA_X: Compass soft-iron diagonal X component

Note: This parameter is for advanced users

DIA_X in the compass soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

Calibration
1

COMPASS_DIA_Y: Compass soft-iron diagonal Y component

Note: This parameter is for advanced users

DIA_Y in the compass soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

Calibration
1

COMPASS_DIA_Z: Compass soft-iron diagonal Z component

Note: This parameter is for advanced users

DIA_Z in the compass soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

COMPASS_ODI_X: Compass soft-iron off-diagonal X component

Note: This parameter is for advanced users

ODI_X in the compass soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

Calibration
1

COMPASS_ODI_Y: Compass soft-iron off-diagonal Y component

Note: This parameter is for advanced users

ODI_Y in the compass soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

Calibration
1

COMPASS_ODI_Z: Compass soft-iron off-diagonal Z component

Note: This parameter is for advanced users

ODI_Z in the compass soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

COMPASS_DIA2_X: Compass2 soft-iron diagonal X component

Note: This parameter is for advanced users

DIA_X in the compass2 soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

Calibration
1

COMPASS_DIA2_Y: Compass2 soft-iron diagonal Y component

Note: This parameter is for advanced users

DIA_Y in the compass2 soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

Calibration
1

COMPASS_DIA2_Z: Compass2 soft-iron diagonal Z component

Note: This parameter is for advanced users

DIA_Z in the compass2 soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

COMPASS_ODI2_X: Compass2 soft-iron off-diagonal X component

Note: This parameter is for advanced users

ODI_X in the compass2 soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

Calibration
1

COMPASS_ODI2_Y: Compass2 soft-iron off-diagonal Y component

Note: This parameter is for advanced users

ODI_Y in the compass2 soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

Calibration
1

COMPASS_ODI2_Z: Compass2 soft-iron off-diagonal Z component

Note: This parameter is for advanced users

ODI_Z in the compass2 soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

COMPASS_DIA3_X: Compass3 soft-iron diagonal X component

Note: This parameter is for advanced users

DIA_X in the compass3 soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

Calibration
1

COMPASS_DIA3_Y: Compass3 soft-iron diagonal Y component

Note: This parameter is for advanced users

DIA_Y in the compass3 soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

Calibration
1

COMPASS_DIA3_Z: Compass3 soft-iron diagonal Z component

Note: This parameter is for advanced users

DIA_Z in the compass3 soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

COMPASS_ODI3_X: Compass3 soft-iron off-diagonal X component

Note: This parameter is for advanced users

ODI_X in the compass3 soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

Calibration
1

COMPASS_ODI3_Y: Compass3 soft-iron off-diagonal Y component

Note: This parameter is for advanced users

ODI_Y in the compass3 soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

Calibration
1

COMPASS_ODI3_Z: Compass3 soft-iron off-diagonal Z component

Note: This parameter is for advanced users

ODI_Z in the compass3 soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

COMPASS_CAL_FIT: Compass calibration fitness

Note: This parameter is for advanced users

This controls the fitness level required for a successful compass calibration. A lower value makes for a stricter fit (less likely to pass). This is the value used for the primary magnetometer. Other magnetometers get double the value.

Increment Range Values
0.1 4 - 32
Value Meaning
4 Very Strict
8 Strict
16 Default
32 Relaxed

COMPASS_OFFS_MAX: Compass maximum offset

Note: This parameter is for advanced users

This sets the maximum allowed compass offset in calibration and arming checks

Increment Range
1 500 - 3000

COMPASS_TYPEMASK: Compass disable driver type mask

Note: This parameter is for advanced users

This is a bitmask of driver types to disable. If a driver type is set in this mask then that driver will not try to find a sensor at startup

Bitmask
Bit Meaning
0 HMC5883
1 LSM303D
2 AK8963
3 BMM150
4 LSM9DS1
5 LIS3MDL
6 AK09916
7 IST8310
8 ICM20948
9 MMC3416
11 UAVCAN
12 QMC5883
14 MAG3110
15 IST8308
16 RM3100
17 MSP
18 ExternalAHRS

COMPASS_FLTR_RNG: Range in which sample is accepted

This sets the range around the average value that new samples must be within to be accepted. This can help reduce the impact of noise on sensors that are on long I2C cables. The value is a percentage from the average value. A value of zero disables this filter.

Increment Range Units
1 0 - 100 percent

COMPASS_AUTO_ROT: Automatically check orientation

When enabled this will automatically check the orientation of compasses on successful completion of compass calibration. If set to 2 then external compasses will have their orientation automatically corrected.

Values
Value Meaning
0 Disabled
1 CheckOnly
2 CheckAndFix

COMPASS_PRIO1_ID: Compass device id with 1st order priority

Note: This parameter is for advanced users

Compass device id with 1st order priority, set automatically if 0. Reboot required after change.

RebootRequired
True

COMPASS_PRIO2_ID: Compass device id with 2nd order priority

Note: This parameter is for advanced users

Compass device id with 2nd order priority, set automatically if 0. Reboot required after change.

RebootRequired
True

COMPASS_PRIO3_ID: Compass device id with 3rd order priority

Note: This parameter is for advanced users

Compass device id with 3rd order priority, set automatically if 0. Reboot required after change.

RebootRequired
True

COMPASS_ENABLE: Enable Compass

Setting this to Enabled(1) will enable the compass. Setting this to Disabled(0) will disable the compass. Note that this is separate from COMPASS_USE. This will enable the low level senor, and will enable logging of magnetometer data. To use the compass for navigation you must also set COMPASS_USE to 1.

Values
Value Meaning
0 Disabled
1 Enabled

COMPASS_SCALE: Compass1 scale factor

Scaling factor for first compass to compensate for sensor scaling errors. If this is 0 then no scaling is done

Range
0 - 1.3

COMPASS_SCALE2: Compass2 scale factor

Scaling factor for 2nd compass to compensate for sensor scaling errors. If this is 0 then no scaling is done

Range
0 - 1.3

COMPASS_SCALE3: Compass3 scale factor

Scaling factor for 3rd compass to compensate for sensor scaling errors. If this is 0 then no scaling is done

Range
0 - 1.3

COMPASS_OPTIONS: Compass options

Note: This parameter is for advanced users

This sets options to change the behaviour of the compass

Bitmask
Bit Meaning
0 CalRequireGPS

COMPASS_DEV_ID4: Compass4 device id

Note: This parameter is for advanced users

Extra 4th compass’s device id. Automatically detected, do not set manually

ReadOnly
True

COMPASS_DEV_ID5: Compass5 device id

Note: This parameter is for advanced users

Extra 5th compass’s device id. Automatically detected, do not set manually

ReadOnly
True

COMPASS_DEV_ID6: Compass6 device id

Note: This parameter is for advanced users

Extra 6th compass’s device id. Automatically detected, do not set manually

ReadOnly
True

COMPASS_DEV_ID7: Compass7 device id

Note: This parameter is for advanced users

Extra 7th compass’s device id. Automatically detected, do not set manually

ReadOnly
True

COMPASS_DEV_ID8: Compass8 device id

Note: This parameter is for advanced users

Extra 8th compass’s device id. Automatically detected, do not set manually

ReadOnly
True

COMPASS_CUS_ROLL: Custom orientation roll offset

Note: This parameter is for advanced users

Compass mounting position roll offset. Positive values = roll right, negative values = roll left. This parameter is only used when COMPASS_ORIENT/2/3 is set to CUSTOM.

Increment Range RebootRequired Units
1 -180 - 180 True degrees

COMPASS_CUS_PIT: Custom orientation pitch offset

Note: This parameter is for advanced users

Compass mounting position pitch offset. Positive values = pitch up, negative values = pitch down. This parameter is only used when COMPASS_ORIENT/2/3 is set to CUSTOM.

Increment Range RebootRequired Units
1 -180 - 180 True degrees

COMPASS_CUS_YAW: Custom orientation yaw offset

Note: This parameter is for advanced users

Compass mounting position yaw offset. Positive values = yaw right, negative values = yaw left. This parameter is only used when COMPASS_ORIENT/2/3 is set to CUSTOM.

Increment Range RebootRequired Units
1 -180 - 180 True degrees

COMPASS_PMOT Parameters

COMPASS_PMOT_EN: per-motor compass correction enable

Note: This parameter is for advanced users

This enables per-motor compass corrections

Values
Value Meaning
0 Disabled
1 Enabled

COMPASS_PMOT_EXP: per-motor exponential correction

Note: This parameter is for advanced users

This is the exponential correction for the power output of the motor for per-motor compass correction

Increment Range
0.01 0 - 2

COMPASS_PMOT1_X: Compass per-motor1 X

Note: This parameter is for advanced users

Compensation for X axis of motor1

COMPASS_PMOT1_Y: Compass per-motor1 Y

Note: This parameter is for advanced users

Compensation for Y axis of motor1

COMPASS_PMOT1_Z: Compass per-motor1 Z

Note: This parameter is for advanced users

Compensation for Z axis of motor1

COMPASS_PMOT2_X: Compass per-motor2 X

Note: This parameter is for advanced users

Compensation for X axis of motor2

COMPASS_PMOT2_Y: Compass per-motor2 Y

Note: This parameter is for advanced users

Compensation for Y axis of motor2

COMPASS_PMOT2_Z: Compass per-motor2 Z

Note: This parameter is for advanced users

Compensation for Z axis of motor2

COMPASS_PMOT3_X: Compass per-motor3 X

Note: This parameter is for advanced users

Compensation for X axis of motor3

COMPASS_PMOT3_Y: Compass per-motor3 Y

Note: This parameter is for advanced users

Compensation for Y axis of motor3

COMPASS_PMOT3_Z: Compass per-motor3 Z

Note: This parameter is for advanced users

Compensation for Z axis of motor3

COMPASS_PMOT4_X: Compass per-motor4 X

Note: This parameter is for advanced users

Compensation for X axis of motor4

COMPASS_PMOT4_Y: Compass per-motor4 Y

Note: This parameter is for advanced users

Compensation for Y axis of motor4

COMPASS_PMOT4_Z: Compass per-motor4 Z

Note: This parameter is for advanced users

Compensation for Z axis of motor4

EAHRS Parameters

EAHRS_TYPE: AHRS type

Type of AHRS device

Values
Value Meaning
0 None
1 VectorNav

EAHRS_RATE: AHRS data rate

Requested rate for AHRS device

Units
hertz

EK2_ Parameters

EK2_ENABLE: Enable EKF2

Note: This parameter is for advanced users

This enables EKF2. Enabling EKF2 only makes the maths run, it does not mean it will be used for flight control. To use it for flight control set AHRS_EKF_TYPE=2. A reboot or restart will need to be performed after changing the value of EK2_ENABLE for it to take effect.

RebootRequired Values
True
Value Meaning
0 Disabled
1 Enabled

EK2_GPS_TYPE: GPS mode control

Note: This parameter is for advanced users

This controls use of GPS measurements : 0 = use 3D velocity & 2D position, 1 = use 2D velocity and 2D position, 2 = use 2D position, 3 = Inhibit GPS use - this can be useful when flying with an optical flow sensor in an environment where GPS quality is poor and subject to large multipath errors.

Values
Value Meaning
0 GPS 3D Vel and 2D Pos
1 GPS 2D vel and 2D pos
2 GPS 2D pos
3 No GPS

EK2_VELNE_M_NSE: GPS horizontal velocity measurement noise (m/s)

Note: This parameter is for advanced users

This sets a lower limit on the speed accuracy reported by the GPS receiver that is used to set horizontal velocity observation noise. If the model of receiver used does not provide a speed accurcy estimate, then the parameter value will be used. Increasing it reduces the weighting of the GPS horizontal velocity measurements.

Increment Range Units
0.05 0.05 - 5.0 meters per second

EK2_VELD_M_NSE: GPS vertical velocity measurement noise (m/s)

Note: This parameter is for advanced users

This sets a lower limit on the speed accuracy reported by the GPS receiver that is used to set vertical velocity observation noise. If the model of receiver used does not provide a speed accurcy estimate, then the parameter value will be used. Increasing it reduces the weighting of the GPS vertical velocity measurements.

Increment Range Units
0.05 0.05 - 5.0 meters per second

EK2_VEL_I_GATE: GPS velocity innovation gate size

Note: This parameter is for advanced users

This sets the percentage number of standard deviations applied to the GPS velocity measurement innovation consistency check. Decreasing it makes it more likely that good measurements willbe rejected. Increasing it makes it more likely that bad measurements will be accepted.

Increment Range
25 100 - 1000

EK2_POSNE_M_NSE: GPS horizontal position measurement noise (m)

Note: This parameter is for advanced users

This sets the GPS horizontal position observation noise. Increasing it reduces the weighting of GPS horizontal position measurements.

Increment Range Units
0.1 0.1 - 10.0 meters

EK2_POS_I_GATE: GPS position measurement gate size

Note: This parameter is for advanced users

This sets the percentage number of standard deviations applied to the GPS position measurement innovation consistency check. Decreasing it makes it more likely that good measurements will be rejected. Increasing it makes it more likely that bad measurements will be accepted.

Increment Range
25 100 - 1000

EK2_GLITCH_RAD: GPS glitch radius gate size (m)

Note: This parameter is for advanced users

This controls the maximum radial uncertainty in position between the value predicted by the filter and the value measured by the GPS before the filter position and velocity states are reset to the GPS. Making this value larger allows the filter to ignore larger GPS glitches but also means that non-GPS errors such as IMU and compass can create a larger error in position before the filter is forced back to the GPS position.

