Complete Parameter List

This is a complete list of the parameters which can be set (e.g. via the MAVLink protocol) to control vehicle behaviour. They are stored in persistent storage on the vehicle.

This list is automatically generated from the latest ardupilot source code, and so may contain parameters which are not yet in the stable released versions of the code.

AntennaTracker Parameters

FORMAT_VERSION: Eeprom format version number

Note: This parameter is for advanced users

This value is incremented when changes are made to the eeprom format

SYSID_SW_TYPE: Software Type

Note: This parameter is for advanced users

This is used by the ground station to recognise the software type (eg ArduPlane vs ArduCopter)

ReadOnly Values
True
Value Meaning
0 ArduPlane
4 AntennaTracker
10 Copter
20 Rover

MAG_ENABLE: Enable Compass

Setting this to Enabled(1) will enable the compass. Setting this to Disabled(0) will disable the compass. Note that this is separate from COMPASS_USE. This will enable the low level senor, and will enable logging of magnetometer data. To use the compass for navigation you must also set COMPASS_USE to 1.

Values
Value Meaning
0 Disabled
1 Enabled

YAW_SLEW_TIME: Time for yaw to slew through its full range

This controls how rapidly the tracker will change the servo output for yaw. It is set as the number of seconds to do a full rotation. You can use this parameter to slow the trackers movements, which may help with some types of trackers. A value of zero will allow for unlimited servo movement per update.

Range Increment Units
0 - 20 0.1 seconds

PITCH_SLEW_TIME: Time for pitch to slew through its full range

This controls how rapidly the tracker will change the servo output for pitch. It is set as the number of seconds to do a full range of pitch movement. You can use this parameter to slow the trackers movements, which may help with some types of trackers. A value of zero will allow for unlimited servo movement per update.

Range Increment Units
0 - 20 0.1 seconds

SCAN_SPEED: Speed at which to rotate in scan mode

This controls how rapidly the tracker will move the servos in SCAN mode

Range Increment Units
0 - 100 1 degrees/second

MIN_REVERSE_TIME: Minimum time to apply a yaw reversal

When the tracker detects it has reached the limit of servo movement in yaw it will reverse and try moving to the other extreme of yaw. This parameter controls the minimum time it should reverse for. It is used to cope with trackers that have a significant lag in movement to ensure they do move all the way around.

Range Increment Units
0 - 20 1 seconds

START_LATITUDE: Initial Latitude before GPS lock

Combined with START_LONGITUDE this parameter allows for an initial position of the tracker to be set. This position will be used until the GPS gets lock. It can also be used to run a stationary tracker with no GPS attached.

Range Increment Units
-90 - 90 0.000001 degrees

START_LONGITUDE: Initial Longitude before GPS lock

Combined with START_LATITUDE this parameter allows for an initial position of the tracker to be set. This position will be used until the GPS gets lock. It can also be used to run a stationary tracker with no GPS attached.

Range Increment Units
-180 - 180 0.000001 degrees

STARTUP_DELAY: Delay before first servo movement from trim

This parameter can be used to force the servos to their trim value for a time on startup. This can help with some servo types

Range Increment Units
0 - 10 0.1 seconds

SERVO_PITCH_TYPE: Type of servo system being used for pitch

This allows selection of position servos or on/off servos for pitch

Values
Value Meaning
0 Position
1 OnOff
2 ContinuousRotation

SERVO_YAW_TYPE: Type of servo system being used for yaw

This allows selection of position servos or on/off servos for yaw

Values
Value Meaning
0 Position
1 OnOff
2 ContinuousRotation

ONOFF_YAW_RATE: Yaw rate for on/off servos

Rate of change of yaw in degrees/second for on/off servos

Range Increment Units
0 - 50 0.1 degrees/second

ONOFF_PITCH_RATE: Pitch rate for on/off servos

Rate of change of pitch in degrees/second for on/off servos

Range Increment Units
0 - 50 0.1 degrees/second

ONOFF_YAW_MINT: Yaw minimum movement time

Minimum amount of time in seconds to move in yaw

Range Increment Units
0 - 2 0.01 seconds

ONOFF_PITCH_MINT: Pitch minimum movement time

Minimim amount of time in seconds to move in pitch

Range Increment Units
0 - 2 0.01 seconds

YAW_TRIM: Yaw trim

Amount of extra yaw to add when tracking. This allows for small adjustments for an out of trim compass.

Range Increment Units
-10 - 10 0.1 degrees

PITCH_TRIM: Pitch trim

Amount of extra pitch to add when tracking. This allows for small adjustments for a badly calibrated barometer.

Range Increment Units
-10 - 10 0.1 degrees

YAW_RANGE: Yaw Angle Range

Yaw axis total range of motion in degrees

Range Increment Units
0 - 360 0.1 degrees

DISTANCE_MIN: Distance minimum to target

Tracker will track targets at least this distance away

Range Increment Units
0 - 100 1 meters

ALT_SOURCE: Altitude Source

What provides altitude information for vehicle. Vehicle only assumes tracker has same altitude as vehicle’s home

Values
Value Meaning
0 Barometer
1 GPS
2 GPS vehicle only

PITCH_MIN: Minimum Pitch Angle

The lowest angle the pitch can reach

Range Increment Units
-90 - 0 1 Degrees

PITCH_MAX: Maximum Pitch Angle

The highest angle the pitch can reach

Range Increment Units
0 - 90 1 Degrees

LOG_BITMASK: Log bitmask

4 byte bitmap of log types to enable

Bitmask Values
Bit Meaning
0 ATTITUDE
1 GPS
2 RCIN
3 IMU
4 RCOUT
5 COMPASS
Value Meaning
63 Default
0 Disabled

PITCH2SRV_P: Pitch axis controller P gain

Pitch axis controller P gain. Converts the difference between desired pitch angle and actual pitch angle into a pitch servo pwm change

Range Increment
0.0 - 3.0 0.01

PITCH2SRV_I: Pitch axis controller I gain

Pitch axis controller I gain. Corrects long-term difference in desired pitch angle vs actual pitch angle

Range Increment
0.0 - 3.0 0.01

PITCH2SRV_IMAX: Pitch axis controller I gain maximum

Pitch axis controller I gain maximum. Constrains the maximum pwm change that the I gain will output

Range Increment Units
0 - 4000 10 Percent*10

PITCH2SRV_D: Pitch axis controller D gain

Pitch axis controller D gain. Compensates for short-term change in desired pitch angle vs actual pitch angle

Range Increment
0.001 - 0.1 0.001

YAW2SRV_P: Yaw axis controller P gain

Yaw axis controller P gain. Converts the difference between desired yaw angle (heading) and actual yaw angle into a yaw servo pwm change

Range Increment
0.0 - 3.0 0.01

YAW2SRV_I: Yaw axis controller I gain

Yaw axis controller I gain. Corrects long-term difference in desired yaw angle (heading) vs actual yaw angle

Range Increment
0.0 - 3.0 0.01

YAW2SRV_IMAX: Yaw axis controller I gain maximum

Yaw axis controller I gain maximum. Constrains the maximum pwm change that the I gain will output

Range Increment Units
0 - 4000 10 Percent*10

YAW2SRV_D: Yaw axis controller D gain

Yaw axis controller D gain. Compensates for short-term change in desired yaw angle (heading) vs actual yaw angle

Range Increment
0.001 - 0.1 0.001

CMD_TOTAL: Number of loaded mission items

Note: This parameter is for advanced users

Set to 1 if HOME location has been loaded by the ground station. Do not change this manually.

Range
1 - 255

AHRS_ Parameters

AHRS_GPS_GAIN: AHRS GPS gain

Note: This parameter is for advanced users

This controls how much to use the GPS to correct the attitude. This should never be set to zero for a plane as it would result in the plane losing control in turns. For a plane please use the default value of 1.0.

Range Increment
0.0 - 1.0 .01

AHRS_GPS_USE: AHRS use GPS for navigation

Note: This parameter is for advanced users

This controls whether to use dead-reckoning or GPS based navigation. If set to 0 then the GPS won’t be used for navigation, and only dead reckoning will be used. A value of zero should never be used for normal flight.

Values
Value Meaning
0 Disabled
1 Enabled

AHRS_YAW_P: Yaw P

Note: This parameter is for advanced users

This controls the weight the compass or GPS has on the heading. A higher value means the heading will track the yaw source (GPS or compass) more rapidly.

