Complete Parameter List

This is a complete list of the parameters which can be set (e.g. via the MAVLink protocol) to control vehicle behaviour. They are stored in persistent storage on the vehicle.

This list is automatically generated from the latest ardupilot source code, and so may contain parameters which are not yet in the stable released versions of the code.

APMrover2 Parameters

FORMAT_VERSION: Eeprom format version number

Note: This parameter is for advanced users

This value is incremented when changes are made to the eeprom format

SYSID_SW_TYPE: Software Type

Note: This parameter is for advanced users

This is used by the ground station to recognise the software type (eg ArduPlane vs ArduCopter)

ReadOnly Values
True
Value Meaning
0 ArduPlane
4 AntennaTracker
10 Copter
20 Rover
40 ArduSub

LOG_BITMASK: Log bitmask

Note: This parameter is for advanced users

Bitmap of what log types to enable in dataflash. This values is made up of the sum of each of the log types you want to be saved on dataflash. On a PX4 or Pixhawk the large storage size of a microSD card means it is usually best just to enable all log types by setting this to 65535. On APM2 the smaller 4 MByte dataflash means you need to be more selective in your logging or you may run out of log space while flying (in which case it will wrap and overwrite the start of the log). The individual bits are ATTITUDE_FAST=1, ATTITUDE_MEDIUM=2, GPS=4, PerformanceMonitoring=8, ControlTuning=16, NavigationTuning=32, Mode=64, IMU=128, Commands=256, Battery=512, Compass=1024, TECS=2048, Camera=4096, RCandServo=8192, Rangefinder=16384, Arming=32768, FullLogs=65535

Bitmask Values
Bit Meaning
0 ATTITUDE_FAST
1 ATTITUDE_MED
2 GPS
3 PM
4 CTUN
5 NTUN
6 MODE
7 IMU
8 CMD
9 CURRENT
10 COMPASS
11 TECS
12 CAMERA
13 RC
14 RANGEFINDER
15 ARM/DISARM
19 IMU_RAW
Value Meaning
0 Disabled
5190 APM2-Default
65535 PX4/Pixhawk-Default

RST_SWITCH_CH: Reset Switch Channel

Note: This parameter is for advanced users

RC channel to use to reset to last flight mode after geofence takeover.

INITIAL_MODE: Initial driving mode

Note: This parameter is for advanced users

This selects the mode to start in on boot. This is useful for when you want to start in AUTO mode on boot without a receiver. Usually used in combination with when AUTO_TRIGGER_PIN or AUTO_KICKSTART.

Values
Value Meaning
0 MANUAL
2 LEARNING
3 STEERING
4 HOLD
10 AUTO
11 RTL
15 GUIDED

TELEM_DELAY: Telemetry startup delay

The amount of time (in seconds) to delay radio telemetry to prevent an Xbee bricking on power up

Range Increment Units
0 - 30 1 seconds

GCS_PID_MASK: GCS PID tuning mask

Note: This parameter is for advanced users

bitmask of PIDs to send MAVLink PID_TUNING messages for

Bitmask Values
Bit Meaning
0 Steering
1 Throttle
Value Meaning
0 None
1 Steering
2 Throttle

MAG_ENABLE: Enable Compass

Setting this to Enabled(1) will enable the compass. Setting this to Disabled(0) will disable the compass. Note that this is separate from COMPASS_USE. This will enable the low level senor, and will enable logging of magnetometer data. To use the compass for navigation you must also set COMPASS_USE to 1.

Values
Value Meaning
0 Disabled
1 Enabled

AUTO_TRIGGER_PIN: Auto mode trigger pin

pin number to use to enable the throttle in auto mode. If set to -1 then don’t use a trigger, otherwise this is a pin number which if held low in auto mode will enable the motor to run. If the switch is released while in AUTO then the motor will stop again. This can be used in combination with INITIAL_MODE to give a ‘press button to start’ rover with no receiver.

Values
Value Meaning
-1 Disabled
0 APM TriggerPin0
1 APM TriggerPin1
2 APM TriggerPin2
3 APM TriggerPin3
4 APM TriggerPin4
5 APM TriggerPin5
6 APM TriggerPin6
7 APM TriggerPin7
8 APM TriggerPin8
50 Pixhawk TriggerPin50
51 Pixhawk TriggerPin51
52 Pixhawk TriggerPin52
53 Pixhawk TriggerPin53
54 Pixhawk TriggerPin54
55 Pixhawk TriggerPin55

AUTO_KICKSTART: Auto mode trigger kickstart acceleration

X acceleration in meters/second/second to use to trigger the motor start in auto mode. If set to zero then auto throttle starts immediately when the mode switch happens, otherwise the rover waits for the X acceleration to go above this value before it will start the motor

Range Increment Units
0 - 20 0.1 meters per square second

CRUISE_SPEED: Target cruise speed in auto modes

The target speed in auto missions.

Range Increment Units
0 - 100 0.1 meters per second

SPEED_TURN_GAIN: Target speed reduction while turning

The percentage to reduce the throttle to while turning. If this is 100% then the target speed is not reduced while turning. If this is 50% then the target speed is reduced in proportion to the turn rate, with a reduction of 50% when the steering is maximally deflected.

Range Increment Units
0 - 100 1 percent

PIVOT_TURN_ANGLE: Pivot turn angle

Navigation angle threshold in degrees to switch to pivot steering when SKID_STEER_OUT is 1. This allows you to setup a skid steering rover to turn on the spot in auto mode when the angle it needs to turn it greater than this angle. An angle of zero means to disable pivot turning. Note that you will probably also want to set a low value for WP_RADIUS to get neat turns.

Range Increment Units
0 - 360 1 degrees

CH7_OPTION: Channel 7 option

What to do use channel 7 for

Values
Value Meaning
0 Nothing
1 SaveWaypoint
2 LearnCruiseSpeed

CRUISE_THROTTLE: Base throttle percentage in auto

The base throttle percentage to use in auto mode. The CRUISE_SPEED parameter controls the target speed, but the rover starts with the CRUISE_THROTTLE setting as the initial estimate for how much throttle is needed to achieve that speed. It then adjusts the throttle based on how fast the rover is actually going.