Increment Range Units
5 10 - 100 meters

EK2_ALT_SOURCE: Primary altitude sensor source

Note: This parameter is for advanced users

Primary height sensor used by the EKF. If a sensor other than Baro is selected and becomes unavailable, then the Baro sensor will be used as a fallback. NOTE: The EK2_RNG_USE_HGT parameter can be used to switch to range-finder when close to the ground in conjunction with EK2_ALT_SOURCE = 0 or 2 (Baro or GPS).

RebootRequired Values
True
Value Meaning
0 Use Baro
1 Use Range Finder
2 Use GPS
3 Use Range Beacon

EK2_ALT_M_NSE: Altitude measurement noise (m)

Note: This parameter is for advanced users

This is the RMS value of noise in the altitude measurement. Increasing it reduces the weighting of the baro measurement and will make the filter respond more slowly to baro measurement errors, but will make it more sensitive to GPS and accelerometer errors.

Increment Range Units
0.1 0.1 - 10.0 meters

EK2_HGT_I_GATE: Height measurement gate size

Note: This parameter is for advanced users

This sets the percentage number of standard deviations applied to the height measurement innovation consistency check. Decreasing it makes it more likely that good measurements will be rejected. Increasing it makes it more likely that bad measurements will be accepted.

Increment Range
25 100 - 1000

EK2_HGT_DELAY: Height measurement delay (msec)

Note: This parameter is for advanced users

This is the number of msec that the Height measurements lag behind the inertial measurements.

Increment Range RebootRequired Units
10 0 - 250 True milliseconds

EK2_MAG_M_NSE: Magnetometer measurement noise (Gauss)

Note: This parameter is for advanced users

This is the RMS value of noise in magnetometer measurements. Increasing it reduces the weighting on these measurements.

Increment Range Units
0.01 0.01 - 0.5 gauss

EK2_MAG_CAL: Magnetometer default fusion mode

Note: This parameter is for advanced users

This determines when the filter will use the 3-axis magnetometer fusion model that estimates both earth and body fixed magnetic field states, when it will use a simpler magnetic heading fusion model that does not use magnetic field states and when it will use an alternative method of yaw determination to the magnetometer. The 3-axis magnetometer fusion is only suitable for use when the external magnetic field environment is stable. EK2_MAG_CAL = 0 uses heading fusion on ground, 3-axis fusion in-flight, and is the default setting for Plane users. EK2_MAG_CAL = 1 uses 3-axis fusion only when manoeuvring. EK2_MAG_CAL = 2 uses heading fusion at all times, is recommended if the external magnetic field is varying and is the default for rovers. EK2_MAG_CAL = 3 uses heading fusion on the ground and 3-axis fusion after the first in-air field and yaw reset has completed, and is the default for copters. EK2_MAG_CAL = 4 uses 3-axis fusion at all times. NOTE: The fusion mode can be forced to 2 for specific EKF cores using the EK2_MAG_MASK parameter. NOTE: limited operation without a magnetometer or any other yaw sensor is possible by setting all COMPASS_USE, COMPASS_USE2, COMPASS_USE3, etc parameters to 0 with COMPASS_ENABLE set to 1. If this is done, the EK2_GSF_RUN and EK2_GSF_USE masks must be set to the same as EK2_IMU_MASK.

Values
Value Meaning
0 When flying
1 When manoeuvring
2 Never
3 After first climb yaw reset
4 Always

EK2_MAG_I_GATE: Magnetometer measurement gate size

Note: This parameter is for advanced users

This sets the percentage number of standard deviations applied to the magnetometer measurement innovation consistency check. Decreasing it makes it more likely that good measurements will be rejected. Increasing it makes it more likely that bad measurements will be accepted.

Increment Range
25 100 - 1000

EK2_EAS_M_NSE: Equivalent airspeed measurement noise (m/s)

Note: This parameter is for advanced users

This is the RMS value of noise in equivalent airspeed measurements used by planes. Increasing it reduces the weighting of airspeed measurements and will make wind speed estimates less noisy and slower to converge. Increasing also increases navigation errors when dead-reckoning without GPS measurements.

Increment Range Units
0.1 0.5 - 5.0 meters per second

EK2_EAS_I_GATE: Airspeed measurement gate size

Note: This parameter is for advanced users

This sets the percentage number of standard deviations applied to the airspeed measurement innovation consistency check. Decreasing it makes it more likely that good measurements will be rejected. Increasing it makes it more likely that bad measurements will be accepted.

Increment Range
25 100 - 1000

EK2_RNG_M_NSE: Range finder measurement noise (m)

Note: This parameter is for advanced users

This is the RMS value of noise in the range finder measurement. Increasing it reduces the weighting on this measurement.

Increment Range Units
0.1 0.1 - 10.0 meters

EK2_RNG_I_GATE: Range finder measurement gate size

Note: This parameter is for advanced users

This sets the percentage number of standard deviations applied to the range finder innovation consistency check. Decreasing it makes it more likely that good measurements will be rejected. Increasing it makes it more likely that bad measurements will be accepted.

Increment Range
25 100 - 1000

EK2_MAX_FLOW: Maximum valid optical flow rate

Note: This parameter is for advanced users

This sets the magnitude maximum optical flow rate in rad/sec that will be accepted by the filter

Increment Range Units
0.1 1.0 - 4.0 radians per second

EK2_FLOW_M_NSE: Optical flow measurement noise (rad/s)

Note: This parameter is for advanced users

This is the RMS value of noise and errors in optical flow measurements. Increasing it reduces the weighting on these measurements.

Increment Range Units
0.05 0.05 - 1.0 radians per second

EK2_FLOW_I_GATE: Optical Flow measurement gate size

Note: This parameter is for advanced users

This sets the percentage number of standard deviations applied to the optical flow innovation consistency check. Decreasing it makes it more likely that good measurements will be rejected. Increasing it makes it more likely that bad measurements will be accepted.

Increment Range
25 100 - 1000

EK2_FLOW_DELAY: Optical Flow measurement delay (msec)

Note: This parameter is for advanced users

This is the number of msec that the optical flow measurements lag behind the inertial measurements. It is the time from the end of the optical flow averaging period and does not include the time delay due to the 100msec of averaging within the flow sensor.

Increment Range RebootRequired Units
10 0 - 127 True milliseconds

EK2_GYRO_P_NSE: Rate gyro noise (rad/s)

Note: This parameter is for advanced users

This control disturbance noise controls the growth of estimated error due to gyro measurement errors excluding bias. Increasing it makes the flter trust the gyro measurements less and other measurements more.

Increment Range Units
0.0001 0.0001 - 0.1 radians per second

EK2_ACC_P_NSE: Accelerometer noise (m/s^2)

Note: This parameter is for advanced users

This control disturbance noise controls the growth of estimated error due to accelerometer measurement errors excluding bias. Increasing it makes the flter trust the accelerometer measurements less and other measurements more.

Increment Range Units
0.01 0.01 - 1.0 meters per square second

EK2_GBIAS_P_NSE: Rate gyro bias stability (rad/s/s)

Note: This parameter is for advanced users

This state process noise controls growth of the gyro delta angle bias state error estimate. Increasing it makes rate gyro bias estimation faster and noisier.

Range Units
0.00001 - 0.001 radians per square second

EK2_GSCL_P_NSE: Rate gyro scale factor stability (1/s)

Note: This parameter is for advanced users

This noise controls the rate of gyro scale factor learning. Increasing it makes rate gyro scale factor estimation faster and noisier.

Range Units
0.000001 - 0.001 hertz

EK2_ABIAS_P_NSE: Accelerometer bias stability (m/s^3)

Note: This parameter is for advanced users

This noise controls the growth of the vertical accelerometer delta velocity bias state error estimate. Increasing it makes accelerometer bias estimation faster and noisier.

Range Units
0.00001 - 0.005 meters per cubic second

EK2_WIND_P_NSE: Wind velocity process noise (m/s^2)

Note: This parameter is for advanced users

This state process noise controls the growth of wind state error estimates. Increasing it makes wind estimation faster and noisier.

Increment Range Units
0.1 0.01 - 1.0 meters per square second

EK2_WIND_PSCALE: Height rate to wind process noise scaler

Note: This parameter is for advanced users

This controls how much the process noise on the wind states is increased when gaining or losing altitude to take into account changes in wind speed and direction with altitude. Increasing this parameter increases how rapidly the wind states adapt when changing altitude, but does make wind velocity estimation noiser.

Increment Range
0.1 0.0 - 1.0

EK2_GPS_CHECK: GPS preflight check

Note: This parameter is for advanced users

This is a 1 byte bitmap controlling which GPS preflight checks are performed. Set to 0 to bypass all checks. Set to 255 perform all checks. Set to 3 to check just the number of satellites and HDoP. Set to 31 for the most rigorous checks that will still allow checks to pass when the copter is moving, eg launch from a boat.

Bitmask
Bit Meaning
0 NSats
1 HDoP
2 speed error
3 position error
4 yaw error
5 pos drift
6 vert speed
7 horiz speed

EK2_IMU_MASK: Bitmask of active IMUs

Note: This parameter is for advanced users

1 byte bitmap of IMUs to use in EKF2. A separate instance of EKF2 will be started for each IMU selected. Set to 1 to use the first IMU only (default), set to 2 to use the second IMU only, set to 3 to use the first and second IMU. Additional IMU’s can be used up to a maximum of 6 if memory and processing resources permit. There may be insufficient memory and processing resources to run multiple instances. If this occurs EKF2 will fail to start.

Bitmask RebootRequired
Bit Meaning
0 FirstIMU
1 SecondIMU
2 ThirdIMU
3 FourthIMU
4 FifthIMU
5 SixthIMU
True

EK2_CHECK_SCALE: GPS accuracy check scaler (%)

Note: This parameter is for advanced users

This scales the thresholds that are used to check GPS accuracy before it is used by the EKF. A value of 100 is the default. Values greater than 100 increase and values less than 100 reduce the maximum GPS error the EKF will accept. A value of 200 will double the allowable GPS error.

Range Units
50 - 200 percent

EK2_NOAID_M_NSE: Non-GPS operation position uncertainty (m)

Note: This parameter is for advanced users

This sets the amount of position variation that the EKF allows for when operating without external measurements (eg GPS or optical flow). Increasing this parameter makes the EKF attitude estimate less sensitive to vehicle manoeuvres but more sensitive to IMU errors.

Range Units
0.5 - 50.0 meters

EK2_YAW_M_NSE: Yaw measurement noise (rad)

Note: This parameter is for advanced users

This is the RMS value of noise in yaw measurements from the magnetometer. Increasing it reduces the weighting on these measurements.

Increment Range Units
0.05 0.05 - 1.0 radians

EK2_YAW_I_GATE: Yaw measurement gate size

Note: This parameter is for advanced users

This sets the percentage number of standard deviations applied to the magnetometer yaw measurement innovation consistency check. Decreasing it makes it more likely that good measurements will be rejected. Increasing it makes it more likely that bad measurements will be accepted.

Increment Range
25 100 - 1000

EK2_TAU_OUTPUT: Output complementary filter time constant (centi-sec)

Note: This parameter is for advanced users

Sets the time constant of the output complementary filter/predictor in centi-seconds.

Increment Range Units
5 10 - 50 centiseconds

EK2_MAGE_P_NSE: Earth magnetic field process noise (gauss/s)

Note: This parameter is for advanced users

This state process noise controls the growth of earth magnetic field state error estimates. Increasing it makes earth magnetic field estimation faster and noisier.

Range Units
0.00001 - 0.01 gauss per second

EK2_MAGB_P_NSE: Body magnetic field process noise (gauss/s)

Note: This parameter is for advanced users

This state process noise controls the growth of body magnetic field state error estimates. Increasing it makes magnetometer bias error estimation faster and noisier.

Range Units
0.00001 - 0.01 gauss per second

EK2_RNG_USE_HGT: Range finder switch height percentage

Note: This parameter is for advanced users

Range finder can be used as the primary height source when below this percentage of its maximum range (see RNGFND_MAX_CM). This will not work unless Baro or GPS height is selected as the primary height source vis EK2_ALT_SOURCE = 0 or 2 respectively. This feature should not be used for terrain following as it is designed for vertical takeoff and landing with climb above the range finder use height before commencing the mission, and with horizontal position changes below that height being limited to a flat region around the takeoff and landing point.

Increment Range Units
1 -1 - 70 percent

EK2_TERR_GRAD: Maximum terrain gradient

Note: This parameter is for advanced users

Specifies the maximum gradient of the terrain below the vehicle assumed when it is fusing range finder or optical flow to estimate terrain height.

Increment Range
0.01 0 - 0.2

EK2_BCN_M_NSE: Range beacon measurement noise (m)

Note: This parameter is for advanced users

This is the RMS value of noise in the range beacon measurement. Increasing it reduces the weighting on this measurement.

Increment Range Units
0.1 0.1 - 10.0 meters

EK2_BCN_I_GTE: Range beacon measurement gate size

Note: This parameter is for advanced users

This sets the percentage number of standard deviations applied to the range beacon measurement innovation consistency check. Decreasing it makes it more likely that good measurements will be rejected. Increasing it makes it more likely that bad measurements will be accepted.

Increment Range
25 100 - 1000

EK2_BCN_DELAY: Range beacon measurement delay (msec)

Note: This parameter is for advanced users

This is the number of msec that the range beacon measurements lag behind the inertial measurements. It is the time from the end of the optical flow averaging period and does not include the time delay due to the 100msec of averaging within the flow sensor.

Increment Range RebootRequired Units
10 0 - 127 True milliseconds

EK2_RNG_USE_SPD: Range finder max ground speed

Note: This parameter is for advanced users

The range finder will not be used as the primary height source when the horizontal ground speed is greater than this value.