Range Increment
0.1 - 0.4 .01

AHRS_RP_P: AHRS RP_P

Note: This parameter is for advanced users

This controls how fast the accelerometers correct the attitude

Range Increment
0.1 - 0.4 .01

AHRS_WIND_MAX: Maximum wind

Note: This parameter is for advanced users

This sets the maximum allowable difference between ground speed and airspeed. This allows the plane to cope with a failing airspeed sensor. A value of zero means to use the airspeed as is.

Range Increment Units
0 - 127 1 m/s

AHRS_TRIM_X: AHRS Trim Roll

Compensates for the roll angle difference between the control board and the frame. Positive values make the vehicle roll right.

Range Increment Units
-0.1745 - +0.1745 0.01 Radians

AHRS_TRIM_Y: AHRS Trim Pitch

Compensates for the pitch angle difference between the control board and the frame. Positive values make the vehicle pitch up/back.

Range Increment Units
-0.1745 - +0.1745 0.01 Radians

AHRS_TRIM_Z: AHRS Trim Yaw

Note: This parameter is for advanced users

Not Used

Range Increment Units
-0.1745 - +0.1745 0.01 Radians

AHRS_ORIENTATION: Board Orientation

Note: This parameter is for advanced users

Overall board orientation relative to the standard orientation for the board type. This rotates the IMU and compass readings to allow the board to be oriented in your vehicle at any 90 or 45 degree angle. This option takes affect on next boot. After changing you will need to re-level your vehicle.

Values
Value Meaning
0 None
1 Yaw45
2 Yaw90
3 Yaw135
4 Yaw180
5 Yaw225
6 Yaw270
7 Yaw315
8 Roll180
9 Roll180Yaw45
10 Roll180Yaw90
11 Roll180Yaw135
12 Pitch180
13 Roll180Yaw225
14 Roll180Yaw270
15 Roll180Yaw315
16 Roll90
17 Roll90Yaw45
18 Roll90Yaw90
19 Roll90Yaw135
20 Roll270
21 Roll270Yaw45
22 Roll270Yaw90
23 Roll270Yaw136
24 Pitch90
25 Pitch270
26 Pitch180Yaw90
27 Pitch180Yaw270
28 Roll90Pitch90
29 Roll180Pitch90
30 Roll270Pitch90
31 Roll90Pitch180
32 Roll270Pitch180
33 Roll90Pitch270
34 Roll180Pitch270
35 Roll270Pitch270
36 Roll90Pitch180Yaw90
37 Roll90Yaw270

AHRS_COMP_BETA: AHRS Velocity Complementary Filter Beta Coefficient

Note: This parameter is for advanced users

This controls the time constant for the cross-over frequency used to fuse AHRS (airspeed and heading) and GPS data to estimate ground velocity. Time constant is 0.1/beta. A larger time constant will use GPS data less and a small time constant will use air data less.

Range Increment
0.001 - 0.5 .01

AHRS_GPS_MINSATS: AHRS GPS Minimum satellites

Note: This parameter is for advanced users

Minimum number of satellites visible to use GPS for velocity based corrections attitude correction. This defaults to 6, which is about the point at which the velocity numbers from a GPS become too unreliable for accurate correction of the accelerometers.

Range Increment
0 - 10 1

AHRS_EKF_TYPE: Use NavEKF Kalman filter for attitude and position estimation

Note: This parameter is for advanced users

This controls which NavEKF Kalman filter version is used for attitude and position estimation

Values
Value Meaning
0 Disabled
2 Enable EKF2
3 Enable EKF3

BRD_ Parameters

BRD_PWM_COUNT: Auxiliary pin config

Note: This parameter is for advanced users

Control assigning of FMU pins to PWM output, timer capture and GPIO. All unassigned pins can be used for GPIO

Values RebootRequired
Value Meaning
0 No PWMs
2 Two PWMs
4 Four PWMs
6 Six PWMs
7 Three PWMs and One Capture
True

BRD_SER1_RTSCTS: Serial 1 flow control

Note: This parameter is for advanced users

Enable flow control on serial 1 (telemetry 1) on Pixhawk. You must have the RTS and CTS pins connected to your radio. The standard DF13 6 pin connector for a 3DR radio does have those pins connected. If this is set to 2 then flow control will be auto-detected by checking for the output buffer filling on startup. Note that the PX4v1 does not have hardware flow control pins on this port, so you should leave this disabled.

Values RebootRequired
Value Meaning
0 Disabled
1 Enabled
2 Auto
True

BRD_SER2_RTSCTS: Serial 2 flow control

Note: This parameter is for advanced users

Enable flow control on serial 2 (telemetry 2) on Pixhawk and PX4. You must have the RTS and CTS pins connected to your radio. The standard DF13 6 pin connector for a 3DR radio does have those pins connected. If this is set to 2 then flow control will be auto-detected by checking for the output buffer filling on startup.

Values RebootRequired
Value Meaning
0 Disabled
1 Enabled
2 Auto
True

BRD_SAFETYENABLE: Enable use of safety arming switch

This controls the default state of the safety switch at startup. When set to 1 the safety switch will start in the safe state (flashing) at boot. When set to zero the safety switch will start in the unsafe state (solid) at startup. Note that if a safety switch is fitted the user can still control the safety state after startup using the switch. The safety state can also be controlled in software using a MAVLink message.

Values RebootRequired
Value Meaning
0 Disabled
1 Enabled
True

BRD_SBUS_OUT: SBUS output rate

Note: This parameter is for advanced users

This sets the SBUS output frame rate in Hz

Values RebootRequired
Value Meaning
0 Disabled
1 50Hz
2 75Hz
3 100Hz
4 150Hz
5 200Hz
6 250Hz
7 300Hz
True

BRD_SERIAL_NUM: User-defined serial number

User-defined serial number of this vehicle, it can be any arbitrary number you want and has no effect on the autopilot

Range
-32767 - 32768

BRD_CAN_ENABLE: Enable use of UAVCAN devices

Note: This parameter is for advanced users

Enabling this option on a Pixhawk enables UAVCAN devices. Note that this uses about 25k of memory

Values
Value Meaning
0 Disabled
1 Enabled
2 Dynamic ID/Update

BRD_SAFETY_MASK: Channels to which ignore the safety switch state

Note: This parameter is for advanced users

A bitmask which controls what channels can move while the safety switch has not been pressed

Bitmask Values RebootRequired
Bit Meaning
0 Ch1
1 Ch2
2 Ch3
3 Ch4
4 Ch5
5 Ch6
6 Ch7
7 Ch8
8 Ch9
9 Ch10
10 Ch11
11 Ch12
12 Ch13
13 Ch14
Value Meaning
0 Disabled
1 Enabled
True

BRD_IMU_TARGTEMP: Target IMU temperature

Note: This parameter is for advanced users

This sets the target IMU temperature for boards with controllable IMU heating units. A value of -1 disables heating.

Range Units
-1 - 80 degreesC

BRD_TYPE: Board type

Note: This parameter is for advanced users

This allows selection of a PX4 or VRBRAIN board type. If set to zero then the board type is auto-detected (PX4)

Values RebootRequired
Value Meaning
0 AUTO
1 PX4V1
2 Pixhawk
3 Pixhawk2
4 Pixracer
5 PixhawkMini
6 Pixhawk2Slim
7 VRBrain 5.1
8 VRBrain 5.2
9 VR Micro Brain 5.1
10 VR Micro Brain 5.2
11 VRBrain Core 1.0
12 VRBrain 5.4
True

COMPASS_ Parameters

COMPASS_OFS_X: Compass offsets in milligauss on the X axis

Note: This parameter is for advanced users

Offset to be added to the compass x-axis values to compensate for metal in the frame

Range Increment Units
-400 - 400 1 milligauss

COMPASS_OFS_Y: Compass offsets in milligauss on the Y axis

Note: This parameter is for advanced users

Offset to be added to the compass y-axis values to compensate for metal in the frame

Range Increment Units
-400 - 400 1 milligauss

COMPASS_OFS_Z: Compass offsets in milligauss on the Z axis

Note: This parameter is for advanced users

Offset to be added to the compass z-axis values to compensate for metal in the frame

Range Increment Units
-400 - 400 1 milligauss

COMPASS_DEC: Compass declination

An angle to compensate between the true north and magnetic north

Range Increment Units
-3.142 - 3.142 0.01 Radians

COMPASS_LEARN: Learn compass offsets automatically

Note: This parameter is for advanced users

Enable or disable the automatic learning of compass offsets. You can enable learning either using a compass-only method that is suitable only for fixed wing aircraft or using the offsets learnt by the active EKF state estimator. If this option is enabled then the learnt offsets are saved when you disarm the vehicle.