Range Increment Units
0 - 100 1 percent

SKID_STEER_IN: Skid steering input

Set this to 1 for skid steering input rovers (tank track style in RC controller). When enabled, servo1 is used for the left track control, servo3 is used for right track control

Values
Value Meaning
0 Disabled
1 SkidSteeringInput

FS_ACTION: Failsafe Action

What to do on a failsafe event

Values
Value Meaning
0 Nothing
1 RTL
2 HOLD

FS_TIMEOUT: Failsafe timeout

How long a failsafe event need to happen for before we trigger the failsafe action

Units
seconds

FS_THR_ENABLE: Throttle Failsafe Enable

The throttle failsafe allows you to configure a software failsafe activated by a setting on the throttle input channel to a low value. This can be used to detect the RC transmitter going out of range. Failsafe will be triggered when the throttle channel goes below the FS_THR_VALUE for FS_TIMEOUT seconds.

Values
Value Meaning
0 Disabled
1 Enabled

FS_THR_VALUE: Throttle Failsafe Value

The PWM level on the throttle channel below which throttle failsafe triggers.

Range Increment
910 - 1100 1

FS_GCS_ENABLE: GCS failsafe enable

Enable ground control station telemetry failsafe. When enabled the Rover will execute the FS_ACTION when it fails to receive MAVLink heartbeat packets for FS_TIMEOUT seconds.

Values
Value Meaning
0 Disabled
1 Enabled

FS_CRASH_CHECK: Crash check action

What to do on a crash event. When enabled the rover will go to hold if a crash is detected.

Values
Value Meaning
0 Disabled
1 HOLD
2 HoldAndDisarm

RNGFND_TRIGGR_CM: Rangefinder trigger distance

The distance from an obstacle in centimeters at which the rangefinder triggers a turn to avoid the obstacle

Range Increment Units
0 - 1000 1 centimeters

RNGFND_TURN_ANGL: Rangefinder trigger angle

The course deviation in degrees to apply while avoiding an obstacle detected with the rangefinder. A positive number means to turn right, and a negative angle means to turn left.

Range Increment Units
-45 - 45 1 degrees

RNGFND_TURN_TIME: Rangefinder turn time

The amount of time in seconds to apply the RNGFND_TURN_ANGL after detecting an obstacle.

Range Increment Units
0 - 100 0.1 seconds

RNGFND_DEBOUNCE: Rangefinder debounce count

The number of 50Hz rangefinder hits needed to trigger an obstacle avoidance event. If you get a lot of false rangefinder events then raise this number, but if you make it too large then it will cause lag in detecting obstacles, which could cause you go hit the obstacle.

Range Increment
1 - 100 1

AUX_CH: Auxiliary switch channel

Note: This parameter is for advanced users

RC Channel to use for auxiliary functions including saving waypoints

MODE_CH: Mode channel

Note: This parameter is for advanced users

RC Channel to use for driving mode control

MODE1: Mode1

Driving mode for switch position 1 (910 to 1230 and above 2049)

Values
Value Meaning
0 Manual
3 Steering
4 Hold
10 Auto
11 RTL
15 Guided

MODE2: Mode2

Driving mode for switch position 2 (1231 to 1360)

Values
Value Meaning
0 Manual
3 Steering
4 Hold
10 Auto
11 RTL
15 Guided

MODE3: Mode3

Driving mode for switch position 3 (1361 to 1490)

Values
Value Meaning
0 Manual
3 Steering
4 Hold
10 Auto
11 RTL
15 Guided

MODE4: Mode4

Driving mode for switch position 4 (1491 to 1620)

Values
Value Meaning
0 Manual
3 Steering
4 Hold
10 Auto
11 RTL
15 Guided

MODE5: Mode5

Driving mode for switch position 5 (1621 to 1749)

Values
Value Meaning
0 Manual
3 Steering
4 Hold
10 Auto
11 RTL
15 Guided

MODE6: Mode6

Driving mode for switch position 6 (1750 to 2049)

Values
Value Meaning
0 Manual
3 Steering
4 Hold
10 Auto
11 RTL
15 Guided

WP_RADIUS: Waypoint radius

The distance in meters from a waypoint when we consider the waypoint has been reached. This determines when the rover will turn along the next waypoint path.

Range Increment Units
0 - 1000 0.1 meters

WP_OVERSHOOT: Waypoint overshoot maximum

Waypoint overshoot maximum in meters. The vehicle will attempt to stay within this many meters of the track as it completes one waypoint and moves to the next.

Range Increment Units
0 - 10 0.1 meters

TURN_MAX_G: Turning maximum G force

The maximum turning acceleration (in units of gravities) that the rover can handle while remaining stable. The navigation code will keep the lateral acceleration below this level to avoid rolling over or slipping the wheels in turns

Range Increment Units
0.2 - 10 0.1 standard acceleration due to gravity

SYSID_ENFORCE: GCS sysid enforcement

Note: This parameter is for advanced users

This controls whether packets from other than the expected GCS system ID will be accepted

Values
Value Meaning
0 NotEnforced
1 Enforced

TURN_RADIUS: Turn radius of vehicle

Turn radius of vehicle in meters while at low speeds. Lower values produce tighter turns in steering mode

Range Increment Units
0 - 10 0.1 meters

AFS_ Parameters

AFS_ENABLE: Enable Advanced Failsafe

Note: This parameter is for advanced users

This enables the advanced failsafe system. If this is set to zero (disable) then all the other AFS options have no effect

AFS_MAN_PIN: Manual Pin

Note: This parameter is for advanced users

This sets a digital output pin to set high when in manual mode

AFS_HB_PIN: Heartbeat Pin

Note: This parameter is for advanced users

This sets a digital output pin which is cycled at 10Hz when termination is not activated. Note that if a FS_TERM_PIN is set then the heartbeat pin will continue to cycle at 10Hz when termination is activated, to allow the termination board to distinguish between autopilot crash and termination.