Increment Range Units
0.5 2.0 - 6.0 meters per second

EK2_MAG_MASK: Bitmask of active EKF cores that will always use heading fusion

Note: This parameter is for advanced users

1 byte bitmap of EKF cores that will disable magnetic field states and use simple magnetic heading fusion at all times. This parameter enables specified cores to be used as a backup for flight into an environment with high levels of external magnetic interference which may degrade the EKF attitude estimate when using 3-axis magnetometer fusion. NOTE : Use of a different magnetometer fusion algorithm on different cores makes unwanted EKF core switches due to magnetometer errors more likely.

Bitmask RebootRequired
Bit Meaning
0 FirstEKF
1 SecondEKF
2 ThirdEKF
3 FourthEKF
4 FifthEKF
5 SixthEKF
True

EK2_OGN_HGT_MASK: Bitmask control of EKF reference height correction

Note: This parameter is for advanced users

When a height sensor other than GPS is used as the primary height source by the EKF, the position of the zero height datum is defined by that sensor and its frame of reference. If a GPS height measurement is also available, then the height of the WGS-84 height datum used by the EKF can be corrected so that the height returned by the getLLH() function is compensated for primary height sensor drift and change in datum over time. The first two bit positions control when the height datum will be corrected. Correction is performed using a Bayes filter and only operates when GPS quality permits. The third bit position controls where the corrections to the GPS reference datum are applied. Corrections can be applied to the local vertical position or to the reported EKF origin height (default).

Bitmask RebootRequired
Bit Meaning
0 Correct when using Baro height
1 Correct when using range finder height
2 Apply corrections to local position
True

EK2_FLOW_USE: Optical flow use bitmask

Note: This parameter is for advanced users

Controls if the optical flow data is fused into the 24-state navigation estimator OR the 1-state terrain height estimator.

RebootRequired Values
True
Value Meaning
0 None
1 Navigation
2 Terrain

EK2_MAG_EF_LIM: EarthField error limit

Note: This parameter is for advanced users

This limits the difference between the learned earth magnetic field and the earth field from the world magnetic model tables. A value of zero means to disable the use of the WMM tables.

Range Units
0 - 500 milligauss

EK2_HRT_FILT: Height rate filter crossover frequency

Specifies the crossover frequency of the complementary filter used to calculate the output predictor height rate derivative.

Range RebootRequired Units
0.1 - 30.0 False hertz

EK2_GSF_RUN_MASK: Bitmask of which EKF-GSF yaw estimators run

Note: This parameter is for advanced users

1 byte bitmap of which EKF2 instances run an independant EKF-GSF yaw estimator to provide a backup yaw estimate that doesn’t rely on magnetometer data. This estimator uses IMU, GPS and, if available, airspeed data. EKF-GSF yaw estimator data for the primary EKF2 instance will be logged as GSF0 and GSF1 messages. Use of the yaw estimate generated by this algorithm is controlled by the EK2_GSF_USE, EK2_GSF_DELAY and EK2_GSF_MAXCOUNT parameters. To run the EKF-GSF yaw estimator in ride-along and logging only, set EK2_GSF_USE to 0.

Bitmask RebootRequired
Bit Meaning
0 FirstEKF
1 SecondEKF
2 ThirdEKF
3 FourthEKF
4 FifthEKF
5 SixthEKF
True

EK2_GSF_USE_MASK: Bitmask of which EKF-GSF yaw estimators are used

Note: This parameter is for advanced users

1 byte bitmap of which EKF2 instances will use the output from the EKF-GSF yaw estimator that has been turned on by the EK2_GSF_RUN parameter. If the inertial navigation calculation stops following the GPS, then the vehicle code can request EKF2 to attempt to resolve the issue, either by performing a yaw reset if enabled by this parameter by switching to another EKF2 instance. Additionally the EKF2 will initiate a reset internally if navigation is lost for more than EK2_GSF_DELAY milli seconds.

Bitmask RebootRequired
Bit Meaning
0 FirstEKF
1 SecondEKF
2 ThirdEKF
3 FourthEKF
4 FifthEKF
5 SixthEKF
True

EK2_GSF_RST_MAX: Maximum number of resets to the EKF-GSF yaw estimate allowed

Note: This parameter is for advanced users

Sets the maximum number of times the EKF2 will be allowed to reset it’s yaw to the estimate from the EKF-GSF yaw estimator. No resets will be allowed unless the use of the EKF-GSF yaw estimate is enabled via the EK2_GSF_USE parameter.

Increment Range RebootRequired
1 1 - 10 True

EK3_ Parameters

EK3_ENABLE: Enable EKF3

Note: This parameter is for advanced users

This enables EKF3. Enabling EKF3 only makes the maths run, it does not mean it will be used for flight control. To use it for flight control set AHRS_EKF_TYPE=3. A reboot or restart will need to be performed after changing the value of EK3_ENABLE for it to take effect.

RebootRequired Values
True
Value Meaning
0 Disabled
1 Enabled

EK3_VELNE_M_NSE: GPS horizontal velocity measurement noise (m/s)

Note: This parameter is for advanced users

This sets a lower limit on the speed accuracy reported by the GPS receiver that is used to set horizontal velocity observation noise. If the model of receiver used does not provide a speed accurcy estimate, then the parameter value will be used. Increasing it reduces the weighting of the GPS horizontal velocity measurements.

Increment Range Units
0.05 0.05 - 5.0 meters per second

EK3_VELD_M_NSE: GPS vertical velocity measurement noise (m/s)

Note: This parameter is for advanced users

This sets a lower limit on the speed accuracy reported by the GPS receiver that is used to set vertical velocity observation noise. If the model of receiver used does not provide a speed accurcy estimate, then the parameter value will be used. Increasing it reduces the weighting of the GPS vertical velocity measurements.

Increment Range Units
0.05 0.05 - 5.0 meters per second

EK3_VEL_I_GATE: GPS velocity innovation gate size

Note: This parameter is for advanced users

This sets the percentage number of standard deviations applied to the GPS velocity measurement innovation consistency check. Decreasing it makes it more likely that good measurements willbe rejected. Increasing it makes it more likely that bad measurements will be accepted.

Increment Range
25 100 - 1000

EK3_POSNE_M_NSE: GPS horizontal position measurement noise (m)

Note: This parameter is for advanced users

This sets the GPS horizontal position observation noise. Increasing it reduces the weighting of GPS horizontal position measurements.

Increment Range Units
0.1 0.1 - 10.0 meters

EK3_POS_I_GATE: GPS position measurement gate size

Note: This parameter is for advanced users

This sets the percentage number of standard deviations applied to the GPS position measurement innovation consistency check. Decreasing it makes it more likely that good measurements will be rejected. Increasing it makes it more likely that bad measurements will be accepted.

Increment Range
25 100 - 1000

EK3_GLITCH_RAD: GPS glitch radius gate size (m)

Note: This parameter is for advanced users

This controls the maximum radial uncertainty in position between the value predicted by the filter and the value measured by the GPS before the filter position and velocity states are reset to the GPS. Making this value larger allows the filter to ignore larger GPS glitches but also means that non-GPS errors such as IMU and compass can create a larger error in position before the filter is forced back to the GPS position.

Increment Range Units
5 10 - 100 meters

EK3_ALT_M_NSE: Altitude measurement noise (m)

Note: This parameter is for advanced users

This is the RMS value of noise in the altitude measurement. Increasing it reduces the weighting of the baro measurement and will make the filter respond more slowly to baro measurement errors, but will make it more sensitive to GPS and accelerometer errors.

Increment Range Units
0.1 0.1 - 10.0 meters

EK3_HGT_I_GATE: Height measurement gate size

Note: This parameter is for advanced users

This sets the percentage number of standard deviations applied to the height measurement innovation consistency check. Decreasing it makes it more likely that good measurements will be rejected. Increasing it makes it more likely that bad measurements will be accepted.

Increment Range
25 100 - 1000

EK3_HGT_DELAY: Height measurement delay (msec)

Note: This parameter is for advanced users

This is the number of msec that the Height measurements lag behind the inertial measurements.

Increment Range RebootRequired Units
10 0 - 250 True milliseconds

EK3_MAG_M_NSE: Magnetometer measurement noise (Gauss)

Note: This parameter is for advanced users

This is the RMS value of noise in magnetometer measurements. Increasing it reduces the weighting on these measurements.

Increment Range Units
0.01 0.01 - 0.5 gauss

EK3_MAG_CAL: Magnetometer default fusion mode

Note: This parameter is for advanced users

This determines when the filter will use the 3-axis magnetometer fusion model that estimates both earth and body fixed magnetic field states and when it will use a simpler magnetic heading fusion model that does not use magnetic field states. The 3-axis magnetometer fusion is only suitable for use when the external magnetic field environment is stable. EK3_MAG_CAL = 0 uses heading fusion on ground, 3-axis fusion in-flight, and is the default setting for Plane users. EK3_MAG_CAL = 1 uses 3-axis fusion only when manoeuvring. EK3_MAG_CAL = 2 uses heading fusion at all times, is recommended if the external magnetic field is varying and is the default for rovers. EK3_MAG_CAL = 3 uses heading fusion on the ground and 3-axis fusion after the first in-air field and yaw reset has completed, and is the default for copters. EK3_MAG_CAL = 4 uses 3-axis fusion at all times. EK3_MAG_CAL = 5 uses an external yaw sensor with simple heading fusion. NOTE : Use of simple heading magnetometer fusion makes vehicle compass calibration and alignment errors harder for the EKF to detect which reduces the sensitivity of the Copter EKF failsafe algorithm. NOTE: The fusion mode can be forced to 2 for specific EKF cores using the EK3_MAG_MASK parameter. EK3_MAG_CAL = 6 uses an external yaw sensor with fallback to compass when the external sensor is not available if we are flying. NOTE: The fusion mode can be forced to 2 for specific EKF cores using the EK3_MAG_MASK parameter. NOTE: limited operation without a magnetometer or any other yaw sensor is possible by setting all COMPASS_USE, COMPASS_USE2, COMPASS_USE3, etc parameters to 0 and setting COMPASS_ENABLE to 0. If this is done, the EK3_GSF_RUN and EK3_GSF_USE masks must be set to the same as EK3_IMU_MASK. A yaw angle derived from IMU and GPS velocity data using a Gaussian Sum Filter (GSF) will then be used to align the yaw when flight commences and there is sufficient movement.

RebootRequired Values
True
Value Meaning
0 When flying
1 When manoeuvring
2 Never
3 After first climb yaw reset
4 Always
5 Use external yaw sensor (Deprecated in 4.1+ see EK3_SRCn_YAW)
6 External yaw sensor with compass fallback (Deprecated in 4.1+ see EK3_SRCn_YAW)

EK3_MAG_I_GATE: Magnetometer measurement gate size

Note: This parameter is for advanced users

This sets the percentage number of standard deviations applied to the magnetometer measurement innovation consistency check. Decreasing it makes it more likely that good measurements will be rejected. Increasing it makes it more likely that bad measurements will be accepted.

Increment Range
25 100 - 1000

EK3_EAS_M_NSE: Equivalent airspeed measurement noise (m/s)

Note: This parameter is for advanced users

This is the RMS value of noise in equivalent airspeed measurements used by planes. Increasing it reduces the weighting of airspeed measurements and will make wind speed estimates less noisy and slower to converge. Increasing also increases navigation errors when dead-reckoning without GPS measurements.

Increment Range Units
0.1 0.5 - 5.0 meters per second

EK3_EAS_I_GATE: Airspeed measurement gate size

Note: This parameter is for advanced users

This sets the percentage number of standard deviations applied to the airspeed measurement innovation consistency check. Decreasing it makes it more likely that good measurements will be rejected. Increasing it makes it more likely that bad measurements will be accepted.

Increment Range
25 100 - 1000

EK3_RNG_M_NSE: Range finder measurement noise (m)

Note: This parameter is for advanced users

This is the RMS value of noise in the range finder measurement. Increasing it reduces the weighting on this measurement.

Increment Range Units
0.1 0.1 - 10.0 meters

EK3_RNG_I_GATE: Range finder measurement gate size

Note: This parameter is for advanced users

This sets the percentage number of standard deviations applied to the range finder innovation consistency check. Decreasing it makes it more likely that good measurements will be rejected. Increasing it makes it more likely that bad measurements will be accepted.

Increment Range
25 100 - 1000

EK3_MAX_FLOW: Maximum valid optical flow rate

Note: This parameter is for advanced users

This sets the magnitude maximum optical flow rate in rad/sec that will be accepted by the filter

Increment Range Units
0.1 1.0 - 4.0 radians per second

EK3_FLOW_M_NSE: Optical flow measurement noise (rad/s)

Note: This parameter is for advanced users

This is the RMS value of noise and errors in optical flow measurements. Increasing it reduces the weighting on these measurements.

Increment Range Units
0.05 0.05 - 1.0 radians per second

EK3_FLOW_I_GATE: Optical Flow measurement gate size

Note: This parameter is for advanced users

This sets the percentage number of standard deviations applied to the optical flow innovation consistency check. Decreasing it makes it more likely that good measurements will be rejected. Increasing it makes it more likely that bad measurements will be accepted.

Increment Range
25 100 - 1000

EK3_FLOW_DELAY: Optical Flow measurement delay (msec)

Note: This parameter is for advanced users

This is the number of msec that the optical flow measurements lag behind the inertial measurements. It is the time from the end of the optical flow averaging period and does not include the time delay due to the 100msec of averaging within the flow sensor.

Increment Range RebootRequired Units
10 0 - 250 True milliseconds

EK3_GYRO_P_NSE: Rate gyro noise (rad/s)

Note: This parameter is for advanced users

This control disturbance noise controls the growth of estimated error due to gyro measurement errors excluding bias. Increasing it makes the flter trust the gyro measurements less and other measurements more.