Values
Value Meaning
0 Disabled
1 Internal-Learning
2 EKF-Learning

COMPASS_USE: Use compass for yaw

Note: This parameter is for advanced users

Enable or disable the use of the compass (instead of the GPS) for determining heading

Values
Value Meaning
0 Disabled
1 Enabled

COMPASS_AUTODEC: Auto Declination

Note: This parameter is for advanced users

Enable or disable the automatic calculation of the declination based on gps location

Values
Value Meaning
0 Disabled
1 Enabled

COMPASS_MOTCT: Motor interference compensation type

Note: This parameter is for advanced users

Set motor interference compensation type to disabled, throttle or current. Do not change manually.

Values
Value Meaning
0 Disabled
1 Use Throttle
2 Use Current

COMPASS_MOT_X: Motor interference compensation for body frame X axis

Note: This parameter is for advanced users

Multiplied by the current throttle and added to the compass’s x-axis values to compensate for motor interference

Range Increment Units
-1000 - 1000 1 Offset per Amp or at Full Throttle

COMPASS_MOT_Y: Motor interference compensation for body frame Y axis

Note: This parameter is for advanced users

Multiplied by the current throttle and added to the compass’s y-axis values to compensate for motor interference

Range Increment Units
-1000 - 1000 1 Offset per Amp or at Full Throttle

COMPASS_MOT_Z: Motor interference compensation for body frame Z axis

Note: This parameter is for advanced users

Multiplied by the current throttle and added to the compass’s z-axis values to compensate for motor interference

Range Increment Units
-1000 - 1000 1 Offset per Amp or at Full Throttle

COMPASS_ORIENT: Compass orientation

Note: This parameter is for advanced users

The orientation of the compass relative to the autopilot board. This will default to the right value for each board type, but can be changed if you have an external compass. See the documentation for your external compass for the right value. The correct orientation should give the X axis forward, the Y axis to the right and the Z axis down. So if your aircraft is pointing west it should show a positive value for the Y axis, and a value close to zero for the X axis. On a PX4 or Pixhawk with an external compass the correct value is zero if the compass is correctly oriented. NOTE: This orientation is combined with any AHRS_ORIENTATION setting.

Values
Value Meaning
0 None
1 Yaw45
2 Yaw90
3 Yaw135
4 Yaw180
5 Yaw225
6 Yaw270
7 Yaw315
8 Roll180
9 Roll180Yaw45
10 Roll180Yaw90
11 Roll180Yaw135
12 Pitch180
13 Roll180Yaw225
14 Roll180Yaw270
15 Roll180Yaw315
16 Roll90
17 Roll90Yaw45
18 Roll90Yaw90
19 Roll90Yaw135
20 Roll270
21 Roll270Yaw45
22 Roll270Yaw90
23 Roll270Yaw136
24 Pitch90
25 Pitch270
26 Pitch180Yaw90
27 Pitch180Yaw270
28 Roll90Pitch90
29 Roll180Pitch90
30 Roll270Pitch90
31 Roll90Pitch180
32 Roll270Pitch180
33 Roll90Pitch270
34 Roll180Pitch270
35 Roll270Pitch270
36 Roll90Pitch180Yaw90
37 Roll90Yaw270
38 Yaw293Pitch68Roll90

COMPASS_EXTERNAL: Compass is attached via an external cable

Note: This parameter is for advanced users

Configure compass so it is attached externally. This is auto-detected on PX4 and Pixhawk. Set to 1 if the compass is externally connected. When externally connected the COMPASS_ORIENT option operates independently of the AHRS_ORIENTATION board orientation option. If set to 0 or 1 then auto-detection by bus connection can override the value. If set to 2 then auto-detection will be disabled.

Values
Value Meaning
0 Internal
1 External
2 ForcedExternal

COMPASS_OFS2_X: Compass2 offsets in milligauss on the X axis

Note: This parameter is for advanced users

Offset to be added to compass2’s x-axis values to compensate for metal in the frame

Range Increment Units
-400 - 400 1 milligauss

COMPASS_OFS2_Y: Compass2 offsets in milligauss on the Y axis

Note: This parameter is for advanced users

Offset to be added to compass2’s y-axis values to compensate for metal in the frame

Range Increment Units
-400 - 400 1 milligauss

COMPASS_OFS2_Z: Compass2 offsets in milligauss on the Z axis

Note: This parameter is for advanced users

Offset to be added to compass2’s z-axis values to compensate for metal in the frame

Range Increment Units
-400 - 400 1 milligauss

COMPASS_MOT2_X: Motor interference compensation to compass2 for body frame X axis

Note: This parameter is for advanced users

Multiplied by the current throttle and added to compass2’s x-axis values to compensate for motor interference

Range Increment Units
-1000 - 1000 1 Offset per Amp or at Full Throttle

COMPASS_MOT2_Y: Motor interference compensation to compass2 for body frame Y axis

Note: This parameter is for advanced users

Multiplied by the current throttle and added to compass2’s y-axis values to compensate for motor interference

Range Increment Units
-1000 - 1000 1 Offset per Amp or at Full Throttle

COMPASS_MOT2_Z: Motor interference compensation to compass2 for body frame Z axis

Note: This parameter is for advanced users

Multiplied by the current throttle and added to compass2’s z-axis values to compensate for motor interference

Range Increment Units
-1000 - 1000 1 Offset per Amp or at Full Throttle

COMPASS_PRIMARY: Choose primary compass

Note: This parameter is for advanced users

If more than one compass is available this selects which compass is the primary. Normally 0=External, 1=Internal. If no External compass is attached this parameter is ignored

Values
Value Meaning
0 FirstCompass
1 SecondCompass
2 ThirdCompass

COMPASS_OFS3_X: Compass3 offsets in milligauss on the X axis

Note: This parameter is for advanced users

Offset to be added to compass3’s x-axis values to compensate for metal in the frame

Range Increment Units
-400 - 400 1 milligauss

COMPASS_OFS3_Y: Compass3 offsets in milligauss on the Y axis

Note: This parameter is for advanced users

Offset to be added to compass3’s y-axis values to compensate for metal in the frame

Range Increment Units
-400 - 400 1 milligauss

COMPASS_OFS3_Z: Compass3 offsets in milligauss on the Z axis

Note: This parameter is for advanced users

Offset to be added to compass3’s z-axis values to compensate for metal in the frame

Range Increment Units
-400 - 400 1 milligauss

COMPASS_MOT3_X: Motor interference compensation to compass3 for body frame X axis

Note: This parameter is for advanced users

Multiplied by the current throttle and added to compass3’s x-axis values to compensate for motor interference

Range Increment Units
-1000 - 1000 1 Offset per Amp or at Full Throttle

COMPASS_MOT3_Y: Motor interference compensation to compass3 for body frame Y axis

Note: This parameter is for advanced users

Multiplied by the current throttle and added to compass3’s y-axis values to compensate for motor interference

Range Increment Units
-1000 - 1000 1 Offset per Amp or at Full Throttle

COMPASS_MOT3_Z: Motor interference compensation to compass3 for body frame Z axis

Note: This parameter is for advanced users

Multiplied by the current throttle and added to compass3’s z-axis values to compensate for motor interference

Range Increment Units
-1000 - 1000 1 Offset per Amp or at Full Throttle

COMPASS_DEV_ID: Compass device id

Note: This parameter is for advanced users

Compass device id. Automatically detected, do not set manually

COMPASS_DEV_ID2: Compass2 device id

Note: This parameter is for advanced users

Second compass’s device id. Automatically detected, do not set manually

COMPASS_DEV_ID3: Compass3 device id

Note: This parameter is for advanced users

Third compass’s device id. Automatically detected, do not set manually

COMPASS_USE2: Compass2 used for yaw

Note: This parameter is for advanced users

Enable or disable the second compass for determining heading.

Values
Value Meaning
0 Disabled
1 Enabled

COMPASS_ORIENT2: Compass2 orientation

Note: This parameter is for advanced users

The orientation of the second compass relative to the frame (if external) or autopilot board (if internal).