AFS_WP_COMMS: Comms Waypoint

Note: This parameter is for advanced users

Waypoint number to navigate to on comms loss

AFS_GPS_LOSS: GPS Loss Waypoint

Note: This parameter is for advanced users

Waypoint number to navigate to on GPS lock loss

AFS_TERMINATE: Force Terminate

Note: This parameter is for advanced users

Can be set in flight to force termination of the heartbeat signal

AFS_TERM_ACTION: Terminate action

Note: This parameter is for advanced users

This can be used to force an action on flight termination. Normally this is handled by an external failsafe board, but you can setup APM to handle it here. Please consult the wiki for more information on the possible values of the parameter

AFS_TERM_PIN: Terminate Pin

Note: This parameter is for advanced users

This sets a digital output pin to set high on flight termination

AFS_AMSL_LIMIT: AMSL limit

Note: This parameter is for advanced users

This sets the AMSL (above mean sea level) altitude limit. If the pressure altitude determined by QNH exceeds this limit then flight termination will be forced. Note that this limit is in meters, whereas pressure altitude limits are often quoted in feet. A value of zero disables the pressure altitude limit.

Units
meters

AFS_AMSL_ERR_GPS: Error margin for GPS based AMSL limit

Note: This parameter is for advanced users

This sets margin for error in GPS derived altitude limit. This error margin is only used if the barometer has failed. If the barometer fails then the GPS will be used to enforce the AMSL_LIMIT, but this margin will be subtracted from the AMSL_LIMIT first, to ensure that even with the given amount of GPS altitude error the pressure altitude is not breached. OBC users should set this to comply with their D2 safety case. A value of -1 will mean that barometer failure will lead to immediate termination.

Units
meters

AFS_QNH_PRESSURE: QNH pressure

Note: This parameter is for advanced users

This sets the QNH pressure in millibars to be used for pressure altitude in the altitude limit. A value of zero disables the altitude limit.

Units
millibar

AFS_MAX_GPS_LOSS: Maximum number of GPS loss events

Note: This parameter is for advanced users

Maximum number of GPS loss events before the aircraft stops returning to mission on GPS recovery. Use zero to allow for any number of GPS loss events.

AFS_MAX_COM_LOSS: Maximum number of comms loss events

Note: This parameter is for advanced users

Maximum number of comms loss events before the aircraft stops returning to mission on comms recovery. Use zero to allow for any number of comms loss events.

AFS_GEOFENCE: Enable geofence Advanced Failsafe

Note: This parameter is for advanced users

This enables the geofence part of the AFS. Will only be in effect if AFS_ENABLE is also 1

AFS_RC: Enable RC Advanced Failsafe

Note: This parameter is for advanced users

This enables the RC part of the AFS. Will only be in effect if AFS_ENABLE is also 1

AFS_RC_MAN_ONLY: Enable RC Termination only in manual control modes

Note: This parameter is for advanced users

If this parameter is set to 1, then an RC loss will only cause the plane to terminate in manual control modes. If it is 0, then the plane will terminate in any flight mode.

AFS_DUAL_LOSS: Enable dual loss terminate due to failure of both GCS and GPS simultaneously

Note: This parameter is for advanced users

This enables the dual loss termination part of the AFS system. If this parameter is 1 and both GPS and the ground control station fail simultaneously, this will be considered a “dual loss” and cause termination.

AFS_RC_FAIL_TIME: RC failure time

Note: This parameter is for advanced users

This is the time in seconds in manual mode that failsafe termination will activate if RC input is lost. For the OBC rules this should be (1.5). Use 0 to disable.

Units
seconds

AHRS_ Parameters

AHRS_GPS_GAIN: AHRS GPS gain

Note: This parameter is for advanced users

This controls how much to use the GPS to correct the attitude. This should never be set to zero for a plane as it would result in the plane losing control in turns. For a plane please use the default value of 1.0.

Range Increment
0.0 - 1.0 .01

AHRS_GPS_USE: AHRS use GPS for navigation

Note: This parameter is for advanced users

This controls whether to use dead-reckoning or GPS based navigation. If set to 0 then the GPS won’t be used for navigation, and only dead reckoning will be used. A value of zero should never be used for normal flight.

Values
Value Meaning
0 Disabled
1 Enabled

AHRS_YAW_P: Yaw P

Note: This parameter is for advanced users

This controls the weight the compass or GPS has on the heading. A higher value means the heading will track the yaw source (GPS or compass) more rapidly.

Range Increment
0.1 - 0.4 .01

AHRS_RP_P: AHRS RP_P

Note: This parameter is for advanced users

This controls how fast the accelerometers correct the attitude

Range Increment
0.1 - 0.4 .01

AHRS_WIND_MAX: Maximum wind

Note: This parameter is for advanced users

This sets the maximum allowable difference between ground speed and airspeed. This allows the plane to cope with a failing airspeed sensor. A value of zero means to use the airspeed as is.

Range Increment Units
0 - 127 1 meters per second

AHRS_TRIM_X: AHRS Trim Roll

Compensates for the roll angle difference between the control board and the frame. Positive values make the vehicle roll right.

Range Increment Units
-0.1745 - +0.1745 0.01 radians

AHRS_TRIM_Y: AHRS Trim Pitch

Compensates for the pitch angle difference between the control board and the frame. Positive values make the vehicle pitch up/back.

Range Increment Units
-0.1745 - +0.1745 0.01 radians

AHRS_TRIM_Z: AHRS Trim Yaw

Note: This parameter is for advanced users

Not Used

Range Increment Units
-0.1745 - +0.1745 0.01 radians

AHRS_ORIENTATION: Board Orientation

Note: This parameter is for advanced users

Overall board orientation relative to the standard orientation for the board type. This rotates the IMU and compass readings to allow the board to be oriented in your vehicle at any 90 or 45 degree angle. This option takes affect on next boot. After changing you will need to re-level your vehicle.

Values
Value Meaning
0 None
1 Yaw45
2 Yaw90
3 Yaw135
4 Yaw180
5 Yaw225
6 Yaw270
7 Yaw315
8 Roll180
9 Roll180Yaw45
10 Roll180Yaw90
11 Roll180Yaw135
12 Pitch180
13 Roll180Yaw225
14 Roll180Yaw270
15 Roll180Yaw315
16 Roll90
17 Roll90Yaw45
18 Roll90Yaw90
19 Roll90Yaw135
20 Roll270
21 Roll270Yaw45
22 Roll270Yaw90
23 Roll270Yaw136
24 Pitch90
25 Pitch270
26 Pitch180Yaw90
27 Pitch180Yaw270
28 Roll90Pitch90
29 Roll180Pitch90
30 Roll270Pitch90
31 Roll90Pitch180
32 Roll270Pitch180
33 Roll90Pitch270
34 Roll180Pitch270
35 Roll270Pitch270
36 Roll90Pitch180Yaw90
37 Roll90Yaw270

AHRS_COMP_BETA: AHRS Velocity Complementary Filter Beta Coefficient

Note: This parameter is for advanced users

This controls the time constant for the cross-over frequency used to fuse AHRS (airspeed and heading) and GPS data to estimate ground velocity. Time constant is 0.1/beta. A larger time constant will use GPS data less and a small time constant will use air data less.