Increment Range Units
0.0001 0.0001 - 0.1 radians per second

EK3_ACC_P_NSE: Accelerometer noise (m/s^2)

Note: This parameter is for advanced users

This control disturbance noise controls the growth of estimated error due to accelerometer measurement errors excluding bias. Increasing it makes the flter trust the accelerometer measurements less and other measurements more.

Increment Range Units
0.01 0.01 - 1.0 meters per square second

EK3_GBIAS_P_NSE: Rate gyro bias stability (rad/s/s)

Note: This parameter is for advanced users

This state process noise controls growth of the gyro delta angle bias state error estimate. Increasing it makes rate gyro bias estimation faster and noisier.

Range Units
0.00001 - 0.001 radians per square second

EK3_ABIAS_P_NSE: Accelerometer bias stability (m/s^3)

Note: This parameter is for advanced users

This noise controls the growth of the vertical accelerometer delta velocity bias state error estimate. Increasing it makes accelerometer bias estimation faster and noisier.

Range Units
0.00001 - 0.005 meters per cubic second

EK3_WIND_P_NSE: Wind velocity process noise (m/s^2)

Note: This parameter is for advanced users

This state process noise controls the growth of wind state error estimates. Increasing it makes wind estimation faster and noisier.

Increment Range Units
0.1 0.01 - 2.0 meters per square second

EK3_WIND_PSCALE: Height rate to wind process noise scaler

Note: This parameter is for advanced users

This controls how much the process noise on the wind states is increased when gaining or losing altitude to take into account changes in wind speed and direction with altitude. Increasing this parameter increases how rapidly the wind states adapt when changing altitude, but does make wind velocity estimation noiser.

Increment Range
0.1 0.0 - 2.0

EK3_GPS_CHECK: GPS preflight check

Note: This parameter is for advanced users

This is a 1 byte bitmap controlling which GPS preflight checks are performed. Set to 0 to bypass all checks. Set to 255 perform all checks. Set to 3 to check just the number of satellites and HDoP. Set to 31 for the most rigorous checks that will still allow checks to pass when the copter is moving, eg launch from a boat.

Bitmask
Bit Meaning
0 NSats
1 HDoP
2 speed error
3 position error
4 yaw error
5 pos drift
6 vert speed
7 horiz speed

EK3_IMU_MASK: Bitmask of active IMUs

Note: This parameter is for advanced users

1 byte bitmap of IMUs to use in EKF3. A separate instance of EKF3 will be started for each IMU selected. Set to 1 to use the first IMU only (default), set to 2 to use the second IMU only, set to 3 to use the first and second IMU. Additional IMU’s can be used up to a maximum of 6 if memory and processing resources permit. There may be insufficient memory and processing resources to run multiple instances. If this occurs EKF3 will fail to start.

Bitmask RebootRequired
Bit Meaning
0 FirstIMU
1 SecondIMU
2 ThirdIMU
3 FourthIMU
4 FifthIMU
5 SixthIMU
True

EK3_CHECK_SCALE: GPS accuracy check scaler (%)

Note: This parameter is for advanced users

This scales the thresholds that are used to check GPS accuracy before it is used by the EKF. A value of 100 is the default. Values greater than 100 increase and values less than 100 reduce the maximum GPS error the EKF will accept. A value of 200 will double the allowable GPS error.

Range Units
50 - 200 percent

EK3_NOAID_M_NSE: Non-GPS operation position uncertainty (m)

Note: This parameter is for advanced users

This sets the amount of position variation that the EKF allows for when operating without external measurements (eg GPS or optical flow). Increasing this parameter makes the EKF attitude estimate less sensitive to vehicle manoeuvres but more sensitive to IMU errors.

Range Units
0.5 - 50.0 meters

EK3_BETA_MASK: Bitmask controlling sidelip angle fusion

Note: This parameter is for advanced users

1 byte bitmap controlling use of sideslip angle fusion for estimation of non wind states during operation of ‘fly forward’ vehicle types such as fixed wing planes. By assuming that the angle of sideslip is small, the wind velocity state estimates are corrected whenever the EKF is not dead reckoning (e.g. has an independent velocity or position sensor such as GPS). This behaviour is on by default and cannot be disabled. When the EKF is dead reckoning, the wind states are used as a reference, enabling use of the small angle of sideslip assumption to correct non wind velocity states (eg attitude, velocity, position, etc) and improve navigation accuracy. This behaviour is on by default and cannot be disabled. The behaviour controlled by this parameter is the use of the small angle of sideslip assumption to correct non wind velocity states when the EKF is NOT dead reckoning. This is primarily of benefit to reduce the buildup of yaw angle errors during straight and level flight without a yaw sensor (e.g. magnetometer or dual antenna GPS yaw) provided aerobatic flight maneuvers with large sideslip angles are not performed. The ‘always’ option might be used where the yaw sensor is intentionally not fitted or disabled. The ‘WhenNoYawSensor’ option might be used if a yaw sensor is fitted, but protection against in-flight failure and continual rejection by the EKF is desired. For vehicles operated within visual range of the operator performing frequent turning maneuvers, setting this parameter is unnecessary.

Bitmask RebootRequired
Bit Meaning
0 Always
1 WhenNoYawSensor
True

EK3_YAW_M_NSE: Yaw measurement noise (rad)

Note: This parameter is for advanced users

This is the RMS value of noise in yaw measurements from the magnetometer. Increasing it reduces the weighting on these measurements.

Increment Range Units
0.05 0.05 - 1.0 radians

EK3_YAW_I_GATE: Yaw measurement gate size

Note: This parameter is for advanced users

This sets the percentage number of standard deviations applied to the magnetometer yaw measurement innovation consistency check. Decreasing it makes it more likely that good measurements will be rejected. Increasing it makes it more likely that bad measurements will be accepted.

Increment Range
25 100 - 1000

EK3_TAU_OUTPUT: Output complementary filter time constant (centi-sec)

Note: This parameter is for advanced users

Sets the time constant of the output complementary filter/predictor in centi-seconds.

Increment Range Units
5 10 - 50 centiseconds

EK3_MAGE_P_NSE: Earth magnetic field process noise (gauss/s)

Note: This parameter is for advanced users

This state process noise controls the growth of earth magnetic field state error estimates. Increasing it makes earth magnetic field estimation faster and noisier.

Range Units
0.00001 - 0.01 gauss per second

EK3_MAGB_P_NSE: Body magnetic field process noise (gauss/s)

Note: This parameter is for advanced users

This state process noise controls the growth of body magnetic field state error estimates. Increasing it makes magnetometer bias error estimation faster and noisier.

Range Units
0.00001 - 0.01 gauss per second

EK3_RNG_USE_HGT: Range finder switch height percentage

Note: This parameter is for advanced users

Range finder can be used as the primary height source when below this percentage of its maximum range (see RNGFNDx_MAX_CM) and the primary height source is Baro or GPS (see EK3_SRCx_POSZ). This feature should not be used for terrain following as it is designed for vertical takeoff and landing with climb above the range finder use height before commencing the mission, and with horizontal position changes below that height being limited to a flat region around the takeoff and landing point.

Increment Range Units
1 -1 - 70 percent

EK3_TERR_GRAD: Maximum terrain gradient

Note: This parameter is for advanced users

Specifies the maximum gradient of the terrain below the vehicle when it is using range finder as a height reference

Increment Range
0.01 0 - 0.2

EK3_BCN_M_NSE: Range beacon measurement noise (m)

Note: This parameter is for advanced users

This is the RMS value of noise in the range beacon measurement. Increasing it reduces the weighting on this measurement.

Increment Range Units
0.1 0.1 - 10.0 meters

EK3_BCN_I_GTE: Range beacon measurement gate size

Note: This parameter is for advanced users

This sets the percentage number of standard deviations applied to the range beacon measurement innovation consistency check. Decreasing it makes it more likely that good measurements will be rejected. Increasing it makes it more likely that bad measurements will be accepted.

Increment Range
25 100 - 1000

EK3_BCN_DELAY: Range beacon measurement delay (msec)

Note: This parameter is for advanced users

This is the number of msec that the range beacon measurements lag behind the inertial measurements.

Increment Range RebootRequired Units
10 0 - 250 True milliseconds

EK3_RNG_USE_SPD: Range finder max ground speed

Note: This parameter is for advanced users

The range finder will not be used as the primary height source when the horizontal ground speed is greater than this value.

Increment Range Units
0.5 2.0 - 6.0 meters per second

EK3_ACC_BIAS_LIM: Accelerometer bias limit

Note: This parameter is for advanced users

The accelerometer bias state will be limited to +- this value

Increment Range Units
0.1 0.5 - 2.5 meters per square second

EK3_MAG_MASK: Bitmask of active EKF cores that will always use heading fusion

Note: This parameter is for advanced users

1 byte bitmap of EKF cores that will disable magnetic field states and use simple magnetic heading fusion at all times. This parameter enables specified cores to be used as a backup for flight into an environment with high levels of external magnetic interference which may degrade the EKF attitude estimate when using 3-axis magnetometer fusion. NOTE : Use of a different magnetometer fusion algorithm on different cores makes unwanted EKF core switches due to magnetometer errors more likely.

Bitmask RebootRequired
Bit Meaning
0 FirstEKF
1 SecondEKF
2 ThirdEKF
3 FourthEKF
4 FifthEKF
5 SixthEKF
True

EK3_OGN_HGT_MASK: Bitmask control of EKF reference height correction

Note: This parameter is for advanced users

When a height sensor other than GPS is used as the primary height source by the EKF, the position of the zero height datum is defined by that sensor and its frame of reference. If a GPS height measurement is also available, then the height of the WGS-84 height datum used by the EKF can be corrected so that the height returned by the getLLH() function is compensated for primary height sensor drift and change in datum over time. The first two bit positions control when the height datum will be corrected. Correction is performed using a Bayes filter and only operates when GPS quality permits. The third bit position controls where the corrections to the GPS reference datum are applied. Corrections can be applied to the local vertical position or to the reported EKF origin height (default).

Bitmask RebootRequired
Bit Meaning
0 Correct when using Baro height
1 Correct when using range finder height
2 Apply corrections to local position
True

EK3_VIS_VERR_MIN: Visual odometry minimum velocity error

Note: This parameter is for advanced users

This is the 1-STD odometry velocity observation error that will be assumed when maximum quality is reported by the sensor. When quality is between max and min, the error will be calculated using linear interpolation between VIS_VERR_MIN and VIS_VERR_MAX.

Increment Range Units
0.05 0.05 - 0.5 meters per second

EK3_VIS_VERR_MAX: Visual odometry maximum velocity error

Note: This parameter is for advanced users

This is the 1-STD odometry velocity observation error that will be assumed when minimum quality is reported by the sensor. When quality is between max and min, the error will be calculated using linear interpolation between VIS_VERR_MIN and VIS_VERR_MAX.

Increment Range Units
0.1 0.5 - 5.0 meters per second

EK3_WENC_VERR: Wheel odometry velocity error

Note: This parameter is for advanced users

This is the 1-STD odometry velocity observation error that will be assumed when wheel encoder data is being fused.

Increment Range Units
0.1 0.01 - 1.0 meters per second

EK3_FLOW_USE: Optical flow use bitmask

Note: This parameter is for advanced users

Controls if the optical flow data is fused into the 24-state navigation estimator OR the 1-state terrain height estimator.

RebootRequired Values
True
Value Meaning
0 None
1 Navigation
2 Terrain

EK3_HRT_FILT: Height rate filter crossover frequency

Specifies the crossover frequency of the complementary filter used to calculate the output predictor height rate derivative.

Range RebootRequired Units
0.1 - 30.0 False hertz

EK3_MAG_EF_LIM: EarthField error limit

Note: This parameter is for advanced users

This limits the difference between the learned earth magnetic field and the earth field from the world magnetic model tables. A value of zero means to disable the use of the WMM tables.

Range Units
0 - 500 milligauss

EK3_GSF_RUN_MASK: Bitmask of which EKF-GSF yaw estimators run

Note: This parameter is for advanced users

1 byte bitmap of which EKF3 instances run an independant EKF-GSF yaw estimator to provide a backup yaw estimate that doesn’t rely on magnetometer data. This estimator uses IMU, GPS and, if available, airspeed data. EKF-GSF yaw estimator data for the primary EKF3 instance will be logged as GSF0 and GSF1 messages. Use of the yaw estimate generated by this algorithm is controlled by the EK3_GSF_USE, EK3_GSF_DELAY and EK3_GSF_MAXCOUNT parameters. To run the EKF-GSF yaw estimator in ride-along and logging only, set EK3_GSF_USE to 0.

Bitmask RebootRequired
Bit Meaning
0 FirstEKF
1 SecondEKF
2 ThirdEKF
3 FourthEKF
4 FifthEKF
5 SixthEKF
True

EK3_GSF_USE_MASK: Bitmask of which EKF-GSF yaw estimators are used

Note: This parameter is for advanced users

1 byte bitmap of which EKF3 instances will use the output from the EKF-GSF yaw estimator that has been turned on by the EK3_GSF_RUN parameter. If the inertial navigation calculation stops following the GPS, then the vehicle code can request EKF3 to attempt to resolve the issue, either by performing a yaw reset if enabled by this parameter by switching to another EKF3 instance. Additionally the EKF3 will initiate a reset internally if navigation is lost for more than EK3_GSF_DELAY milli seconds.

Bitmask RebootRequired
Bit Meaning
0 FirstEKF
1 SecondEKF
2 ThirdEKF
3 FourthEKF
4 FifthEKF
5 SixthEKF
True

EK3_GSF_RST_MAX: Maximum number of resets to the EKF-GSF yaw estimate allowed

Note: This parameter is for advanced users

Sets the maximum number of times the EKF3 will be allowed to reset it’s yaw to the estimate from the EKF-GSF yaw estimator. No resets will be allowed unless the use of the EKF-GSF yaw estimate is enabled via the EK3_GSF_USE parameter.