Values
Value Meaning
0 None
1 Yaw45
2 Yaw90
3 Yaw135
4 Yaw180
5 Yaw225
6 Yaw270
7 Yaw315
8 Roll180
9 Roll180Yaw45
10 Roll180Yaw90
11 Roll180Yaw135
12 Pitch180
13 Roll180Yaw225
14 Roll180Yaw270
15 Roll180Yaw315
16 Roll90
17 Roll90Yaw45
18 Roll90Yaw90
19 Roll90Yaw135
20 Roll270
21 Roll270Yaw45
22 Roll270Yaw90
23 Roll270Yaw136
24 Pitch90
25 Pitch270
26 Pitch180Yaw90
27 Pitch180Yaw270
28 Roll90Pitch90
29 Roll180Pitch90
30 Roll270Pitch90
31 Roll90Pitch180
32 Roll270Pitch180
33 Roll90Pitch270
34 Roll180Pitch270
35 Roll270Pitch270
36 Roll90Pitch180Yaw90
37 Roll90Yaw270
38 Yaw293Pitch68Roll90

COMPASS_EXTERN2: Compass2 is attached via an external cable

Note: This parameter is for advanced users

Configure second compass so it is attached externally. This is auto-detected on PX4 and Pixhawk. If set to 0 or 1 then auto-detection by bus connection can override the value. If set to 2 then auto-detection will be disabled.

Values
Value Meaning
0 Internal
1 External
2 ForcedExternal

COMPASS_USE3: Compass3 used for yaw

Note: This parameter is for advanced users

Enable or disable the third compass for determining heading.

Values
Value Meaning
0 Disabled
1 Enabled

COMPASS_ORIENT3: Compass3 orientation

Note: This parameter is for advanced users

The orientation of the third compass relative to the frame (if external) or autopilot board (if internal).

Values
Value Meaning
0 None
1 Yaw45
2 Yaw90
3 Yaw135
4 Yaw180
5 Yaw225
6 Yaw270
7 Yaw315
8 Roll180
9 Roll180Yaw45
10 Roll180Yaw90
11 Roll180Yaw135
12 Pitch180
13 Roll180Yaw225
14 Roll180Yaw270
15 Roll180Yaw315
16 Roll90
17 Roll90Yaw45
18 Roll90Yaw90
19 Roll90Yaw135
20 Roll270
21 Roll270Yaw45
22 Roll270Yaw90
23 Roll270Yaw136
24 Pitch90
25 Pitch270
26 Pitch180Yaw90
27 Pitch180Yaw270
28 Roll90Pitch90
29 Roll180Pitch90
30 Roll270Pitch90
31 Roll90Pitch180
32 Roll270Pitch180
33 Roll90Pitch270
34 Roll180Pitch270
35 Roll270Pitch270
36 Roll90Pitch180Yaw90
37 Roll90Yaw270
38 Yaw293Pitch68Roll90

COMPASS_EXTERN3: Compass3 is attached via an external cable

Note: This parameter is for advanced users

Configure third compass so it is attached externally. This is auto-detected on PX4 and Pixhawk. If set to 0 or 1 then auto-detection by bus connection can override the value. If set to 2 then auto-detection will be disabled.

Values
Value Meaning
0 Internal
1 External
2 ForcedExternal

COMPASS_DIA_X: Compass soft-iron diagonal X component

Note: This parameter is for advanced users

DIA_X in the compass soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

COMPASS_DIA_Y: Compass soft-iron diagonal Y component

Note: This parameter is for advanced users

DIA_Y in the compass soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

COMPASS_DIA_Z: Compass soft-iron diagonal Z component

Note: This parameter is for advanced users

DIA_Z in the compass soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

COMPASS_ODI_X: Compass soft-iron off-diagonal X component

Note: This parameter is for advanced users

ODI_X in the compass soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

COMPASS_ODI_Y: Compass soft-iron off-diagonal Y component

Note: This parameter is for advanced users

ODI_Y in the compass soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

COMPASS_ODI_Z: Compass soft-iron off-diagonal Z component

Note: This parameter is for advanced users

ODI_Z in the compass soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

COMPASS_DIA2_X: Compass2 soft-iron diagonal X component

Note: This parameter is for advanced users

DIA_X in the compass2 soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

COMPASS_DIA2_Y: Compass2 soft-iron diagonal Y component

Note: This parameter is for advanced users

DIA_Y in the compass2 soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

COMPASS_DIA2_Z: Compass2 soft-iron diagonal Z component

Note: This parameter is for advanced users

DIA_Z in the compass2 soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

COMPASS_ODI2_X: Compass2 soft-iron off-diagonal X component

Note: This parameter is for advanced users

ODI_X in the compass2 soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

COMPASS_ODI2_Y: Compass2 soft-iron off-diagonal Y component

Note: This parameter is for advanced users

ODI_Y in the compass2 soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

COMPASS_ODI2_Z: Compass2 soft-iron off-diagonal Z component

Note: This parameter is for advanced users

ODI_Z in the compass2 soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

COMPASS_DIA3_X: Compass3 soft-iron diagonal X component

Note: This parameter is for advanced users

DIA_X in the compass3 soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

COMPASS_DIA3_Y: Compass3 soft-iron diagonal Y component

Note: This parameter is for advanced users

DIA_Y in the compass3 soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

COMPASS_DIA3_Z: Compass3 soft-iron diagonal Z component

Note: This parameter is for advanced users

DIA_Z in the compass3 soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

COMPASS_ODI3_X: Compass3 soft-iron off-diagonal X component

Note: This parameter is for advanced users

ODI_X in the compass3 soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

COMPASS_ODI3_Y: Compass3 soft-iron off-diagonal Y component

Note: This parameter is for advanced users

ODI_Y in the compass3 soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

COMPASS_ODI3_Z: Compass3 soft-iron off-diagonal Z component

Note: This parameter is for advanced users

ODI_Z in the compass3 soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

COMPASS_CAL_FIT: Compass calibration fitness

Note: This parameter is for advanced users

This controls the fitness level required for a successful compass calibration. A lower value makes for a stricter fit (less likely to pass). This is the value used for the primary magnetometer. Other magnetometers get double the value.

Range Values Increment
4 - 32
Value Meaning
4 Very Strict
8 Strict
16 Default
32 Relaxed
0.1

GND_ Parameters

GND_ABS_PRESS: Absolute Pressure

Note: This parameter is for advanced users

calibrated ground pressure in Pascals

ReadOnly Volatile Increment Units
True True 1 pascals

GND_TEMP: ground temperature

Note: This parameter is for advanced users

calibrated ground temperature in degrees Celsius

ReadOnly Volatile Increment Units
True True 1 degrees celsius

GND_ALT_OFFSET: altitude offset

Note: This parameter is for advanced users

altitude offset in meters added to barometric altitude. This is used to allow for automatic adjustment of the base barometric altitude by a ground station equipped with a barometer. The value is added to the barometric altitude read by the aircraft. It is automatically reset to 0 when the barometer is calibrated on each reboot or when a preflight calibration is performed.

Increment Units
0.1 meters

GND_PRIMARY: Primary barometer

Note: This parameter is for advanced users

This selects which barometer will be the primary if multiple barometers are found

Values
Value Meaning
0 FirstBaro
1 2ndBaro
2 3rdBaro

GND_EXT_BUS: External baro bus

Note: This parameter is for advanced users

This selects the bus number for looking for an I2C barometer

Values
 

GPS_ Parameters

GPS_TYPE: GPS type

Note: This parameter is for advanced users

GPS type

Values RebootRequired
Value Meaning
0 None
1 AUTO
2 uBlox
3 MTK
4 MTK19
5 NMEA
6 SiRF
7 HIL
8 SwiftNav
9 PX4-UAVCAN
10 SBF
11 GSOF
12 QURT
13 ERB
14 MAV
15 NOVA
True

GPS_TYPE2: 2nd GPS type

Note: This parameter is for advanced users

GPS type of 2nd GPS

Values RebootRequired
Value Meaning
0 None
1 AUTO
2 uBlox
3 MTK
4 MTK19
5 NMEA
6 SiRF
7 HIL
8 SwiftNav
9 PX4-UAVCAN
10 SBF
11 GSOF
12 QURT
13 ERB
14 MAV
15 NOVA
True

GPS_NAVFILTER: Navigation filter setting

Note: This parameter is for advanced users

Navigation filter engine setting

Values
Value Meaning
0 Portable
2 Stationary
3 Pedestrian
4 Automotive
5 Sea
6 Airborne1G
7 Airborne2G
8 Airborne4G

GPS_AUTO_SWITCH: Automatic Switchover Setting

Note: This parameter is for advanced users

Automatic switchover to GPS reporting best lock

Values
Value Meaning
0 Disabled
1 Enabled

GPS_MIN_DGPS: Minimum Lock Type Accepted for DGPS

Note: This parameter is for advanced users

Sets the minimum type of differential GPS corrections required before allowing to switch into DGPS mode.