Range Increment
0.001 - 0.5 .01

AHRS_GPS_MINSATS: AHRS GPS Minimum satellites

Note: This parameter is for advanced users

Minimum number of satellites visible to use GPS for velocity based corrections attitude correction. This defaults to 6, which is about the point at which the velocity numbers from a GPS become too unreliable for accurate correction of the accelerometers.

Range Increment
0 - 10 1

AHRS_EKF_TYPE: Use NavEKF Kalman filter for attitude and position estimation

Note: This parameter is for advanced users

This controls which NavEKF Kalman filter version is used for attitude and position estimation

Values
Value Meaning
0 Disabled
2 Enable EKF2
3 Enable EKF3

ARMING_ Parameters

ARMING_REQUIRE: Require Arming Motors

Note: This parameter is for advanced users

Arming disabled until some requirements are met. If 0, there are no requirements (arm immediately). If 1, require rudder stick or GCS arming before arming motors and sends the minimum throttle PWM value to the throttle channel when disarmed. If 2, require rudder stick or GCS arming and send 0 PWM to throttle channel when disarmed. See the ARMING_CHECK_* parameters to see what checks are done before arming. Note, if setting this parameter to 0 a reboot is required to arm the plane. Also note, even with this parameter at 0, if ARMING_CHECK parameter is not also zero the plane may fail to arm throttle at boot due to a pre-arm check failure. This parameter is relevant for ArduPlane only.

Values
Value Meaning
0 Disabled
1 THR_MIN PWM when disarmed
2 0 PWM when disarmed

ARMING_CHECK: Arm Checks to Peform (bitmask)

Checks prior to arming motor. This is a bitmask of checks that will be performed before allowing arming. The default is no checks, allowing arming at any time. You can select whatever checks you prefer by adding together the values of each check type to set this parameter. For example, to only allow arming when you have GPS lock and no RC failsafe you would set ARMING_CHECK to 72. For most users it is recommended that you set this to 1 to enable all checks.

Bitmask Values
Bit Meaning
0 All
1 Barometer
2 Compass
3 GPS lock
4 INS
5 Parameters
6 RC
7 Board voltage
8 Battery Level
9 Airspeed
10 Logging Available
11 Hardware safety switch
12 GPS Configuration
Value Meaning
0 None
1 All
2 Barometer
4 Compass
8 GPS Lock
16 INS(INertial Sensors - accels & gyros)
32 Parameters(unused)
64 RC Failsafe
128 Board voltage
256 Battery Level
512 Airspeed
1024 LoggingAvailable
2048 Hardware safety switch
4096 GPS configuration

ARMING_ACCTHRESH: Accelerometer error threshold

Note: This parameter is for advanced users

Accelerometer error threshold used to determine inconsistent accelerometers. Compares this error range to other accelerometers to detect a hardware or calibration error. Lower value means tighter check and harder to pass arming check. Not all accelerometers are created equal.

Range Units
0.25 - 3.0 meters per square second

ARMING_VOLT_MIN: Arming voltage minimum on the first battery

The minimum voltage on the first battery to arm, 0 disables the check

Increment Units
0.1 volt

ARMING_VOLT2_MIN: Arming voltage minimum on the second battery

The minimum voltage on the first battery to arm, 0 disables the check

Increment Units
0.1 volt

ATC Parameters

ATC_STR_ANG_P: Steering control angle P gain

Steering control angle P gain. Converts the error between the desired heading/yaw (in radians) and actual heading/yaw to a desired turn rate (in rad/sec)

Range
1.000 - 10.000

ATC_STR_RATE_P: Steering control rate P gain

Steering control rate P gain. Converts the turn rate error (in radians/sec) to a steering control output (in the range -1 to +1)

Range
0.100 - 2.000

ATC_STR_RATE_I: Steering control I gain

Steering control I gain. Corrects long term error between the desired turn rate (in rad/s) and actual

Range
0.000 - 2.000

ATC_STR_RATE_IMAX: Steering control I gain maximum

Steering control I gain maximum. Constraings the steering output (range -1 to +1) that the I term will generate

Range
0.000 - 1.000

ATC_STR_RATE_D: Steering control D gain

Steering control D gain. Compensates for short-term change in desired turn rate vs actual

Range
0.000 - 0.400

ATC_STR_RATE_FILT: Steering control filter frequency

Steering control input filter. Lower values reduce noise but add delay.

Range Units
1.000 - 100.000 hertz

ATC_SPEED_P: Speed control P gain

Speed control P gain. Converts the error between the desired speed (in m/s) and actual speed to a motor output (in the range -1 to +1)

Range
0.010 - 2.000

ATC_SPEED_I: Speed control I gain

Speed control I gain. Corrects long term error between the desired speed (in m/s) and actual speed

Range
0.000 - 2.000

ATC_SPEED_IMAX: Speed control I gain maximum

Speed control I gain maximum. Constraings the maximum motor output (range -1 to +1) that the I term will generate

Range
0.000 - 1.000

ATC_SPEED_D: Speed control D gain

Speed control D gain. Compensates for short-term change in desired speed vs actual

Range
0.000 - 0.400

ATC_SPEED_FILT: Speed control filter frequency

Speed control input filter. Lower values reduce noise but add delay.

Range Units
1.000 - 100.000 hertz

ATC_ACCEL_MAX: Speed control acceleration (and deceleration) maximum in m/s/s

Speed control acceleration (and deceleration) maximum in m/s/s. 0 to disable acceleration limiting

Range Increment Units
0 - 10 0.1 meters per square second

ATC_BRAKE: Speed control brake enable/disable

Speed control brake enable/disable. Allows sending a reversed output to the motors to slow the vehicle.