Increment Range RebootRequired
1 1 - 10 True

EK3_ERR_THRESH: EKF3 Lane Relative Error Sensitivity Threshold

Note: This parameter is for advanced users

lanes have to be consistently better than the primary by at least this threshold to reduce their overall relativeCoreError, lowering this makes lane switching more sensitive to smaller error differences

Increment Range
0.05 0.05 - 1

EK3_AFFINITY: EKF3 Sensor Affinity Options

Note: This parameter is for advanced users

These options control the affinity between sensor instances and EKF cores

Bitmask RebootRequired
Bit Meaning
0 EnableGPSAffinity
1 EnableBaroAffinity
2 EnableCompassAffinity
3 EnableAirspeedAffinity
True

EK3_DRAG_BCOEF_X: Ballistic coefficient for X axis drag

Note: This parameter is for advanced users

Ratio of mass to drag coefficient measured along the X body axis. This parameter enables estimation of wind drift for vehicles with bluff bodies and without propulsion forces in the X and Y direction (eg multicopters). The drag produced by this effect scales with speed squared. Set to a postive value > 1.0 to enable. A starting value is the mass in Kg divided by the frontal area. The predicted drag from the rotors is specified separately by the EK3_MCOEF parameter.

Range Units
0.0 - 1000.0 kilograms per square meter

EK3_DRAG_BCOEF_Y: Ballistic coefficient for Y axis drag

Note: This parameter is for advanced users

Ratio of mass to drag coefficient measured along the Y body axis. This parameter enables estimation of wind drift for vehicles with bluff bodies and without propulsion forces in the X and Y direction (eg multicopters). The drag produced by this effect scales with speed squared. Set to a postive value > 1.0 to enable. A starting value is the mass in Kg divided by the side area. The predicted drag from the rotors is specified separately by the EK3_MCOEF parameter.

Range Units
50.0 - 1000.0 kilograms per square meter

EK3_DRAG_M_NSE: Observation noise for drag acceleration

Note: This parameter is for advanced users

This sets the amount of noise used when fusing X and Y acceleration as an observation that enables esitmation of wind velocity for multi-rotor vehicles. This feature is enabled by the EK3_BCOEF_X and EK3_BCOEF_Y parameters

Increment Range Units
0.1 0.1 - 2.0 meters per square second

EK3_DRAG_MCOEF: Momentum coefficient for propeller drag

Note: This parameter is for advanced users

This parameter is used to predict the drag produced by the rotors when flying a multi-copter, enabling estimation of wind drift. The drag produced by this effect scales with speed not speed squared and is produced because some of the air velocity normal to the rotors axis of rotation is lost when passing through the rotor disc which changes the momentum of the airflow causing drag. For unducted rotors the effect is roughly proportional to the area of the propeller blades when viewed side on and changes with different propellers. It is higher for ducted rotors. For example if flying at 15 m/s at sea level conditions produces a rotor induced drag acceleration of 1.5 m/s/s, then EK3_MCOEF would be set to 0.1 = (1.5/15.0). Set EK3_MCOEF to a postive value to enable wind estimation using this drag effect. To account for the drag produced by the body which scales with speed squared, see documentation for the EK3_BCOEF_X and EK3_BCOEF_Y parameters.

Increment Range Units
0.01 0.0 - 1.0 per second

EK3_OGNM_TEST_SF: On ground not moving test scale factor

Note: This parameter is for advanced users

This parameter is adjust the sensitivity of the on ground not moving test which is used to assist with learning the yaw gyro bias and stopping yaw drift before flight when operating without a yaw sensor. Bigger values allow the detection of a not moving condition with noiser IMU data. Check the XKFM data logged when the vehicle is on ground not moving and adjust the value of OGNM_TEST_SF to be slightly higher than the maximum value of the XKFM.ADR, XKFM.ALR, XKFM.GDR and XKFM.GLR test levels.

Increment Range
0.5 1.0 - 10.0

EK3_GND_EFF_DZ: Baro height ground effect dead zone

Note: This parameter is for advanced users

This parameter sets the size of the dead zone that is applied to negative baro height spikes that can occur when takeing off or landing when a vehicle with lift rotors is operating in ground effect ground effect. Set to about 0.5m less than the amount of negative offset in baro height that occurs just prior to takeoff when lift motors are spooling up. Set to 0 if no ground effect is present.

Increment Range
0.5 0.0 - 10.0

EK3_PRIMARY: Primary core number

Note: This parameter is for advanced users

The core number (index in IMU mask) that will be used as the primary EKF core on startup. While disarmed the EKF will force the use of this core. A value of 0 corresponds to the first IMU in EK3_IMU_MASK.

Increment Range
1 0 - 2

EK3_SRC Parameters

EK3_SRC1_POSXY: Position Horizontal Source (Primary)

Note: This parameter is for advanced users

Position Horizontal Source (Primary)

Values
Value Meaning
0 None
3 GPS
4 Beacon
6 ExternalNav

EK3_SRC1_VELXY: Velocity Horizontal Source

Note: This parameter is for advanced users

Velocity Horizontal Source

Values
Value Meaning
0 None
3 GPS
4 Beacon
5 OpticalFlow
6 ExternalNav
7 WheelEncoder

EK3_SRC1_POSZ: Position Vertical Source

Note: This parameter is for advanced users

Position Vertical Source

Values
Value Meaning
0 None
1 Baro
2 RangeFinder
3 GPS
4 Beacon
6 ExternalNav

EK3_SRC1_VELZ: Velocity Vertical Source

Note: This parameter is for advanced users

Velocity Vertical Source

Values
Value Meaning
0 None
3 GPS
4 Beacon
6 ExternalNav

EK3_SRC1_YAW: Yaw Source

Note: This parameter is for advanced users

Yaw Source

Values
Value Meaning
0 None
1 Compass
2 GPS
3 GPS with Compass Fallback
6 ExternalNav
8 GSF

EK3_SRC2_POSXY: Position Horizontal Source (Secondary)

Note: This parameter is for advanced users

Position Horizontal Source (Secondary)

Values
Value Meaning
0 None
3 GPS
4 Beacon
6 ExternalNav

EK3_SRC2_VELXY: Velocity Horizontal Source (Secondary)

Note: This parameter is for advanced users

Velocity Horizontal Source (Secondary)

Values
Value Meaning
0 None
3 GPS
4 Beacon
5 OpticalFlow
6 ExternalNav
7 WheelEncoder

EK3_SRC2_POSZ: Position Vertical Source (Secondary)

Note: This parameter is for advanced users

Position Vertical Source (Secondary)

Values
Value Meaning
0 None
1 Baro
2 RangeFinder
3 GPS
4 Beacon
6 ExternalNav

EK3_SRC2_VELZ: Velocity Vertical Source (Secondary)

Note: This parameter is for advanced users

Velocity Vertical Source (Secondary)

Values
Value Meaning
0 None
3 GPS
4 Beacon
6 ExternalNav

EK3_SRC2_YAW: Yaw Source (Secondary)

Note: This parameter is for advanced users

Yaw Source (Secondary)

Values
Value Meaning
0 None
1 Compass
2 GPS
3 GPS with Compass Fallback
6 ExternalNav
8 GSF

EK3_SRC3_POSXY: Position Horizontal Source (Tertiary)

Note: This parameter is for advanced users

Position Horizontal Source (Tertiary)

Values
Value Meaning
0 None
3 GPS
4 Beacon
6 ExternalNav

EK3_SRC3_VELXY: Velocity Horizontal Source (Tertiary)

Note: This parameter is for advanced users

Velocity Horizontal Source (Tertiary)

Values
Value Meaning
0 None
3 GPS
4 Beacon
5 OpticalFlow
6 ExternalNav
7 WheelEncoder

EK3_SRC3_POSZ: Position Vertical Source (Tertiary)

Note: This parameter is for advanced users

Position Vertical Source (Tertiary)

Values
Value Meaning
0 None
1 Baro
2 RangeFinder
3 GPS
4 Beacon
6 ExternalNav

EK3_SRC3_VELZ: Velocity Vertical Source (Tertiary)

Note: This parameter is for advanced users

Velocity Vertical Source (Tertiary)

Values
Value Meaning
0 None
3 GPS
4 Beacon
6 ExternalNav

EK3_SRC3_YAW: Yaw Source (Tertiary)

Note: This parameter is for advanced users

Yaw Source (Tertiary)

Values
Value Meaning
0 None
1 Compass
2 GPS
3 GPS with Compass Fallback
6 ExternalNav
8 GSF

EK3_SRC_OPTIONS: EKF Source Options

Note: This parameter is for advanced users

EKF Source Options

Bitmask
Bit Meaning
0 FuseAllVelocities

FENCE_ Parameters

FENCE_ENABLE: Fence enable/disable

Allows you to enable (1) or disable (0) the fence functionality

Values
Value Meaning
0 Disabled
1 Enabled

FENCE_TYPE: Fence Type

Enabled fence types held as bitmask

Bitmask
Bit Meaning
0 Max altitude
1 Circle
2 Polygon
3 Min altitude

FENCE_ACTION: Fence Action

What action should be taken when fence is breached

Values
Value Meaning
0 Report Only
1 RTL or Land
2 Always Land
3 SmartRTL or RTL or Land
4 Brake or Land
5 SmartRTL or Land

FENCE_ALT_MAX: Fence Maximum Altitude

Maximum altitude allowed before geofence triggers

Increment Range Units
1 10 - 1000 meters

FENCE_RADIUS: Circular Fence Radius

Circle fence radius which when breached will cause an RTL

Range Units
30 - 10000 meters

FENCE_MARGIN: Fence Margin

Distance that autopilot’s should maintain from the fence to avoid a breach

Range Units
1 - 10 meters

FENCE_TOTAL: Fence polygon point total

Number of polygon points saved in eeprom (do not update manually)

Range
1 - 20

FENCE_ALT_MIN: Fence Minimum Altitude

Minimum altitude allowed before geofence triggers

Increment Range Units
1 -100 - 100 meters

FFT_ Parameters

FFT_ENABLE: Enable

Note: This parameter is for advanced users

Enable Gyro FFT analyser

RebootRequired Values
True
Value Meaning
0 Disabled
1 Enabled

FFT_MINHZ: Minimum Frequency

Note: This parameter is for advanced users

Lower bound of FFT frequency detection in Hz. On larger vehicles the minimum motor frequency is likely to be significantly lower than for smaller vehicles.

Range Units
20 - 400 hertz

FFT_MAXHZ: Maximum Frequency

Note: This parameter is for advanced users

Upper bound of FFT frequency detection in Hz. On smaller vehicles the maximum motor frequency is likely to be significantly higher than for larger vehicles.

Range Units
20 - 495 hertz

FFT_SAMPLE_MODE: Sample Mode

Note: This parameter is for advanced users

Sampling mode (and therefore rate). 0: Gyro rate sampling, 1: Fast loop rate sampling, 2: Fast loop rate / 2 sampling, 3: Fast loop rate / 3 sampling. Takes effect on reboot.

Range RebootRequired
0 - 4 True

FFT_WINDOW_SIZE: FFT window size

Note: This parameter is for advanced users

Size of window to be used in FFT calculations. Takes effect on reboot. Must be a power of 2 and between 32 and 512. Larger windows give greater frequency resolution but poorer time resolution, consume more CPU time and may not be appropriate for all vehicles. Time and frequency resolution are given by the sample-rate / window-size. Windows of 256 are only really recommended for F7 class boards, windows of 512 or more H7 class.

Range RebootRequired
32 - 1024 True

FFT_WINDOW_OLAP: FFT window overlap

Note: This parameter is for advanced users

Percentage of window to be overlapped before another frame is process. Takes effect on reboot. A good default is 50% overlap. Higher overlap results in more processed frames but not necessarily more temporal resolution. Lower overlap results in lost information at the frame edges.

Range RebootRequired
0 - 0.9 True

FFT_FREQ_HOVER: FFT learned hover frequency

Note: This parameter is for advanced users

The learned hover noise frequency

Range
0 - 250

FFT_THR_REF: FFT learned thrust reference

Note: This parameter is for advanced users

FFT learned thrust reference for the hover frequency and FFT minimum frequency.

Range
0.01 - 0.9

FFT_SNR_REF: FFT SNR reference threshold

Note: This parameter is for advanced users

FFT SNR reference threshold in dB at which a signal is determined to be present.

Range
0.0 - 100.0

FFT_ATT_REF: FFT attenuation for bandwidth calculation

Note: This parameter is for advanced users

FFT attenuation level in dB for bandwidth calculation and peak detection. The bandwidth is calculated by comparing peak power output with the attenuated version. The default of 15 has shown to be a good compromise in both simulations and real flight.

Range
0 - 100

FFT_BW_HOVER: FFT learned bandwidth at hover

Note: This parameter is for advanced users

FFT learned bandwidth at hover for the attenuation frequencies.

Range
0 - 200

FFT_HMNC_FIT: FFT harmonic fit frequency threshold

Note: This parameter is for advanced users

FFT harmonic fit frequency threshold percentage at which a signal of the appropriate frequency is determined to be the harmonic of another. Signals that have a harmonic relationship that varies at most by this percentage are considered harmonics of each other for the purpose of selecting the harmonic notch frequency. If a match is found then the lower frequency harmonic is always used as the basis for the dynamic harmonic notch. A value of zero completely disables harmonic matching.