Values RebootRequired
Value Meaning
0 Any
50 FloatRTK
100 IntegerRTK
True

GPS_SBAS_MODE: SBAS Mode

Note: This parameter is for advanced users

This sets the SBAS (satellite based augmentation system) mode if available on this GPS. If set to 2 then the SBAS mode is not changed in the GPS. Otherwise the GPS will be reconfigured to enable/disable SBAS. Disabling SBAS may be worthwhile in some parts of the world where an SBAS signal is available but the baseline is too long to be useful.

Values
Value Meaning
0 Disabled
1 Enabled
2 NoChange

GPS_MIN_ELEV: Minimum elevation

Note: This parameter is for advanced users

This sets the minimum elevation of satellites above the horizon for them to be used for navigation. Setting this to -100 leaves the minimum elevation set to the GPS modules default.

Range Units
-100 - 90 Degrees

GPS_SBP_LOGMASK: Swift Binary Protocol Logging Mask

Note: This parameter is for advanced users

Masked with the SBP msg_type field to determine whether SBR1/SBR2 data is logged

Values
Value Meaning
0x0000 None
0xFFFF All
0xFF00 External only

GPS_RAW_DATA: Raw data logging

Note: This parameter is for advanced users

Enable logging of RXM raw data from uBlox which includes carrier phase and pseudo range information. This allows for post processing of dataflash logs for more precise positioning. Note that this requires a raw capable uBlox such as the 6P or 6T.

Values RebootRequired
Value Meaning
0 Disabled
1 log every sample
5 log every 5 samples
True

GPS_GNSS_MODE: GNSS system configuration

Note: This parameter is for advanced users

Bitmask for what GNSS system to use on the first GPS (all unchecked or zero to leave GPS as configured)

Bitmask Values
Bit Meaning
0 GPS
1 SBAS
2 Galileo
3 Beidou
4 IMES
5 QZSS
6 GLOSNASS
Value Meaning
0 Leave as currently configured
1 GPS-NoSBAS
3 GPS+SBAS
4 Galileo-NoSBAS
6 Galileo+SBAS
8 Beidou
51 GPS+IMES+QZSS+SBAS (Japan Only)
64 GLONASS
66 GLONASS+SBAS
67 GPS+GLONASS+SBAS

GPS_SAVE_CFG: Save GPS configuration

Note: This parameter is for advanced users

Determines whether the configuration for this GPS should be written to non-volatile memory on the GPS. Currently working for UBlox 6 series and above.

Values
Value Meaning
0 Do not save config
1 Save config
2 Save only when needed

GPS_GNSS_MODE2: GNSS system configuration

Note: This parameter is for advanced users

Bitmask for what GNSS system to use on the second GPS (all unchecked or zero to leave GPS as configured)

Bitmask Values
Bit Meaning
0 GPS
1 SBAS
2 Galileo
3 Beidou
4 IMES
5 QZSS
6 GLOSNASS
Value Meaning
0 Leave as currently configured
1 GPS-NoSBAS
3 GPS+SBAS
4 Galileo-NoSBAS
6 Galileo+SBAS
8 Beidou
51 GPS+IMES+QZSS+SBAS (Japan Only)
64 GLONASS
66 GLONASS+SBAS
67 GPS+GLONASS+SBAS

GPS_AUTO_CONFIG: Automatic GPS configuration

Note: This parameter is for advanced users

Controls if the autopilot should automatically configure the GPS based on the parameters and default settings

Values
Value Meaning
0 Disables automatic configuration
1 Enable automatic configuration

GPS_RATE_MS: GPS update rate in milliseconds

Note: This parameter is for advanced users

Controls how often the GPS should provide a position update. Lowering below 5Hz is not allowed

Values Units
Value Meaning
100 10Hz
125 8Hz
200 5Hz
milliseconds

GPS_RATE_MS2: GPS 2 update rate in milliseconds

Note: This parameter is for advanced users

Controls how often the GPS should provide a position update. Lowering below 5Hz is not allowed

Values Units
Value Meaning
100 10Hz
125 8Hz
200 5Hz
milliseconds

GPS_POS1_X: Antenna X position offset

Note: This parameter is for advanced users

X position of the first GPS antenna in body frame. Positive X is forward of the origin. Use antenna phase centroid location if provided by the manufacturer.

Units
m

GPS_POS1_Y: Antenna Y position offset

Note: This parameter is for advanced users

Y position of the first GPS antenna in body frame. Positive Y is to the right of the origin. Use antenna phase centroid location if provided by the manufacturer.

Units
m

GPS_POS1_Z: Antenna Z position offset

Note: This parameter is for advanced users

Z position of the first GPS antenna in body frame. Positive Z is down from the origin. Use antenna phase centroid location if provided by the manufacturer.

Units
m

GPS_POS2_X: Antenna X position offset

Note: This parameter is for advanced users

X position of the second GPS antenna in body frame. Positive X is forward of the origin. Use antenna phase centroid location if provided by the manufacturer.

Units
m

GPS_POS2_Y: Antenna Y position offset

Note: This parameter is for advanced users

Y position of the second GPS antenna in body frame. Positive Y is to the right of the origin. Use antenna phase centroid location if provided by the manufacturer.

Units
m

GPS_POS2_Z: Antenna Z position offset

Note: This parameter is for advanced users

Z position of the second GPS antenna in body frame. Positive Z is down from the origin. Use antenna phase centroid location if provided by the manufacturer.

Units
m

GPS_DELAY_MS: GPS delay in milliseconds

Note: This parameter is for advanced users

Controls the amount of GPS measurement delay that the autopilot compensates for. Set to zero to use the default delay for the detected GPS type.

Range Units
0 - 250 milliseconds

GPS_DELAY_MS2: GPS 2 delay in milliseconds

Note: This parameter is for advanced users

Controls the amount of GPS measurement delay that the autopilot compensates for. Set to zero to use the default delay for the detected GPS type.

Range Units
0 - 250 milliseconds

INS_ Parameters

INS_PRODUCT_ID: IMU Product ID

Note: This parameter is for advanced users

unused

INS_GYROFFS_X: Gyro offsets of X axis

Note: This parameter is for advanced users

Gyro sensor offsets of X axis. This is setup on each boot during gyro calibrations

Units
rad/s

INS_GYROFFS_Y: Gyro offsets of Y axis

Note: This parameter is for advanced users

Gyro sensor offsets of Y axis. This is setup on each boot during gyro calibrations

Units
rad/s

INS_GYROFFS_Z: Gyro offsets of Z axis

Note: This parameter is for advanced users

Gyro sensor offsets of Z axis. This is setup on each boot during gyro calibrations

Units
rad/s

INS_GYR2OFFS_X: Gyro2 offsets of X axis

Note: This parameter is for advanced users

Gyro2 sensor offsets of X axis. This is setup on each boot during gyro calibrations

Units
rad/s

INS_GYR2OFFS_Y: Gyro2 offsets of Y axis

Note: This parameter is for advanced users

Gyro2 sensor offsets of Y axis. This is setup on each boot during gyro calibrations

Units
rad/s

INS_GYR2OFFS_Z: Gyro2 offsets of Z axis

Note: This parameter is for advanced users

Gyro2 sensor offsets of Z axis. This is setup on each boot during gyro calibrations

Units
rad/s

INS_GYR3OFFS_X: Gyro3 offsets of X axis

Note: This parameter is for advanced users

Gyro3 sensor offsets of X axis. This is setup on each boot during gyro calibrations

Units
rad/s

INS_GYR3OFFS_Y: Gyro3 offsets of Y axis

Note: This parameter is for advanced users

Gyro3 sensor offsets of Y axis. This is setup on each boot during gyro calibrations

Units
rad/s

INS_GYR3OFFS_Z: Gyro3 offsets of Z axis

Note: This parameter is for advanced users

Gyro3 sensor offsets of Z axis. This is setup on each boot during gyro calibrations

Units
rad/s

INS_ACCSCAL_X: Accelerometer scaling of X axis

Note: This parameter is for advanced users

Accelerometer scaling of X axis. Calculated during acceleration calibration routine

Range
0.8 - 1.2

INS_ACCSCAL_Y: Accelerometer scaling of Y axis

Note: This parameter is for advanced users

Accelerometer scaling of Y axis Calculated during acceleration calibration routine

Range
0.8 - 1.2

INS_ACCSCAL_Z: Accelerometer scaling of Z axis

Note: This parameter is for advanced users

Accelerometer scaling of Z axis Calculated during acceleration calibration routine

Range
0.8 - 1.2

INS_ACCOFFS_X: Accelerometer offsets of X axis

Note: This parameter is for advanced users

Accelerometer offsets of X axis. This is setup using the acceleration calibration or level operations