Values
Value Meaning
0 Disable
1 Enable

ATC_STOP_SPEED: Speed control stop speed

Speed control stop speed. Motor outputs to zero once vehicle speed falls below this value

Range Increment Units
0 - 0.5 0.01 meters per second

BATT Parameters

BATT_MONITOR: Battery monitoring

Controls enabling monitoring of the battery’s voltage and current

Values
Value Meaning
0 Disabled
3 Analog Voltage Only
4 Analog Voltage and Current
5 Solo
6 Bebop
7 SMBus-Maxell

BATT_VOLT_PIN: Battery Voltage sensing pin

Setting this to 0 ~ 13 will enable battery voltage sensing on pins A0 ~ A13. On the PX4-v1 it should be set to 100. On the Pixhawk, Pixracer and NAVIO boards it should be set to 2, Pixhawk2 Power2 is 13.

Values
Value Meaning
-1 Disabled
0 A0
1 A1
2 Pixhawk/Pixracer/Navio2/Pixhawk2_PM1
13 Pixhawk2_PM2
100 PX4-v1

BATT_CURR_PIN: Battery Current sensing pin

Setting this to 0 ~ 13 will enable battery current sensing on pins A0 ~ A13. On the PX4-v1 it should be set to 101. On the Pixhawk, Pixracer and NAVIO boards it should be set to 3, Pixhawk2 Power2 is 14.

Values
Value Meaning
-1 Disabled
1 A1
2 A2
3 Pixhawk/Pixracer/Navio2/Pixhawk2_PM1
14 Pixhawk2_PM2
101 PX4-v1

BATT_VOLT_MULT: Voltage Multiplier

Note: This parameter is for advanced users

Used to convert the voltage of the voltage sensing pin (BATT_VOLT_PIN) to the actual battery’s voltage (pin_voltage * VOLT_MULT). For the 3DR Power brick on APM2 or Pixhawk, this should be set to 10.1. For the Pixhawk with the 3DR 4in1 ESC this should be 12.02. For the PX4 using the PX4IO power supply this should be set to 1.

BATT_AMP_PERVOLT: Amps per volt

Number of amps that a 1V reading on the current sensor corresponds to. On the APM2 or Pixhawk using the 3DR Power brick this should be set to 17. For the Pixhawk with the 3DR 4in1 ESC this should be 17.

Units
ampere per volt

BATT_AMP_OFFSET: AMP offset

Voltage offset at zero current on current sensor

Units
volt

BATT_CAPACITY: Battery capacity

Capacity of the battery in mAh when full

Increment Units
50 milliampere hour

BATT_WATT_MAX: Maximum allowed power (Watts)

Note: This parameter is for advanced users

If battery wattage (voltage * current) exceeds this value then the system will reduce max throttle (THR_MAX, TKOFF_THR_MAX and THR_MIN for reverse thrust) to satisfy this limit. This helps limit high current to low C rated batteries regardless of battery voltage. The max throttle will slowly grow back to THR_MAX (or TKOFF_THR_MAX ) and THR_MIN if demanding the current max and under the watt max. Use 0 to disable.

Increment Units
1 watt

BATT_SERIAL_NUM: Battery serial number

Note: This parameter is for advanced users

Battery serial number, automatically filled in for SMBus batteries, otherwise will be -1

BATT2_MONITOR: Battery monitoring

Controls enabling monitoring of the battery’s voltage and current

Values
Value Meaning
0 Disabled
3 Analog Voltage Only
4 Analog Voltage and Current
5 Solo
6 Bebop
7 SMBus-Maxell

BATT2_VOLT_PIN: Battery Voltage sensing pin

Setting this to 0 ~ 13 will enable battery voltage sensing on pins A0 ~ A13. On the PX4-v1 it should be set to 100. On the Pixhawk, Pixracer and NAVIO boards it should be set to 2, Pixhawk2 Power2 is 13.

Values
Value Meaning
-1 Disabled
0 A0
1 A1
2 Pixhawk/Pixracer/Navio2/Pixhawk2_PM1
13 Pixhawk2_PM2
100 PX4-v1

BATT2_CURR_PIN: Battery Current sensing pin

Setting this to 0 ~ 13 will enable battery current sensing on pins A0 ~ A13. On the PX4-v1 it should be set to 101. On the Pixhawk, Pixracer and NAVIO boards it should be set to 3, Pixhawk2 Power2 is 14.

Values
Value Meaning
-1 Disabled
1 A1
2 A2
3 Pixhawk/Pixracer/Navio2/Pixhawk2_PM1
14 Pixhawk2_PM2
101 PX4-v1

BATT2_VOLT_MULT: Voltage Multiplier

Note: This parameter is for advanced users

Used to convert the voltage of the voltage sensing pin (BATT_VOLT_PIN) to the actual battery’s voltage (pin_voltage * VOLT_MULT). For the 3DR Power brick on APM2 or Pixhawk, this should be set to 10.1. For the Pixhawk with the 3DR 4in1 ESC this should be 12.02. For the PX4 using the PX4IO power supply this should be set to 1.

BATT2_AMP_PERVOL: Amps per volt

Number of amps that a 1V reading on the current sensor corresponds to. On the APM2 or Pixhawk using the 3DR Power brick this should be set to 17. For the Pixhawk with the 3DR 4in1 ESC this should be 17.

Units
ampere per volt

BATT2_AMP_OFFSET: AMP offset

Voltage offset at zero current on current sensor

Units
volt

BATT2_CAPACITY: Battery capacity

Capacity of the battery in mAh when full

Increment Units
50 milliampere hour

BATT2_WATT_MAX: Maximum allowed current

Note: This parameter is for advanced users

If battery wattage (voltage * current) exceeds this value then the system will reduce max throttle (THR_MAX, TKOFF_THR_MAX and THR_MIN for reverse thrust) to satisfy this limit. This helps limit high current to low C rated batteries regardless of battery voltage. The max throttle will slowly grow back to THR_MAX (or TKOFF_THR_MAX ) and THR_MIN if demanding the current max and under the watt max. Use 0 to disable.

Increment Units
1 ampere

BATT2_SERIAL_NUM: Battery serial number

Note: This parameter is for advanced users

Battery serial number, automatically filled in for SMBus batteries, otherwise will be -1

BATT_LOW_TIMER: Low voltage timeout

Note: This parameter is for advanced users

This is the timeout in seconds before a low voltage event will be triggered. For aircraft with low C batteries it may be necessary to raise this in order to cope with low voltage on long takeoffs. A value of zero disables low voltage errors.