Range RebootRequired
0 - 100 True

FFT_HMNC_PEAK: FFT harmonic peak target

Note: This parameter is for advanced users

The FFT harmonic peak target that should be returned by FTN1.PkAvg. The resulting value will be used by the harmonic notch if configured to track the FFT frequency. By default the appropriate peak is auto-detected based on the harmonic fit between peaks and the energy-weighted average frequency on roll on pitch is used. Setting this to 1 will always target the highest energy peak. Setting this to 2 will target the highest energy peak that is lower in frequency than the highest energy peak. Setting this to 3 will target the highest energy peak that is higher in frequency than the highest energy peak. Setting this to 4 will target the highest energy peak on the roll axis only and only the roll frequency will be used (some vehicles have a much more pronounced peak on roll). Setting this to 5 will target the highest energy peak on the pitch axis only and only the pitch frequency will be used (some vehicles have a much more pronounced peak on roll).

Values
Value Meaning
0 Auto
1 Center Frequency
2 Lower-Shoulder Frequency
3 Upper-Shoulder Frequency
4 Roll-Axis
5 Pitch-Axis

FHLD Parameters

FHLD_XY_P: FlowHold P gain

Note: This parameter is for advanced users

FlowHold (horizontal) P gain.

Increment Range
0.1 0.1 - 6.0

FHLD_XY_I: FlowHold I gain

Note: This parameter is for advanced users

FlowHold (horizontal) I gain

Increment Range
0.01 0.02 - 1.00

FHLD_XY_IMAX: FlowHold Integrator Max

Note: This parameter is for advanced users

FlowHold (horizontal) integrator maximum

Increment Range Units
10 0 - 4500 centidegrees

FHLD_XY_FILT_HZ: FlowHold filter on input to control

Note: This parameter is for advanced users

FlowHold (horizontal) filter on input to control

Range Units
0 - 100 hertz

FHLD_FLOW_MAX: FlowHold Flow Rate Max

Controls maximum apparent flow rate in flowhold

Range
0.1 - 2.5

FHLD_FILT_HZ: FlowHold Filter Frequency

Filter frequency for flow data

Range Units
1 - 100 hertz

FHLD_QUAL_MIN: FlowHold Flow quality minimum

Minimum flow quality to use flow position hold

Range
0 - 255

FHLD_BRAKE_RATE: FlowHold Braking rate

Controls deceleration rate on stick release

Range Units
1 - 30 degrees per second

FLOW Parameters

FLOW_TYPE: Optical flow sensor type

Optical flow sensor type

RebootRequired Values
True
Value Meaning
0 None
1 PX4Flow
2 Pixart
3 Bebop
4 CXOF
5 MAVLink
6 UAVCAN
7 MSP
8 UPFLOW

FLOW_FXSCALER: X axis optical flow scale factor correction

This sets the parts per thousand scale factor correction applied to the flow sensor X axis optical rate. It can be used to correct for variations in effective focal length. Each positive increment of 1 increases the scale factor applied to the X axis optical flow reading by 0.1%. Negative values reduce the scale factor.

Increment Range
1 -200 - +200

FLOW_FYSCALER: Y axis optical flow scale factor correction

This sets the parts per thousand scale factor correction applied to the flow sensor Y axis optical rate. It can be used to correct for variations in effective focal length. Each positive increment of 1 increases the scale factor applied to the Y axis optical flow reading by 0.1%. Negative values reduce the scale factor.

Increment Range
1 -200 - +200

FLOW_ORIENT_YAW: Flow sensor yaw alignment

Specifies the number of centi-degrees that the flow sensor is yawed relative to the vehicle. A sensor with its X-axis pointing to the right of the vehicle X axis has a positive yaw angle.

Increment Range Units
10 -17999 - +18000 centidegrees

FLOW_POS_X: X position offset

Note: This parameter is for advanced users

X position of the optical flow sensor focal point in body frame. Positive X is forward of the origin.

Increment Range Units
0.01 -5 - 5 meters

FLOW_POS_Y: Y position offset

Note: This parameter is for advanced users

Y position of the optical flow sensor focal point in body frame. Positive Y is to the right of the origin.

Increment Range Units
0.01 -5 - 5 meters

FLOW_POS_Z: Z position offset

Note: This parameter is for advanced users

Z position of the optical flow sensor focal point in body frame. Positive Z is down from the origin.

Increment Range Units
0.01 -5 - 5 meters

FLOW_ADDR: Address on the bus

Note: This parameter is for advanced users

This is used to select between multiple possible I2C addresses for some sensor types. For PX4Flow you can choose 0 to 7 for the 8 possible addresses on the I2C bus.

Range
0 - 127

FOLL Parameters

FOLL_ENABLE: Follow enable/disable

Enabled/disable following a target

Values
Value Meaning
0 Disabled
1 Enabled

FOLL_DIST_MAX: Follow distance maximum

Follow distance maximum. targets further than this will be ignored

Range Units
1 - 1000 meters

FOLL_OFS_TYPE: Follow offset type

Follow offset type

Values
Value Meaning
0 North-East-Down
1 Relative to lead vehicle heading

FOLL_OFS_X: Follow offsets in meters north/forward

Follow offsets in meters north/forward. If positive, this vehicle fly ahead or north of lead vehicle. Depends on FOLL_OFS_TYPE

Increment Range Units
1 -100 - 100 meters

FOLL_OFS_Y: Follow offsets in meters east/right

Follow offsets in meters east/right. If positive, this vehicle will fly to the right or east of lead vehicle. Depends on FOLL_OFS_TYPE

Increment Range Units
1 -100 - 100 meters

FOLL_OFS_Z: Follow offsets in meters down

Follow offsets in meters down. If positive, this vehicle will fly below the lead vehicle

Increment Range Units
1 -100 - 100 meters

FOLL_YAW_BEHAVE: Follow yaw behaviour

Follow yaw behaviour

Values
Value Meaning
0 None
1 Face Lead Vehicle
2 Same as Lead vehicle
3 Direction of Flight

FOLL_POS_P: Follow position error P gain

Follow position error P gain. Converts the difference between desired vertical speed and actual speed into a desired acceleration that is passed to the throttle acceleration controller

Increment Range
0.01 0.01 - 1.00

FOLL_ALT_TYPE: Follow altitude type

Follow altitude type

Values
Value Meaning
0 absolute
1 relative

FRSKY_ Parameters

GEN_ Parameters

GEN_TYPE: Generator type

Generator type

RebootRequired Values
True
Value Meaning
0 Disabled
1 IE 650w 800w Fuel Cell
2 IE 2.4kW Fuel Cell
3 Richenpower

GPS Parameters

GPS_TYPE: 1st GPS type

Note: This parameter is for advanced users

GPS type of 1st GPS

RebootRequired Values
True
Value Meaning
0 None
1 AUTO
2 uBlox
3 MTK
4 MTK19
5 NMEA
6 SiRF
7 HIL
8 SwiftNav
9 UAVCAN
10 SBF
11 GSOF
13 ERB
14 MAV
15 NOVA
16 HemisphereNMEA
17 uBlox-MovingBaseline-Base
18 uBlox-MovingBaseline-Rover
19 MSP
20 AllyStar
21 ExternalAHRS

GPS_TYPE2: 2nd GPS type

Note: This parameter is for advanced users

GPS type of 2nd GPS

RebootRequired Values
True
Value Meaning
0 None
1 AUTO
2 uBlox
3 MTK
4 MTK19
5 NMEA
6 SiRF
7 HIL
8 SwiftNav
9 UAVCAN
10 SBF
11 GSOF
13 ERB
14 MAV
15 NOVA
16 HemisphereNMEA
17 uBlox-MovingBaseline-Base
18 uBlox-MovingBaseline-Rover
19 MSP
20 AllyStar
21 ExternalAHRS

GPS_NAVFILTER: Navigation filter setting

Note: This parameter is for advanced users

Navigation filter engine setting

Values
Value Meaning
0 Portable
2 Stationary
3 Pedestrian
4 Automotive
5 Sea
6 Airborne1G
7 Airborne2G
8 Airborne4G

GPS_AUTO_SWITCH: Automatic Switchover Setting

Note: This parameter is for advanced users

Automatic switchover to GPS reporting best lock, 1:UseBest selects the GPS with highest status, if both are equal the GPS with highest satellite count is used 4:Use primary if 3D fix or better, will revert to ‘UseBest’ behaviour if 3D fix is lost on primary

Values
Value Meaning
0 Use primary
1 UseBest
2 Blend
4 Use primary if 3D fix or better

GPS_MIN_DGPS: Minimum Lock Type Accepted for DGPS

Note: This parameter is for advanced users

Sets the minimum type of differential GPS corrections required before allowing to switch into DGPS mode.

RebootRequired Values
True
Value Meaning
0 Any
50 FloatRTK
100 IntegerRTK

GPS_SBAS_MODE: SBAS Mode

Note: This parameter is for advanced users

This sets the SBAS (satellite based augmentation system) mode if available on this GPS. If set to 2 then the SBAS mode is not changed in the GPS. Otherwise the GPS will be reconfigured to enable/disable SBAS. Disabling SBAS may be worthwhile in some parts of the world where an SBAS signal is available but the baseline is too long to be useful.

Values
Value Meaning
0 Disabled
1 Enabled
2 NoChange

GPS_MIN_ELEV: Minimum elevation

Note: This parameter is for advanced users

This sets the minimum elevation of satellites above the horizon for them to be used for navigation. Setting this to -100 leaves the minimum elevation set to the GPS modules default.

Range Units
-100 - 90 degrees

GPS_SBP_LOGMASK: Swift Binary Protocol Logging Mask

Note: This parameter is for advanced users

Masked with the SBP msg_type field to determine whether SBR1/SBR2 data is logged

Values
Value Meaning
0 None (0x0000)
-1 All (0xFFFF)
-256 External only (0xFF00)

GPS_RAW_DATA: Raw data logging

Note: This parameter is for advanced users

Handles logging raw data; on uBlox chips that support raw data this will log RXM messages into logger; on Septentrio this will log on the equipment’s SD card and when set to 2, the autopilot will try to stop logging after disarming and restart after arming

RebootRequired Values
True
Value Meaning
0 Ignore
1 Always log
2 Stop logging when disarmed (SBF only)
5 Only log every five samples (uBlox only)

GPS_GNSS_MODE: GNSS system configuration

Note: This parameter is for advanced users

Bitmask for what GNSS system to use on the first GPS (all unchecked or zero to leave GPS as configured)

Bitmask
Bit Meaning
0 GPS
1 SBAS
2 Galileo
3 Beidou
4 IMES
5 QZSS
6 GLONASS

GPS_SAVE_CFG: Save GPS configuration

Note: This parameter is for advanced users

Determines whether the configuration for this GPS should be written to non-volatile memory on the GPS. Currently working for UBlox 6 series and above.

Values
Value Meaning
0 Do not save config
1 Save config
2 Save only when needed

GPS_GNSS_MODE2: GNSS system configuration

Note: This parameter is for advanced users

Bitmask for what GNSS system to use on the second GPS (all unchecked or zero to leave GPS as configured)

Bitmask
Bit Meaning
0 GPS
1 SBAS
2 Galileo
3 Beidou
4 IMES
5 QZSS
6 GLONASS

GPS_AUTO_CONFIG: Automatic GPS configuration

Note: This parameter is for advanced users

Controls if the autopilot should automatically configure the GPS based on the parameters and default settings

Values
Value Meaning
0 Disables automatic configuration
1 Enable automatic configuration

GPS_RATE_MS: GPS update rate in milliseconds

Note: This parameter is for advanced users

Controls how often the GPS should provide a position update. Lowering below 5Hz(default) is not allowed. Raising the rate above 5Hz usually provides little benefit and for some GPS (eg Ublox M9N) can severely impact performance.

Range Units Values
50 - 200 milliseconds
Value Meaning
100 10Hz
125 8Hz
200 5Hz

GPS_RATE_MS2: GPS 2 update rate in milliseconds

Note: This parameter is for advanced users

Controls how often the GPS should provide a position update. Lowering below 5Hz(default) is not allowed. Raising the rate above 5Hz usually provides little benefit and for some GPS (eg Ublox M9N) can severely impact performance.

Range Units Values
50 - 200 milliseconds
Value Meaning
100 10Hz
125 8Hz
200 5Hz

GPS_POS1_X: Antenna X position offset

Note: This parameter is for advanced users

X position of the first GPS antenna in body frame. Positive X is forward of the origin. Use antenna phase centroid location if provided by the manufacturer.

Increment Range Units
0.01 -5 - 5 meters

GPS_POS1_Y: Antenna Y position offset

Note: This parameter is for advanced users

Y position of the first GPS antenna in body frame. Positive Y is to the right of the origin. Use antenna phase centroid location if provided by the manufacturer.

Increment Range Units
0.01 -5 - 5 meters

GPS_POS1_Z: Antenna Z position offset

Note: This parameter is for advanced users

Z position of the first GPS antenna in body frame. Positive Z is down from the origin. Use antenna phase centroid location if provided by the manufacturer.

Increment Range Units
0.01 -5 - 5 meters

GPS_POS2_X: Antenna X position offset

Note: This parameter is for advanced users

X position of the second GPS antenna in body frame. Positive X is forward of the origin. Use antenna phase centroid location if provided by the manufacturer.

Increment Range Units
0.01 -5 - 5 meters

GPS_POS2_Y: Antenna Y position offset

Note: This parameter is for advanced users

Y position of the second GPS antenna in body frame. Positive Y is to the right of the origin. Use antenna phase centroid location if provided by the manufacturer.

Increment Range Units
0.01 -5 - 5 meters

GPS_POS2_Z: Antenna Z position offset

Note: This parameter is for advanced users

Z position of the second GPS antenna in body frame. Positive Z is down from the origin. Use antenna phase centroid location if provided by the manufacturer.