Range Units
-3.5 - 3.5 m/s/s

INS_ACCOFFS_Y: Accelerometer offsets of Y axis

Note: This parameter is for advanced users

Accelerometer offsets of Y axis. This is setup using the acceleration calibration or level operations

Range Units
-3.5 - 3.5 m/s/s

INS_ACCOFFS_Z: Accelerometer offsets of Z axis

Note: This parameter is for advanced users

Accelerometer offsets of Z axis. This is setup using the acceleration calibration or level operations

Range Units
-3.5 - 3.5 m/s/s

INS_ACC2SCAL_X: Accelerometer2 scaling of X axis

Note: This parameter is for advanced users

Accelerometer2 scaling of X axis. Calculated during acceleration calibration routine

Range
0.8 - 1.2

INS_ACC2SCAL_Y: Accelerometer2 scaling of Y axis

Note: This parameter is for advanced users

Accelerometer2 scaling of Y axis Calculated during acceleration calibration routine

Range
0.8 - 1.2

INS_ACC2SCAL_Z: Accelerometer2 scaling of Z axis

Note: This parameter is for advanced users

Accelerometer2 scaling of Z axis Calculated during acceleration calibration routine

Range
0.8 - 1.2

INS_ACC2OFFS_X: Accelerometer2 offsets of X axis

Note: This parameter is for advanced users

Accelerometer2 offsets of X axis. This is setup using the acceleration calibration or level operations

Range Units
-3.5 - 3.5 m/s/s

INS_ACC2OFFS_Y: Accelerometer2 offsets of Y axis

Note: This parameter is for advanced users

Accelerometer2 offsets of Y axis. This is setup using the acceleration calibration or level operations

Range Units
-3.5 - 3.5 m/s/s

INS_ACC2OFFS_Z: Accelerometer2 offsets of Z axis

Note: This parameter is for advanced users

Accelerometer2 offsets of Z axis. This is setup using the acceleration calibration or level operations

Range Units
-3.5 - 3.5 m/s/s

INS_ACC3SCAL_X: Accelerometer3 scaling of X axis

Note: This parameter is for advanced users

Accelerometer3 scaling of X axis. Calculated during acceleration calibration routine

Range
0.8 - 1.2

INS_ACC3SCAL_Y: Accelerometer3 scaling of Y axis

Note: This parameter is for advanced users

Accelerometer3 scaling of Y axis Calculated during acceleration calibration routine

Range
0.8 - 1.2

INS_ACC3SCAL_Z: Accelerometer3 scaling of Z axis

Note: This parameter is for advanced users

Accelerometer3 scaling of Z axis Calculated during acceleration calibration routine

Range
0.8 - 1.2

INS_ACC3OFFS_X: Accelerometer3 offsets of X axis

Note: This parameter is for advanced users

Accelerometer3 offsets of X axis. This is setup using the acceleration calibration or level operations

Range Units
-3.5 - 3.5 m/s/s

INS_ACC3OFFS_Y: Accelerometer3 offsets of Y axis

Note: This parameter is for advanced users

Accelerometer3 offsets of Y axis. This is setup using the acceleration calibration or level operations

Range Units
-3.5 - 3.5 m/s/s

INS_ACC3OFFS_Z: Accelerometer3 offsets of Z axis

Note: This parameter is for advanced users

Accelerometer3 offsets of Z axis. This is setup using the acceleration calibration or level operations

Range Units
-3.5 - 3.5 m/s/s

INS_GYRO_FILTER: Gyro filter cutoff frequency

Note: This parameter is for advanced users

Filter cutoff frequency for gyroscopes. This can be set to a lower value to try to cope with very high vibration levels in aircraft. This option takes effect on the next reboot. A value of zero means no filtering (not recommended!)

Range Units
0 - 127 Hz

INS_ACCEL_FILTER: Accel filter cutoff frequency

Note: This parameter is for advanced users

Filter cutoff frequency for accelerometers. This can be set to a lower value to try to cope with very high vibration levels in aircraft. This option takes effect on the next reboot. A value of zero means no filtering (not recommended!)

Range Units
0 - 127 Hz

INS_USE: Use first IMU for attitude, velocity and position estimates

Note: This parameter is for advanced users

Use first IMU for attitude, velocity and position estimates

Values
Value Meaning
0 Disabled
1 Enabled

INS_USE2: Use second IMU for attitude, velocity and position estimates

Note: This parameter is for advanced users

Use second IMU for attitude, velocity and position estimates

Values
Value Meaning
0 Disabled
1 Enabled

INS_USE3: Use third IMU for attitude, velocity and position estimates

Note: This parameter is for advanced users

Use third IMU for attitude, velocity and position estimates

Values
Value Meaning
0 Disabled
1 Enabled

INS_STILL_THRESH: Stillness threshold for detecting if we are moving

Note: This parameter is for advanced users

Threshold to tolerate vibration to determine if vehicle is motionless. This depends on the frame type and if there is a constant vibration due to motors before launch or after landing. Total motionless is about 0.05. Suggested values: Planes/rover use 0.1, multirotors use 1, tradHeli uses 5

Range
0.05 - 50

INS_GYR_CAL: Gyro Calibration scheme

Note: This parameter is for advanced users

Conrols when automatic gyro calibration is performed

Values
Value Meaning
0 Never
1 Start-up only

INS_TRIM_OPTION: Accel cal trim option

Note: This parameter is for advanced users

Specifies how the accel cal routine determines the trims

Values
Value Meaning
0 Don’t adjust the trims
1 Assume first orientation was level
2 Assume ACC_BODYFIX is perfectly aligned to the vehicle

INS_ACC_BODYFIX: Body-fixed accelerometer

Note: This parameter is for advanced users

The body-fixed accelerometer to be used for trim calculation

Values
Value Meaning
1 IMU 1
2 IMU 2
3 IMU 3

INS_POS1_X: IMU accelerometer X position

Note: This parameter is for advanced users

X position of the first IMU Accelerometer in body frame. Positive X is forward of the origin. Attention: The IMU should be located as close to the vehicle c.g. as practical so that the value of this parameter is minimised. Failure to do so can result in noisy navigation velocity measurements due to vibration and IMU gyro noise. If the IMU cannot be moved and velocity noise is a problem, a location closer to the IMU can be used as the body frame origin.

Units
m

INS_POS1_Y: IMU accelerometer Y position

Note: This parameter is for advanced users

Y position of the first IMU accelerometer in body frame. Positive Y is to the right of the origin. Attention: The IMU should be located as close to the vehicle c.g. as practical so that the value of this parameter is minimised. Failure to do so can result in noisy navigation velocity measurements due to vibration and IMU gyro noise. If the IMU cannot be moved and velocity noise is a problem, a location closer to the IMU can be used as the body frame origin.

Units
m

INS_POS1_Z: IMU accelerometer Z position

Note: This parameter is for advanced users

Z position of the first IMU accelerometer in body frame. Positive Z is down from the origin. Attention: The IMU should be located as close to the vehicle c.g. as practical so that the value of this parameter is minimised. Failure to do so can result in noisy navigation velocity measurements due to vibration and IMU gyro noise. If the IMU cannot be moved and velocity noise is a problem, a location closer to the IMU can be used as the body frame origin.

Units
m

INS_POS2_X: IMU accelerometer X position

Note: This parameter is for advanced users

X position of the second IMU accelerometer in body frame. Positive X is forward of the origin. Attention: The IMU should be located as close to the vehicle c.g. as practical so that the value of this parameter is minimised. Failure to do so can result in noisy navigation velocity measurements due to vibration and IMU gyro noise. If the IMU cannot be moved and velocity noise is a problem, a location closer to the IMU can be used as the body frame origin.

Units
m

INS_POS2_Y: IMU accelerometer Y position

Note: This parameter is for advanced users

Y position of the second IMU accelerometer in body frame. Positive Y is to the right of the origin. Attention: The IMU should be located as close to the vehicle c.g. as practical so that the value of this parameter is minimised. Failure to do so can result in noisy navigation velocity measurements due to vibration and IMU gyro noise. If the IMU cannot be moved and velocity noise is a problem, a location closer to the IMU can be used as the body frame origin.

Units
m

INS_POS2_Z: IMU accelerometer Z position

Note: This parameter is for advanced users

Z position of the second IMU accelerometer in body frame. Positive Z is down from the origin. Attention: The IMU should be located as close to the vehicle c.g. as practical so that the value of this parameter is minimised. Failure to do so can result in noisy navigation velocity measurements due to vibration and IMU gyro noise. If the IMU cannot be moved and velocity noise is a problem, a location closer to the IMU can be used as the body frame origin.