Range Increment Units
0 - 120 1 seconds

BATT_LOW_TYPE: Low voltage type

Note: This parameter is for advanced users

Voltage type used for detection of low voltage event

Values
Value Meaning
0 Raw Voltage
1 Sag Compensated Voltage

BCN Parameters

BCN_TYPE: Beacon based position estimation device type

Note: This parameter is for advanced users

What type of beacon based position estimation device is connected

Values
Value Meaning
0 None
1 Pozyx
2 Marvelmind

BCN_LATITUDE: Beacon origin’s latitude

Note: This parameter is for advanced users

Beacon origin’s latitude

Range Increment Units
-90 - 90 0.000001 degrees

BCN_LONGITUDE: Beacon origin’s longitude

Note: This parameter is for advanced users

Beacon origin’s longitude

Range Increment Units
-180 - 180 0.000001 degrees

BCN_ALT: Beacon origin’s altitude above sealevel in meters

Note: This parameter is for advanced users

Beacon origin’s altitude above sealevel in meters

Range Increment Units
0 - 10000 1 meters

BCN_ORIENT_YAW: Beacon systems rotation from north in degrees

Note: This parameter is for advanced users

Beacon systems rotation from north in degrees

Range Increment Units
-180 - +180 1 degrees

BRD_ Parameters

BRD_PWM_COUNT: Auxiliary pin config

Note: This parameter is for advanced users

Control assigning of FMU pins to PWM output, timer capture and GPIO. All unassigned pins can be used for GPIO

Values RebootRequired
Value Meaning
0 No PWMs
2 Two PWMs
4 Four PWMs
6 Six PWMs
7 Three PWMs and One Capture
True

BRD_SER1_RTSCTS: Serial 1 flow control

Note: This parameter is for advanced users

Enable flow control on serial 1 (telemetry 1) on Pixhawk. You must have the RTS and CTS pins connected to your radio. The standard DF13 6 pin connector for a 3DR radio does have those pins connected. If this is set to 2 then flow control will be auto-detected by checking for the output buffer filling on startup. Note that the PX4v1 does not have hardware flow control pins on this port, so you should leave this disabled.

Values RebootRequired
Value Meaning
0 Disabled
1 Enabled
2 Auto
True

BRD_SER2_RTSCTS: Serial 2 flow control

Note: This parameter is for advanced users

Enable flow control on serial 2 (telemetry 2) on Pixhawk and PX4. You must have the RTS and CTS pins connected to your radio. The standard DF13 6 pin connector for a 3DR radio does have those pins connected. If this is set to 2 then flow control will be auto-detected by checking for the output buffer filling on startup.

Values RebootRequired
Value Meaning
0 Disabled
1 Enabled
2 Auto
True

BRD_SAFETYENABLE: Enable use of safety arming switch

This controls the default state of the safety switch at startup. When set to 1 the safety switch will start in the safe state (flashing) at boot. When set to zero the safety switch will start in the unsafe state (solid) at startup. Note that if a safety switch is fitted the user can still control the safety state after startup using the switch. The safety state can also be controlled in software using a MAVLink message.

Values RebootRequired
Value Meaning
0 Disabled
1 Enabled
True

BRD_SBUS_OUT: SBUS output rate

Note: This parameter is for advanced users

This sets the SBUS output frame rate in Hz

Values RebootRequired
Value Meaning
0 Disabled
1 50Hz
2 75Hz
3 100Hz
4 150Hz
5 200Hz
6 250Hz
7 300Hz
True

BRD_SERIAL_NUM: User-defined serial number

User-defined serial number of this vehicle, it can be any arbitrary number you want and has no effect on the autopilot

Range
-32768 - 32767

BRD_SAFETY_MASK: Channels to which ignore the safety switch state

Note: This parameter is for advanced users

A bitmask which controls what channels can move while the safety switch has not been pressed

Bitmask Values RebootRequired
Bit Meaning
0 Ch1
1 Ch2
2 Ch3
3 Ch4
4 Ch5
5 Ch6
6 Ch7
7 Ch8
8 Ch9
9 Ch10
10 Ch11
11 Ch12
12 Ch13
13 Ch14
Value Meaning
0 Disabled
1 Enabled
True

BRD_IMU_TARGTEMP: Target IMU temperature

Note: This parameter is for advanced users

This sets the target IMU temperature for boards with controllable IMU heating units. A value of -1 disables heating.

Range Units
-1 - 80 degrees Celsius

BRD_TYPE: Board type

Note: This parameter is for advanced users

This allows selection of a PX4 or VRBRAIN board type. If set to zero then the board type is auto-detected (PX4)

Values RebootRequired
Value Meaning
0 AUTO
1 PX4V1
2 Pixhawk
3 Cube/Pixhawk2
4 Pixracer
5 PixhawkMini
6 Pixhawk2Slim
7 VRBrain 5.1
8 VRBrain 5.2
9 VR Micro Brain 5.1
10 VR Micro Brain 5.2
11 VRBrain Core 1.0
12 VRBrain 5.4
13 Intel Aero FC
20 AUAV2.1
True

BRD_IO_ENABLE: Enable IO co-processor

Note: This parameter is for advanced users

This allows for the IO co-processor on FMUv1 and FMUv2 to be disabled

Values RebootRequired
Value Meaning
0 Disabled
1 Enabled
True

BTN_ Parameters

BTN_ENABLE: Enable button reporting

Note: This parameter is for advanced users

This enables the button checking module. When this is disabled the parameters for setting button inputs are not visible

Values
Value Meaning
0 Disabled
1 Enabled

BTN_PIN1: First button Pin

Digital pin number for first button input.

Values
Value Meaning
-1 Disabled
50 Pixhawk AUXOUT1
51 Pixhawk AUXOUT2
52 Pixhawk AUXOUT3
53 Pixhawk AUXOUT4
54 Pixhawk AUXOUT5
55 Pixhawk AUXOUT6
111 PX4 FMU Relay1
112 PX4 FMU Relay2
113 PX4IO Relay1
114 PX4IO Relay2
115 PX4IO ACC1
116 PX4IO ACC2

BTN_PIN2: Second button Pin

Digital pin number for second button input.