Increment Range Units
0.01 -5 - 5 meters

GPS_DELAY_MS: GPS delay in milliseconds

Note: This parameter is for advanced users

Controls the amount of GPS measurement delay that the autopilot compensates for. Set to zero to use the default delay for the detected GPS type.

Range RebootRequired Units
0 - 250 True milliseconds

GPS_DELAY_MS2: GPS 2 delay in milliseconds

Note: This parameter is for advanced users

Controls the amount of GPS measurement delay that the autopilot compensates for. Set to zero to use the default delay for the detected GPS type.

Range RebootRequired Units
0 - 250 True milliseconds

GPS_BLEND_MASK: Multi GPS Blending Mask

Note: This parameter is for advanced users

Determines which of the accuracy measures Horizontal position, Vertical Position and Speed are used to calculate the weighting on each GPS receiver when soft switching has been selected by setting GPS_AUTO_SWITCH to 2(Blend)

Bitmask
Bit Meaning
0 Horiz Pos
1 Vert Pos
2 Speed

GPS_BLEND_TC: Blending time constant

Note: This parameter is for advanced users

Controls the slowest time constant applied to the calculation of GPS position and height offsets used to adjust different GPS receivers for steady state position differences.

Range Units
5.0 - 30.0 seconds

GPS_DRV_OPTIONS: driver options

Note: This parameter is for advanced users

Additional backend specific options

Bitmask
Bit Meaning
0 Use UART2 for moving baseline on ublox
1 Use base station for GPS yaw on SBF
2 Use baudrate 115200

GPS_COM_PORT: GPS physical COM port

Note: This parameter is for advanced users

The physical COM port on the connected device, currently only applies to SBF GPS

Increment Range RebootRequired
1 0 - 10 True

GPS_COM_PORT2: GPS physical COM port

Note: This parameter is for advanced users

The physical COM port on the connected device, currently only applies to SBF GPS

Increment Range RebootRequired
1 0 - 10 True

GPS_PRIMARY: Primary GPS

Note: This parameter is for advanced users

This GPS will be used when GPS_AUTO_SWITCH is 0 and used preferentially with GPS_AUTO_SWITCH = 4.

Increment Values
1
Value Meaning
0 FirstGPS
1 SecondGPS

GPS_CAN_NODEID1: GPS Node ID 1

Note: This parameter is for advanced users

GPS Node id for discovered first.

ReadOnly
True

GPS_CAN_NODEID2: GPS Node ID 2

Note: This parameter is for advanced users

GPS Node id for discovered second.

ReadOnly
True

GPS1_CAN_OVRIDE: First UAVCAN GPS NODE ID

Note: This parameter is for advanced users

GPS Node id for first GPS. If 0 the gps will be automatically selected on first come basis.

GPS2_CAN_OVRIDE: Second UAVCAN GPS NODE ID

Note: This parameter is for advanced users

GPS Node id for second GPS. If 0 the gps will be automatically selected on first come basis.

GPS_MB1_ Parameters

GPS_MB1_TYPE: Moving base type

Note: This parameter is for advanced users

Controls the type of moving base used if using moving base.

RebootRequired Values
True
Value Meaning
0 Relative to alternate GPS instance
1 RelativeToCustomBase

GPS_MB1_OFS_X: Base antenna X position offset

Note: This parameter is for advanced users

X position of the base GPS antenna in body frame. Positive X is forward of the origin. Use antenna phase centroid location if provided by the manufacturer.

Increment Range Units
0.01 -5 - 5 meters

GPS_MB1_OFS_Y: Base antenna Y position offset

Note: This parameter is for advanced users

Y position of the base GPS antenna in body frame. Positive Y is to the right of the origin. Use antenna phase centroid location if provided by the manufacturer.

Increment Range Units
0.01 -5 - 5 meters

GPS_MB1_OFS_Z: Base antenna Z position offset

Note: This parameter is for advanced users

Z position of the base GPS antenna in body frame. Positive Z is down from the origin. Use antenna phase centroid location if provided by the manufacturer.

Increment Range Units
0.01 -5 - 5 meters

GPS_MB2_ Parameters

GPS_MB2_TYPE: Moving base type

Note: This parameter is for advanced users

Controls the type of moving base used if using moving base.

RebootRequired Values
True
Value Meaning
0 Relative to alternate GPS instance
1 RelativeToCustomBase

GPS_MB2_OFS_X: Base antenna X position offset

Note: This parameter is for advanced users

X position of the base GPS antenna in body frame. Positive X is forward of the origin. Use antenna phase centroid location if provided by the manufacturer.

Increment Range Units
0.01 -5 - 5 meters

GPS_MB2_OFS_Y: Base antenna Y position offset

Note: This parameter is for advanced users

Y position of the base GPS antenna in body frame. Positive Y is to the right of the origin. Use antenna phase centroid location if provided by the manufacturer.

Increment Range Units
0.01 -5 - 5 meters

GPS_MB2_OFS_Z: Base antenna Z position offset

Note: This parameter is for advanced users

Z position of the base GPS antenna in body frame. Positive Z is down from the origin. Use antenna phase centroid location if provided by the manufacturer.

Increment Range Units
0.01 -5 - 5 meters

GRIP_ Parameters

GRIP_ENABLE: Gripper Enable/Disable

Gripper enable/disable

Values
Value Meaning
0 Disabled
1 Enabled

GRIP_TYPE: Gripper Type

Gripper enable/disable

Values
Value Meaning
0 None
1 Servo
2 EPM

GRIP_GRAB: Gripper Grab PWM

Note: This parameter is for advanced users

PWM value in microseconds sent to Gripper to initiate grabbing the cargo

Range Units
1000 - 2000 PWM in microseconds

GRIP_RELEASE: Gripper Release PWM

Note: This parameter is for advanced users

PWM value in microseconds sent to Gripper to release the cargo

Range Units
1000 - 2000 PWM in microseconds

GRIP_NEUTRAL: Neutral PWM

Note: This parameter is for advanced users

PWM value in microseconds sent to grabber when not grabbing or releasing

Range Units
1000 - 2000 PWM in microseconds

GRIP_REGRAB: Gripper Regrab interval

Note: This parameter is for advanced users

Time in seconds that gripper will regrab the cargo to ensure grip has not weakened; 0 to disable

Range Units
0 - 255 seconds

GRIP_UAVCAN_ID: EPM UAVCAN Hardpoint ID

Refer to https://docs.zubax.com/opengrab_epm_v3#UAVCAN_interface

Range
0 - 255

H_ Parameters

H_TAIL_TYPE: Tail Type

Tail type selection. Simpler yaw controller used if external gyro is selected. Direct Drive Variable Pitch is used for tails that have a motor that is governed at constant speed by an ESC. Tail pitch is still accomplished with a servo. Direct Drive Fixed Pitch (DDFP) CW is used for helicopters with a rotor that spins clockwise when viewed from above. Direct Drive Fixed Pitch (DDFP) CCW is used for helicopters with a rotor that spins counter clockwise when viewed from above. In both DDFP cases, no servo is used for the tail and the tail motor esc is controlled by the yaw axis.

Values
Value Meaning
0 Servo only
1 Servo with ExtGyro
2 DirectDrive VarPitch
3 DirectDrive FixedPitch CW
4 DirectDrive FixedPitch CCW
5 DDVP with external governor

H_GYR_GAIN: External Gyro Gain

PWM in microseconds sent to external gyro on ch7 when tail type is Servo w/ ExtGyro

Increment Range Units
1 0 - 1000 PWM in microseconds

H_COLYAW: Collective-Yaw Mixing

Feed-forward compensation to automatically add rudder input when collective pitch is increased. Can be positive or negative depending on mechanics.

Increment Range
0.1 -10 - 10

H_FLYBAR_MODE: Flybar Mode Selector

Flybar present or not. Affects attitude controller used during ACRO flight mode

Values
Value Meaning
0 NoFlybar
1 Flybar

H_TAIL_SPEED: DDVP Tail ESC speed

Direct drive, variable pitch tail ESC speed in percent output to the tail motor esc (HeliTailRSC Servo) when motor interlock enabled (throttle hold off).

Increment Range Units
1 0 - 100 percent

H_GYR_GAIN_ACRO: ACRO External Gyro Gain

PWM in microseconds sent to external gyro on ch7 when tail type is Servo w/ ExtGyro. A value of zero means to use H_GYR_GAIN

Increment Range Units
1 0 - 1000 PWM in microseconds

H_SW_TYPE (AP_MotorsHeli_Single): Swashplate Type

H3 is generic, three-servo only. H3_120/H3_140 plates have Motor1 left side, Motor2 right side, Motor3 elevator in rear. HR3_120/HR3_140 have Motor1 right side, Motor2 left side, Motor3 elevator in front - use H3_120/H3_140 and reverse servo and collective directions as necessary. For all H3_90 swashplates use H4_90 and don’t use servo output for the missing servo. For H4-90 Motors1&2 are left/right respectively, Motors3&4 are rear/front respectively. For H4-45 Motors1&2 are LF/RF, Motors3&4 are LR/RR

Values
Value Meaning
0 H3 Generic
1 H1 non-CPPM
2 H3_140
3 H3_120
4 H4_90
5 H4_45

H_SW_COL_DIR (AP_MotorsHeli_Single): Collective Direction

Direction collective moves for positive pitch. 0 for Normal, 1 for Reversed

Values
Value Meaning
0 Normal
1 Reversed

H_SW_LIN_SVO (AP_MotorsHeli_Single): Linearize Swash Servos

This linearizes the swashplate servo’s mechanical output to account for nonlinear output due to arm rotation. This requires a specific setup procedure to work properly. The servo arm must be centered on the mechanical throw at the servo trim position and the servo trim position kept as close to 1500 as possible. Leveling the swashplate can only be done through the pitch links. See the ardupilot wiki for more details on setup.

Values
Value Meaning
0 Disabled
1 Enabled

H_SW_H3_ENABLE (AP_MotorsHeli_Single): H3 Generic Enable

Note: This parameter is for advanced users

Automatically set when H3 generic swash type is selected for swashplate. Do not set manually.

Values
Value Meaning
0 Disabled
1 Enabled

H_SW_H3_SV1_POS (AP_MotorsHeli_Single): H3 Generic Servo 1 Position

Note: This parameter is for advanced users

Azimuth position on swashplate for servo 1 with the front of the heli being 0 deg

Range Units
-180 - 180 degrees

H_SW_H3_SV2_POS (AP_MotorsHeli_Single): H3 Generic Servo 2 Position

Note: This parameter is for advanced users

Azimuth position on swashplate for servo 2 with the front of the heli being 0 deg

Range Units
-180 - 180 degrees

H_SW_H3_SV3_POS (AP_MotorsHeli_Single): H3 Generic Servo 3 Position

Note: This parameter is for advanced users

Azimuth position on swashplate for servo 3 with the front of the heli being 0 deg

Range Units
-180 - 180 degrees

H_SW_H3_PHANG (AP_MotorsHeli_Single): H3 Generic Phase Angle Comp

Note: This parameter is for advanced users

Only for H3 swashplate. If pitching the swash forward induces a roll, this can be correct the problem

Increment Range Units
1 -30 - 30 degrees

H_DUAL_MODE: Dual Mode

Sets the dual mode of the heli, either as tandem or as transverse.

Values
Value Meaning
0 Longitudinal
1 Transverse
2 Intermeshing

H_DCP_SCALER: Differential-Collective-Pitch Scaler

Scaling factor applied to the differential-collective-pitch

Range
0 - 1

H_DCP_YAW: Differential-Collective-Pitch Yaw Mixing

Feed-forward compensation to automatically add yaw input when differential collective pitch is applied. Disabled for intermeshing mode.

Increment Range
0.1 -10 - 10

H_YAW_SCALER: Scaler for yaw mixing

Scaler for mixing yaw into roll or pitch.

Increment Range
0.1 -10 - 10

H_COL2_MIN: Swash 2 Minimum Collective Pitch

Lowest possible servo position in PWM microseconds for swashplate 2

Increment Range Units
1 1000 - 2000 PWM in microseconds

H_COL2_MAX: Swash 2 Maximum Collective Pitch

Highest possible servo position in PWM microseconds for swashplate 2

Increment Range Units
1 1000 - 2000 PWM in microseconds

H_COL2_MID: Swash 2 Zero-Thrust Collective Pitch

Swash servo position in PWM microseconds corresponding to zero collective pitch for the rear swashplate (or zero lift for Asymmetrical blades)

Increment Range Units
1 1000 - 2000 PWM in microseconds

H_SW_TYPE (AP_MotorsHeli_Dual): Swash 1 Type

H3 is generic, three-servo only. H3_120/H3_140 plates have Motor1 left side, Motor2 right side, Motor3 elevator in rear. HR3_120/HR3_140 have Motor1 right side, Motor2 left side, Motor3 elevator in front - use H3_120/H3_140 and reverse servo and collective directions as necessary. For all H3_90 swashplates use H4_90 and don’t use servo output for the missing servo. For H4-90 Motors1&2 are left/right respectively, Motors3&4 are rear/front respectively. For H4-45 Motors1&2 are LF/RF, Motors3&4 are LR/RR

Values
Value Meaning
0 H3 Generic
1 H1 non-CPPM
2 H3_140
3 H3_120
4 H4_90
5 H4_45

H_SW_COL_DIR (AP_MotorsHeli_Dual): Swash 1 Collective Direction

Direction collective moves for positive pitch. 0 for Normal, 1 for Reversed

Values
Value Meaning
0 Normal
1 Reversed

H_SW_LIN_SVO (AP_MotorsHeli_Dual): Linearize Swash 1 Servos

This linearizes the swashplate 1 servo’s mechanical output to account for nonlinear output due to arm rotation. This requires a specific setup procedure to work properly. The servo arm must be centered on the mechanical throw at the servo trim position and the servo trim position kept as close to 1500 as possible. Leveling the swashplate can only be done through the pitch links. See the ardupilot wiki for more details on setup.