Units
m

INS_POS3_X: IMU accelerometer X position

Note: This parameter is for advanced users

X position of the third IMU accelerometer in body frame. Positive X is forward of the origin. Attention: The IMU should be located as close to the vehicle c.g. as practical so that the value of this parameter is minimised. Failure to do so can result in noisy navigation velocity measurements due to vibration and IMU gyro noise. If the IMU cannot be moved and velocity noise is a problem, a location closer to the IMU can be used as the body frame origin.

Units
m

INS_POS3_Y: IMU accelerometer Y position

Note: This parameter is for advanced users

Y position of the third IMU accelerometer in body frame. Positive Y is to the right of the origin. Attention: The IMU should be located as close to the vehicle c.g. as practical so that the value of this parameter is minimised. Failure to do so can result in noisy navigation velocity measurements due to vibration and IMU gyro noise. If the IMU cannot be moved and velocity noise is a problem, a location closer to the IMU can be used as the body frame origin.

Units
m

INS_POS3_Z: IMU accelerometer Z position

Note: This parameter is for advanced users

Z position of the third IMU accelerometer in body frame. Positive Z is down from the origin. Attention: The IMU should be located as close to the vehicle c.g. as practical so that the value of this parameter is minimised. Failure to do so can result in noisy navigation velocity measurements due to vibration and IMU gyro noise. If the IMU cannot be moved and velocity noise is a problem, a location closer to the IMU can be used as the body frame origin.

Units
m

INS_GYR_ID: Gyro ID

Note: This parameter is for advanced users

Gyro sensor ID, taking into account its type, bus and instance

ReadOnly
True

INS_GYR2_ID: Gyro2 ID

Note: This parameter is for advanced users

Gyro2 sensor ID, taking into account its type, bus and instance

ReadOnly
True

INS_GYR3_ID: Gyro3 ID

Note: This parameter is for advanced users

Gyro3 sensor ID, taking into account its type, bus and instance

ReadOnly
True

INS_ACC_ID: Accelerometer ID

Note: This parameter is for advanced users

Accelerometer sensor ID, taking into account its type, bus and instance

ReadOnly
True

INS_ACC2_ID: Accelerometer2 ID

Note: This parameter is for advanced users

Accelerometer2 sensor ID, taking into account its type, bus and instance

ReadOnly
True

INS_ACC3_ID: Accelerometer3 ID

Note: This parameter is for advanced users

Accelerometer3 sensor ID, taking into account its type, bus and instance

ReadOnly
True

INS_FAST_SAMPLE: Fast sampling mask

Note: This parameter is for advanced users

Mask of IMUs to enable fast sampling on, if available

NTF_ Parameters

NTF_LED_BRIGHT: LED Brightness

Note: This parameter is for advanced users

Select the RGB LED brightness level. When USB is connected brightness will never be higher than low regardless of the setting.

Values
Value Meaning
0 Off
1 Low
2 Medium
3 High

NTF_BUZZ_ENABLE: Buzzer enable

Note: This parameter is for advanced users

Enable or disable the buzzer. Only for Linux and PX4 based boards.

Values
Value Meaning
0 Disable
1 Enable

NTF_DISPLAY_TYPE: Type of on-board I2C display

Note: This parameter is for advanced users

This sets up the type of on-board I2C display. Disabled by default.

Values
Value Meaning
0 Disable
1 ssd1306
2 sh1106

SCHED_ Parameters

SCHED_DEBUG: Scheduler debug level

Note: This parameter is for advanced users

Set to non-zero to enable scheduler debug messages. When set to show “Slips” the scheduler will display a message whenever a scheduled task is delayed due to too much CPU load. When set to ShowOverruns the scheduled will display a message whenever a task takes longer than the limit promised in the task table.

Values
Value Meaning
0 Disabled
2 ShowSlips
3 ShowOverruns

SCHED_LOOP_RATE: Scheduling main loop rate

Note: This parameter is for advanced users

This controls the rate of the main control loop in Hz. This should only be changed by developers. This only takes effect on restart

Values RebootRequired
Value Meaning
50 50Hz
100 100Hz
200 200Hz
250 250Hz
300 300Hz
400 400Hz
True

SERIAL Parameters

SERIAL0_BAUD: Serial0 baud rate

The baud rate used on the USB console. The APM2 can support all baudrates up to 115, and also can support 500. The PX4 can support rates of up to 1500. If you setup a rate you cannot support on APM2 and then can’t connect to your board you should load a firmware from a different vehicle type. That will reset all your parameters to defaults.

Values
Value Meaning
1 1200
2 2400
4 4800
9 9600
19 19200
38 38400
57 57600
111 111100
115 115200
500 500000
921 921600
1500 1500000

SERIAL0_PROTOCOL: Console protocol selection

Control what protocol to use on the console.

Values
Value Meaning
1 MAVlink1
2 MAVLink2

SERIAL1_PROTOCOL: Telem1 protocol selection

Control what protocol to use on the Telem1 port. Note that the Frsky options require external converter hardware. See the wiki for details.

Values
Value Meaning
-1 None
1 MAVLink1
2 MAVLink2
3 Frsky D
4 Frsky SPort
5 GPS
7 Alexmos Gimbal Serial
8 SToRM32 Gimbal Serial
9 Lidar
10 FrSky SPort Passthrough (OpenTX)
11 Lidar360
12 Aerotenna uLanding
13 Pozyx Beacon

SERIAL1_BAUD: Telem1 Baud Rate

The baud rate used on the Telem1 port. The APM2 can support all baudrates up to 115, and also can support 500. The PX4 can support rates of up to 1500. If you setup a rate you cannot support on APM2 and then can’t connect to your board you should load a firmware from a different vehicle type. That will reset all your parameters to defaults.

Values
Value Meaning
1 1200
2 2400
4 4800
9 9600
19 19200
38 38400
57 57600
111 111100
115 115200
500 500000
921 921600
1500 1500000

SERIAL2_PROTOCOL: Telemetry 2 protocol selection

Control what protocol to use on the Telem2 port. Note that the Frsky options require external converter hardware. See the wiki for details.

Values
Value Meaning
-1 None
1 MAVLink1
2 MAVLink2
3 Frsky D
4 Frsky SPort
5 GPS
7 Alexmos Gimbal Serial
8 SToRM32 Gimbal Serial
9 Lidar
10 FrSky SPort Passthrough (OpenTX)
11 Lidar360
12 Aerotenna uLanding
13 Pozyx Beacon

SERIAL2_BAUD: Telemetry 2 Baud Rate

The baud rate of the Telem2 port. The APM2 can support all baudrates up to 115, and also can support 500. The PX4 can support rates of up to 1500. If you setup a rate you cannot support on APM2 and then can’t connect to your board you should load a firmware from a different vehicle type. That will reset all your parameters to defaults.

Values
Value Meaning
1 1200
2 2400
4 4800
9 9600
19 19200
38 38400
57 57600
111 111100
115 115200
500 500000
921 921600
1500 1500000

SERIAL3_PROTOCOL: Serial 3 (GPS) protocol selection

Control what protocol Serial 3 (GPS) should be used for. Note that the Frsky options require external converter hardware. See the wiki for details.

Values
Value Meaning
-1 None
1 MAVLink1
2 MAVLink2
3 Frsky D
4 Frsky SPort
5 GPS
7 Alexmos Gimbal Serial
8 SToRM32 Gimbal Serial
9 Lidar
10 FrSky SPort Passthrough (OpenTX)
11 Lidar360
12 Aerotenna uLanding
13 Pozyx Beacon

SERIAL3_BAUD: Serial 3 (GPS) Baud Rate

The baud rate used for the Serial 3 (GPS). The APM2 can support all baudrates up to 115, and also can support 500. The PX4 can support rates of up to 1500. If you setup a rate you cannot support on APM2 and then can’t connect to your board you should load a firmware from a different vehicle type. That will reset all your parameters to defaults.

Values
Value Meaning
1 1200
2 2400
4 4800
9 9600
19 19200
38 38400
57 57600
111 111100
115 115200
500 500000
921 921600
1500 1500000

SERIAL4_PROTOCOL: Serial4 protocol selection

Control what protocol Serial4 port should be used for. Note that the Frsky options require external converter hardware. See the wiki for details.