Values
Value Meaning
-1 Disabled
50 Pixhawk AUXOUT1
51 Pixhawk AUXOUT2
52 Pixhawk AUXOUT3
53 Pixhawk AUXOUT4
54 Pixhawk AUXOUT5
55 Pixhawk AUXOUT6
111 PX4 FMU Relay1
112 PX4 FMU Relay2
113 PX4IO Relay1
114 PX4IO Relay2
115 PX4IO ACC1
116 PX4IO ACC2

BTN_PIN3: Third button Pin

Digital pin number for third button input.

Values
Value Meaning
-1 Disabled
50 Pixhawk AUXOUT1
51 Pixhawk AUXOUT2
52 Pixhawk AUXOUT3
53 Pixhawk AUXOUT4
54 Pixhawk AUXOUT5
55 Pixhawk AUXOUT6
111 PX4 FMU Relay1
112 PX4 FMU Relay2
113 PX4IO Relay1
114 PX4IO Relay2
115 PX4IO ACC1
116 PX4IO ACC2

BTN_PIN4: Fourth button Pin

Digital pin number for fourth button input.

Values
Value Meaning
-1 Disabled
50 Pixhawk AUXOUT1
51 Pixhawk AUXOUT2
52 Pixhawk AUXOUT3
53 Pixhawk AUXOUT4
54 Pixhawk AUXOUT5
55 Pixhawk AUXOUT6
111 PX4 FMU Relay1
112 PX4 FMU Relay2
113 PX4IO Relay1
114 PX4IO Relay2
115 PX4IO ACC1
116 PX4IO ACC2

BTN_REPORT_SEND: Report send time

The duration in seconds that a BUTTON_CHANGE report is repeatedly sent to the GCS regarding a button changing state. Note that the BUTTON_CHANGE message is MAVLink2 only.

Range
0 - 3600

CAM_ Parameters

CAM_TRIGG_TYPE: Camera shutter (trigger) type

how to trigger the camera to take a picture

Values
Value Meaning
0 Servo
1 Relay

CAM_DURATION: Duration that shutter is held open

How long the shutter will be held open in 10ths of a second (i.e. enter 10 for 1second, 50 for 5seconds)

Range Units
0 - 50 deciseconds

CAM_SERVO_ON: Servo ON PWM value

PWM value in microseconds to move servo to when shutter is activated

Range Units
1000 - 2000 PWM in microseconds

CAM_SERVO_OFF: Servo OFF PWM value

PWM value in microseconds to move servo to when shutter is deactivated

Range Units
1000 - 2000 PWM in microseconds

CAM_TRIGG_DIST: Camera trigger distance

Distance in meters between camera triggers. If this value is non-zero then the camera will trigger whenever the GPS position changes by this number of meters regardless of what mode the APM is in. Note that this parameter can also be set in an auto mission using the DO_SET_CAM_TRIGG_DIST command, allowing you to enable/disable the triggering of the camera during the flight.

Range Units
0 - 1000 meters

CAM_RELAY_ON: Relay ON value

This sets whether the relay goes high or low when it triggers. Note that you should also set RELAY_DEFAULT appropriately for your camera

Values
Value Meaning
0 Low
1 High

CAM_MIN_INTERVAL: Minimum time between photos

Postpone shooting if previous picture was taken less than preset time(ms) ago.

Range Units
0 - 10000 milliseconds

CAM_MAX_ROLL: Maximum photo roll angle.

Postpone shooting if roll is greater than limit. (0=Disable, will shoot regardless of roll).

Range Units
0 - 180 degrees

CAM_FEEDBACK_PIN: Camera feedback pin

pin number to use for save accurate camera feedback messages. If set to -1 then don’t use a pin flag for this, otherwise this is a pin number which if held high after a picture trigger order, will save camera messages when camera really takes a picture. A universal camera hot shoe is needed. The pin should be held high for at least 2 milliseconds for reliable trigger detection. See also the CAM_FEEDBACK_POL option. If using AUX4 pin on a Pixhawk then a fast capture method is used that allows for the trigger time to be as short as one microsecond.

Values
Value Meaning
-1 Disabled
50 PX4 AUX1
51 PX4 AUX2
52 PX4 AUX3
53 PX4 AUX4(fast capture)
54 PX4 AUX5
55 PX4 AUX6

CAM_FEEDBACK_POL: Camera feedback pin polarity

Polarity for feedback pin. If this is 1 then the feedback pin should go high on trigger. If set to 0 then it should go low

Values
Value Meaning
0 TriggerLow
1 TriggerHigh

CAN_D1_ Parameters

CAN_D1_DRIVER: Index of virtual driver to be used with physical CAN interface

Enabling this option enables use of CAN buses.

Values RebootRequired
Value Meaning
0 Disabled
1 First driver
2 Second driver
True

CAN_D1_BITRATE: Bitrate of CAN interface

Note: This parameter is for advanced users

Bit rate can be set up to from 10000 to 1000000

Range
10000 - 1000000

CAN_D1_DEBUG: Level of debug for CAN devices

Note: This parameter is for advanced users

Enabling this option will provide debug messages

Values
Value Meaning
0 Disabled
1 Major messages
2 All messages

CAN_D1_PROTOCOL: Enable use of specific protocol over virtual driver

Note: This parameter is for advanced users

Enabling this option starts selected protocol that will use this virtual driver

Values RebootRequired
Value Meaning
0 Disabled
1 UAVCAN
True

CAN_D1_UC_ Parameters

CAN_D1_UC_NODE: UAVCAN node that is used for this network

Note: This parameter is for advanced users

UAVCAN node should be set implicitly

Range
1 - 250

CAN_D1_UC_SRV_BM: RC Out channels to be transmitted as servo over UAVCAN

Note: This parameter is for advanced users

Bitmask with one set for channel to be transmitted as a servo command over UAVCAN

Bitmask
0: Servo 1, 1: Servo 2, 2: Servo 3, 3: Servo 4, 4: Servo 5, 5: Servo 6, 6: Servo 7, 7: Servo 8, 8: Servo 9, 9: Servo 10, 10: Servo 11, 11: Servo 12, 12: Servo 13, 13: Servo 14, 14: Servo 15

CAN_D1_UC_ESC_BM: RC Out channels to be transmitted as ESC over UAVCAN

Note: This parameter is for advanced users

Bitmask with one set for channel to be transmitted as a ESC command over UAVCAN

Bitmask
0: ESC 1, 1: ESC 2, 2: ESC 3, 3: ESC 4, 4: ESC 5, 5: ESC 6, 6: ESC 7, 7: ESC 8, 8: ESC 9, 9: ESC 10, 10: ESC 11, 11: ESC 12, 12: ESC 13, 13: ESC 14, 14: ESC 15, 15: ESC 16

CAN_D2_ Parameters

CAN_D2_DRIVER: Index of virtual driver to be used with physical CAN interface

Enabling this option enables use of CAN buses.