Values
Value Meaning
0 Disabled
1 Enabled

H_SW_H3_ENABLE (AP_MotorsHeli_Dual): Swash 1 H3 Generic Enable

Note: This parameter is for advanced users

Automatically set when H3 generic swash type is selected for swashplate 1. Do not set manually.

Values
Value Meaning
0 Disabled
1 Enabled

H_SW_H3_SV1_POS (AP_MotorsHeli_Dual): Swash 1 H3 Generic Servo 1 Position

Note: This parameter is for advanced users

Azimuth position on swashplate for servo 1 with the front of the heli being 0 deg

Range Units
-180 - 180 degrees

H_SW_H3_SV2_POS (AP_MotorsHeli_Dual): Swash 1 H3 Generic Servo 2 Position

Note: This parameter is for advanced users

Azimuth position on swashplate 1 for servo 2 with the front of the heli being 0 deg

Range Units
-180 - 180 degrees

H_SW_H3_SV3_POS (AP_MotorsHeli_Dual): Swash 1 H3 Generic Servo 3 Position

Note: This parameter is for advanced users

Azimuth position on swashplate 1 for servo 3 with the front of the heli being 0 deg

Range Units
-180 - 180 degrees

H_SW_H3_PHANG (AP_MotorsHeli_Dual): Swash 1 H3 Generic Phase Angle Comp

Note: This parameter is for advanced users

Only for H3 swashplate. If pitching the swash forward induces a roll, this can be correct the problem

Increment Range Units
1 -30 - 30 degrees

H_SW2_TYPE: Swash 2 Type

H3 is generic, three-servo only. H3_120/H3_140 plates have Motor1 left side, Motor2 right side, Motor3 elevator in rear. HR3_120/HR3_140 have Motor1 right side, Motor2 left side, Motor3 elevator in front - use H3_120/H3_140 and reverse servo and collective directions as necessary. For all H3_90 swashplates use H4_90 and don’t use servo output for the missing servo. For H4-90 Motors1&2 are left/right respectively, Motors3&4 are rear/front respectively. For H4-45 Motors1&2 are LF/RF, Motors3&4 are LR/RR

Values
Value Meaning
0 H3 Generic
1 H1 non-CPPM
2 H3_140
3 H3_120
4 H4_90
5 H4_45

H_SW2_COL_DIR: Swash 2 Collective Direction

Direction collective moves for positive pitch. 0 for Normal, 1 for Reversed

Values
Value Meaning
0 Normal
1 Reversed

H_SW2_LIN_SVO: Linearize Swash 2 Servos

This linearizes the swashplate 2 servo’s mechanical output to account for nonlinear output due to arm rotation. This requires a specific setup procedure to work properly. The servo arm must be centered on the mechanical throw at the servo trim position and the servo trim position kept as close to 1500 as possible. Leveling the swashplate can only be done through the pitch links. See the ardupilot wiki for more details on setup.

Values
Value Meaning
0 Disabled
1 Enabled

H_SW2_H3_ENABLE: Swash 2 H3 Generic Enable

Note: This parameter is for advanced users

Automatically set when H3 generic swash type is selected for swashplate 2. Do not set manually.

Values
Value Meaning
0 Disabled
1 Enabled

H_SW2_H3_SV1_POS: Swash 2 H3 Generic Servo 1 Position

Note: This parameter is for advanced users

Azimuth position on swashplate for servo 1 with the front of the heli being 0 deg

Range Units
-180 - 180 degrees

H_SW2_H3_SV2_POS: Swash 2 H3 Generic Servo 2 Position

Note: This parameter is for advanced users

Azimuth position on swashplate 2 for servo 2 with the front of the heli being 0 deg

Range Units
-180 - 180 degrees

H_SW2_H3_SV3_POS: Swash 2 H3 Generic Servo 3 Position

Note: This parameter is for advanced users

Azimuth position on swashplate 2 for servo 3 with the front of the heli being 0 deg

Range Units
-180 - 180 degrees

H_SW2_H3_PHANG: Swash 2 H3 Generic Phase Angle Comp

Note: This parameter is for advanced users

Only for H3 swashplate. If pitching the swash forward induces a roll, this can be correct the problem

Increment Range Units
1 -30 - 30 degrees

H_DCP_TRIM: Differential Collective Pitch Trim

Removes I term bias due to center of gravity offsets or discrepancies between rotors in swashplate setup. If DCP axis has I term bias while hovering in calm winds, use value of bias in DCP_TRIM to re-center I term.

Increment Range
0.01 -0.2 - 0.2

H_YAW_REV_EXPO: Yaw reverser expo

For intermeshing mode only. Yaw revereser smoothing exponent, smoothen transition near zero collective region. Increase this parameter to shink smoothing range. Set to -1 to disable reverser.

Increment Range
1.0 -1 - 1000

H_COL_MIN: Minimum Collective Pitch

Lowest possible servo position in PWM microseconds for the swashplate

Increment Range Units
1 1000 - 2000 PWM in microseconds

H_COL_MAX: Maximum Collective Pitch

Highest possible servo position in PWM microseconds for the swashplate

Increment Range Units
1 1000 - 2000 PWM in microseconds

H_COL_MID: Zero-Thrust Collective Pitch

Swash servo position in PWM microseconds corresponding to zero collective pitch (or zero lift for Asymmetrical blades)

Increment Range Units
1 1000 - 2000 PWM in microseconds

H_SV_MAN: Manual Servo Mode

Manual servo override for swash set-up. Must be 0 (Disabled) for flight!

Values
Value Meaning
0 Disabled
1 Passthrough
2 Max collective
3 Mid collective
4 Min collective

H_CYC_MAX: Maximum Cyclic Pitch Angle

Maximum cyclic pitch angle of the swash plate. There are no units to this parameter. This should be adjusted to get the desired cyclic blade pitch for the pitch and roll axes. Typically this should be 6-7 deg (measured blade pitch angle difference between stick centered and stick max deflection.

Increment Range
100 0 - 4500

H_SV_TEST: Boot-up Servo Test Cycles

Number of cycles to run servo test on boot-up

Increment Range
1 0 - 10

H_COL_HOVER: Collective Hover Value

Note: This parameter is for advanced users

Collective needed to hover expressed as a number from 0 to 1 where 0 is H_COL_MIN and 1 is H_COL_MAX

Range
0.3 - 0.8

H_HOVER_LEARN: Hover Value Learning

Note: This parameter is for advanced users

Enable/Disable automatic learning of hover collective

Values
Value Meaning
0 Disabled
1 Learn
2 Learn and Save

H_OPTIONS: Heli_Options

Bitmask of heli options. Bit 0 changes how the pitch, roll, and yaw axis integrator term is managed for low speed and takeoff/landing. In AC 4.0 and earlier, scheme uses a leaky integrator for ground speeds less than 5 m/s and won’t let the steady state integrator build above ILMI. The integrator is allowed to build to the ILMI value when it is landed. The other integrator management scheme bases integrator limiting on takeoff and landing. Whenever the aircraft is landed the integrator is set to zero. When the aicraft is airborne, the integrator is only limited by IMAX.

Bitmask
Bit Meaning
0 Use Leaky I

H_RSC_ Parameters

H_RSC_SETPOINT: External Motor Governor Setpoint

Throttle (HeliRSC Servo) output in percent to the external motor governor when motor interlock enabled (throttle hold off).

Increment Range Units
1 0 - 100 percent

H_RSC_MODE: Rotor Speed Control Mode

Selects the type of rotor speed control used to determine throttle output to the HeliRSC servo channel when motor interlock is enabled (throttle hold off). RC Passthrough sends the input from the RC Motor Interlock channel as throttle output. External Gov SetPoint sends the RSC SetPoint parameter value as throttle output. Throttle Curve uses the 5 point throttle curve to determine throttle output based on the collective output. Governor is ArduCopter’s built-in governor that uses the throttle curve for a feed forward throttle command to determine throttle output.

Values
Value Meaning
1 RC Passthrough
2 External Gov SetPoint
3 Throttle Curve
4 Governor

H_RSC_RAMP_TIME: Throttle Ramp Time

Time in seconds for throttle output (HeliRSC servo) to ramp from ground idle (RSC_IDLE) to flight idle throttle setting when motor interlock is enabled (throttle hold off).

Range Units
0 - 60 seconds

H_RSC_RUNUP_TIME: Rotor Runup Time

Actual time in seconds for the main rotor to reach full speed after motor interlock is enabled (throttle hold off). Must be at least one second longer than the Throttle Ramp Time that is set with RSC_RAMP_TIME.

Range Units
0 - 60 seconds

H_RSC_CRITICAL: Critical Rotor Speed

Percentage of normal rotor speed where flight is no longer possible. However currently the rotor runup/rundown is estimated using the RSC_RUNUP_TIME parameter. Estimated rotor speed increases/decreases between 0 (rotor stopped) to 1 (rotor at normal speed) in the RSC_RUNUP_TIME in seconds. This parameter should be set so that the estimated rotor speed goes below critical in approximately 3 seconds. So if you had a 10 second runup time then set RSC_CRITICAL to 70%.

Increment Range Units
1 0 - 100 percent

H_RSC_IDLE: Throttle Output at Idle

Throttle output (HeliRSC Servo) in percent while armed but motor interlock is disabled (throttle hold on). FOR COMBUSTION ENGINES. Sets the engine ground idle throttle percentage with clutch disengaged. This must be set to zero for electric helicopters under most situations. If the ESC has an autorotation window this can be set to keep the autorotation window open in the ESC. Consult the operating manual for your ESC to set it properly for this purpose

Increment Range Units
1 0 - 50 percent

H_RSC_SLEWRATE: Throttle Slew Rate

This controls the maximum rate at which the throttle output (HeliRSC servo) can change, as a percentage per second. A value of 100 means the throttle can change over its full range in one second. A value of zero gives unlimited slew rate.

Increment Range
10 0 - 500

H_RSC_THRCRV_0: Throttle Curve at 0% Coll

Sets the throttle output (HeliRSC servo) in percent for the throttle curve at the minimum collective pitch position. The 0 percent collective is defined by H_COL_MIN. Example: if the setup has -2 degree to +10 degree collective pitch setup, this setting would correspond to -2 degree of pitch.

Increment Range Units
1 0 - 100 percent

H_RSC_THRCRV_25: Throttle Curve at 25% Coll

Sets the throttle output (HeliRSC servo) in percent for the throttle curve at 25% of full collective travel where he 0 percent collective is defined by H_COL_MIN and 100 percent collective is defined by H_COL_MAX. Example: if the setup has -2 degree to +10 degree collective pitch setup, the total range is 12 degrees. 25% of 12 degrees is 3 degrees, so this setting would correspond to +1 degree of pitch.

Increment Range Units
1 0 - 100 percent

H_RSC_THRCRV_50: Throttle Curve at 50% Coll

Sets the throttle output (HeliRSC servo) in percent for the throttle curve at 50% of full collective travel where he 0 percent collective is defined by H_COL_MIN and 100 percent collective is defined by H_COL_MAX. Example: if the setup has -2 degree to +10 degree collective pitch setup, the total range is 12 degrees. 50% of 12 degrees is 6 degrees, so this setting would correspond to +4 degree of pitch.

Increment Range Units
1 0 - 100 percent

H_RSC_THRCRV_75: Throttle Curve at 75% Coll

Sets the throttle output (HeliRSC servo) in percent for the throttle curve at 75% of full collective travel where he 0 percent collective is defined by H_COL_MIN and 100 percent collective is defined by H_COL_MAX. Example: if the setup has -2 degree to +10 degree collective pitch setup, the total range is 12 degrees. 75% of 12 degrees is 9 degrees, so this setting would correspond to +7 degree of pitch.

Increment Range Units
1 0 - 100 percent

H_RSC_THRCRV_100: Throttle Curve at 100% Coll

Sets the throttle output (HeliRSC servo) in percent for the throttle curve at the minimum collective pitch position. The 100 percent collective is defined by H_COL_MAX. Example: if the setup has -2 degree to +10 degree collective pitch setup, this setting would correspond to +10 degree of pitch.

Increment Range Units
1 0 - 100 percent

H_RSC_GOV_SETPNT: Rotor Governor Setpoint

Main rotor rpm setting that governor maintains when engaged. Set to the rotor rpm your helicopter runs in flight. When a speed sensor is installed the rotor governor maintains this speed. For governor operation this should be set 10 rpm higher than the actual desired headspeed to allow for governor droop

Increment Range Units
10 800 - 3500 Revolutions Per Minute

H_RSC_GOV_DISGAG: Governor Disengage Throttle

Percentage of throttle where the governor will disengage to allow return to flight idle power. Typically should be set to the same value as flight idle throttle (the very lowest throttle setting on the throttle curve). The governor disengage can be disabled by setting this value to zero and using the pull-down from the governor TCGAIN to reduce power to flight idle with the collective at it’s lowest throttle setting on the throttle curve.

Increment Range Units
1 0 - 50 percent

H_RSC_GOV_DROOP: Governor Droop Response

Governor droop response under load, normal settings of 0-100%. Higher value is quicker response but may cause surging. Setting to zero disables the governor. Adjust this to be as aggressive as possible without getting surging or over-run on headspeed when the governor engages. Setting over 100% is allowable for some two-stage turbine engines to provide scheduling of the gas generator for proper torque response of the N2 spool

Increment Range Units