Values
Value Meaning
-1 None
1 MAVLink1
2 MAVLink2
3 Frsky D
4 Frsky SPort
5 GPS
7 Alexmos Gimbal Serial
8 SToRM32 Gimbal Serial
9 Lidar
10 FrSky SPort Passthrough (OpenTX)
11 Lidar360
12 Aerotenna uLanding
13 Pozyx Beacon

SERIAL4_BAUD: Serial 4 Baud Rate

The baud rate used for Serial4. The APM2 can support all baudrates up to 115, and also can support 500. The PX4 can support rates of up to 1500. If you setup a rate you cannot support on APM2 and then can’t connect to your board you should load a firmware from a different vehicle type. That will reset all your parameters to defaults.

Values
Value Meaning
1 1200
2 2400
4 4800
9 9600
19 19200
38 38400
57 57600
111 111100
115 115200
500 500000
921 921600
1500 1500000

SERIAL5_PROTOCOL: Serial5 protocol selection

Control what protocol Serial5 port should be used for. Note that the Frsky options require external converter hardware. See the wiki for details.

Values
Value Meaning
-1 None
1 MAVLink1
2 MAVLink2
3 Frsky D
4 Frsky SPort
5 GPS
7 Alexmos Gimbal Serial
8 SToRM32 Gimbal Serial
9 Lidar
10 FrSky SPort Passthrough (OpenTX)
11 Lidar360
12 Aerotenna uLanding
13 Pozyx Beacon

SERIAL5_BAUD: Serial 5 Baud Rate

The baud rate used for Serial5. The APM2 can support all baudrates up to 115, and also can support 500. The PX4 can support rates of up to 1500. If you setup a rate you cannot support on APM2 and then can’t connect to your board you should load a firmware from a different vehicle type. That will reset all your parameters to defaults.

Values
Value Meaning
1 1200
2 2400
4 4800
9 9600
19 19200
38 38400
57 57600
111 111100
115 115200
500 500000
921 921600
1500 1500000

SR0_ Parameters

SR0_RAW_SENS: Raw sensor stream rate

Note: This parameter is for advanced users

Raw sensor stream rate to ground station

Range Increment Units
0 - 10 1 Hz

SR0_EXT_STAT: Extended status stream rate to ground station

Note: This parameter is for advanced users

Extended status stream rate to ground station

Range Increment Units
0 - 10 1 Hz

SR0_RC_CHAN: RC Channel stream rate to ground station

Note: This parameter is for advanced users

RC Channel stream rate to ground station

Range Increment Units
0 - 10 1 Hz

SR0_RAW_CTRL: Raw Control stream rate to ground station

Note: This parameter is for advanced users

Raw Control stream rate to ground station

Range Increment Units
0 - 10 1 Hz

SR0_POSITION: Position stream rate to ground station

Note: This parameter is for advanced users

Position stream rate to ground station

Range Increment Units
0 - 10 1 Hz

SR0_EXTRA1: Extra data type 1 stream rate to ground station

Note: This parameter is for advanced users

Extra data type 1 stream rate to ground station

Range Increment Units
0 - 10 1 Hz

SR0_EXTRA2: Extra data type 2 stream rate to ground station

Note: This parameter is for advanced users

Extra data type 2 stream rate to ground station

Range Increment Units
0 - 10 1 Hz

SR0_EXTRA3: Extra data type 3 stream rate to ground station

Note: This parameter is for advanced users

Extra data type 3 stream rate to ground station

Range Increment Units
0 - 10 1 Hz

SR0_PARAMS: Parameter stream rate to ground station

Note: This parameter is for advanced users

Parameter stream rate to ground station

Range Increment Units
0 - 10 1 Hz

SR1_ Parameters

SR1_RAW_SENS: Raw sensor stream rate

Note: This parameter is for advanced users

Raw sensor stream rate to ground station

Range Increment Units
0 - 10 1 Hz

SR1_EXT_STAT: Extended status stream rate to ground station

Note: This parameter is for advanced users

Extended status stream rate to ground station

Range Increment Units
0 - 10 1 Hz

SR1_RC_CHAN: RC Channel stream rate to ground station

Note: This parameter is for advanced users

RC Channel stream rate to ground station

Range Increment Units
0 - 10 1 Hz

SR1_RAW_CTRL: Raw Control stream rate to ground station

Note: This parameter is for advanced users

Raw Control stream rate to ground station

Range Increment Units
0 - 10 1 Hz

SR1_POSITION: Position stream rate to ground station

Note: This parameter is for advanced users

Position stream rate to ground station

Range Increment Units
0 - 10 1 Hz

SR1_EXTRA1: Extra data type 1 stream rate to ground station

Note: This parameter is for advanced users

Extra data type 1 stream rate to ground station

Range Increment Units
0 - 10 1 Hz

SR1_EXTRA2: Extra data type 2 stream rate to ground station

Note: This parameter is for advanced users

Extra data type 2 stream rate to ground station

Range Increment Units
0 - 10 1 Hz

SR1_EXTRA3: Extra data type 3 stream rate to ground station

Note: This parameter is for advanced users

Extra data type 3 stream rate to ground station

Range Increment Units
0 - 10 1 Hz

SR1_PARAMS: Parameter stream rate to ground station

Note: This parameter is for advanced users

Parameter stream rate to ground station

Range Increment Units
0 - 10 1 Hz

SR2_ Parameters

SR2_RAW_SENS: Raw sensor stream rate

Note: This parameter is for advanced users

Raw sensor stream rate to ground station

Range Increment Units
0 - 10 1 Hz

SR2_EXT_STAT: Extended status stream rate to ground station

Note: This parameter is for advanced users

Extended status stream rate to ground station

Range Increment Units
0 - 10 1 Hz

SR2_RC_CHAN: RC Channel stream rate to ground station

Note: This parameter is for advanced users

RC Channel stream rate to ground station

Range Increment Units
0 - 10 1 Hz

SR2_RAW_CTRL: Raw Control stream rate to ground station

Note: This parameter is for advanced users

Raw Control stream rate to ground station

Range Increment Units
0 - 10 1 Hz

SR2_POSITION: Position stream rate to ground station

Note: This parameter is for advanced users

Position stream rate to ground station

Range Increment Units
0 - 10 1 Hz

SR2_EXTRA1: Extra data type 1 stream rate to ground station

Note: This parameter is for advanced users

Extra data type 1 stream rate to ground station

Range Increment Units
0 - 10 1 Hz

SR2_EXTRA2: Extra data type 2 stream rate to ground station

Note: This parameter is for advanced users

Extra data type 2 stream rate to ground station

Range Increment Units
0 - 10 1 Hz

SR2_EXTRA3: Extra data type 3 stream rate to ground station

Note: This parameter is for advanced users

Extra data type 3 stream rate to ground station

Range Increment Units
0 - 10 1 Hz

SR2_PARAMS: Parameter stream rate to ground station

Note: This parameter is for advanced users

Parameter stream rate to ground station

Range Increment Units
0 - 10 1 Hz

SR3_ Parameters

SR3_RAW_SENS: Raw sensor stream rate

Note: This parameter is for advanced users

Raw sensor stream rate to ground station

Range Increment Units
0 - 10 1 Hz

SR3_EXT_STAT: Extended status stream rate to ground station

Note: This parameter is for advanced users

Extended status stream rate to ground station

Range Increment Units
0 - 10 1 Hz

SR3_RC_CHAN: RC Channel stream rate to ground station

Note: This parameter is for advanced users

RC Channel stream rate to ground station

Range Increment Units
0 - 10 1 Hz

SR3_RAW_CTRL: Raw Control stream rate to ground station

Note: This parameter is for advanced users

Raw Control stream rate to ground station

Range Increment Units
0 - 10 1 Hz

SR3_POSITION: Position stream rate to ground station

Note: This parameter is for advanced users

Position stream rate to ground station

Range Increment Units
0 - 10 1 Hz

SR3_EXTRA1: Extra data type 1 stream rate to ground station

Note: This parameter is for advanced users

Extra data type 1 stream rate to ground station

Range Increment Units
0 - 10 1 Hz

SR3_EXTRA2: Extra data type 2 stream rate to ground station

Note: This parameter is for advanced users

Extra data type 2 stream rate to ground station

Range Increment Units
0 - 10 1 Hz

SR3_EXTRA3: Extra data type 3 stream rate to ground station

Note: This parameter is for advanced users

Extra data type 3 stream rate to ground station

Range Increment Units
0 - 10 1 Hz

SR3_PARAMS: Parameter stream rate to ground station

Note: This parameter is for advanced users

Parameter stream rate to ground station

Range Increment Units
0 - 10 1 Hz