Values RebootRequired
Value Meaning
0 Disabled
1 First driver
2 Second driver
True

CAN_D2_BITRATE: Bitrate of CAN interface

Note: This parameter is for advanced users

Bit rate can be set up to from 10000 to 1000000

Range
10000 - 1000000

CAN_D2_DEBUG: Level of debug for CAN devices

Note: This parameter is for advanced users

Enabling this option will provide debug messages

Values
Value Meaning
0 Disabled
1 Major messages
2 All messages

CAN_D2_PROTOCOL: Enable use of specific protocol over virtual driver

Note: This parameter is for advanced users

Enabling this option starts selected protocol that will use this virtual driver

Values RebootRequired
Value Meaning
0 Disabled
1 UAVCAN
True

CAN_D2_UC_ Parameters

CAN_D2_UC_NODE: UAVCAN node that is used for this network

Note: This parameter is for advanced users

UAVCAN node should be set implicitly

Range
1 - 250

CAN_D2_UC_SRV_BM: RC Out channels to be transmitted as servo over UAVCAN

Note: This parameter is for advanced users

Bitmask with one set for channel to be transmitted as a servo command over UAVCAN

Bitmask
0: Servo 1, 1: Servo 2, 2: Servo 3, 3: Servo 4, 4: Servo 5, 5: Servo 6, 6: Servo 7, 7: Servo 8, 8: Servo 9, 9: Servo 10, 10: Servo 11, 11: Servo 12, 12: Servo 13, 13: Servo 14, 14: Servo 15

CAN_D2_UC_ESC_BM: RC Out channels to be transmitted as ESC over UAVCAN

Note: This parameter is for advanced users

Bitmask with one set for channel to be transmitted as a ESC command over UAVCAN

Bitmask
0: ESC 1, 1: ESC 2, 2: ESC 3, 3: ESC 4, 4: ESC 5, 5: ESC 6, 6: ESC 7, 7: ESC 8, 8: ESC 9, 9: ESC 10, 10: ESC 11, 11: ESC 12, 12: ESC 13, 13: ESC 14, 14: ESC 15, 15: ESC 16

CAN_D3_ Parameters

CAN_D3_DRIVER: Index of virtual driver to be used with physical CAN interface

Enabling this option enables use of CAN buses.

Values RebootRequired
Value Meaning
0 Disabled
1 First driver
2 Second driver
True

CAN_D3_BITRATE: Bitrate of CAN interface

Note: This parameter is for advanced users

Bit rate can be set up to from 10000 to 1000000

Range
10000 - 1000000

CAN_D3_DEBUG: Level of debug for CAN devices

Note: This parameter is for advanced users

Enabling this option will provide debug messages

Values
Value Meaning
0 Disabled
1 Major messages
2 All messages

CAN_D3_PROTOCOL: Enable use of specific protocol over virtual driver

Note: This parameter is for advanced users

Enabling this option starts selected protocol that will use this virtual driver

Values RebootRequired
Value Meaning
0 Disabled
1 UAVCAN
True

CAN_D3_UC_ Parameters

CAN_D3_UC_NODE: UAVCAN node that is used for this network

Note: This parameter is for advanced users

UAVCAN node should be set implicitly

Range
1 - 250

CAN_D3_UC_SRV_BM: RC Out channels to be transmitted as servo over UAVCAN

Note: This parameter is for advanced users

Bitmask with one set for channel to be transmitted as a servo command over UAVCAN

Bitmask
0: Servo 1, 1: Servo 2, 2: Servo 3, 3: Servo 4, 4: Servo 5, 5: Servo 6, 6: Servo 7, 7: Servo 8, 8: Servo 9, 9: Servo 10, 10: Servo 11, 11: Servo 12, 12: Servo 13, 13: Servo 14, 14: Servo 15

CAN_D3_UC_ESC_BM: RC Out channels to be transmitted as ESC over UAVCAN

Note: This parameter is for advanced users

Bitmask with one set for channel to be transmitted as a ESC command over UAVCAN

Bitmask
0: ESC 1, 1: ESC 2, 2: ESC 3, 3: ESC 4, 4: ESC 5, 5: ESC 6, 6: ESC 7, 7: ESC 8, 8: ESC 9, 9: ESC 10, 10: ESC 11, 11: ESC 12, 12: ESC 13, 13: ESC 14, 14: ESC 15, 15: ESC 16

CAN_P1_ Parameters

CAN_P1_DRIVER: Index of virtual driver to be used with physical CAN interface

Enabling this option enables use of CAN buses.

Values RebootRequired
Value Meaning
0 Disabled
1 First driver
2 Second driver
True

CAN_P1_BITRATE: Bitrate of CAN interface

Note: This parameter is for advanced users

Bit rate can be set up to from 10000 to 1000000

Range
10000 - 1000000

CAN_P1_DEBUG: Level of debug for CAN devices

Note: This parameter is for advanced users

Enabling this option will provide debug messages

Values
Value Meaning
0 Disabled
1 Major messages
2 All messages

CAN_P1_PROTOCOL: Enable use of specific protocol over virtual driver

Note: This parameter is for advanced users

Enabling this option starts selected protocol that will use this virtual driver

Values RebootRequired
Value Meaning
0 Disabled
1 UAVCAN
True

CAN_P1_UC_ Parameters

CAN_P1_UC_NODE: UAVCAN node that is used for this network

Note: This parameter is for advanced users

UAVCAN node should be set implicitly

Range
1 - 250

CAN_P1_UC_SRV_BM: RC Out channels to be transmitted as servo over UAVCAN

Note: This parameter is for advanced users

Bitmask with one set for channel to be transmitted as a servo command over UAVCAN

Bitmask
0: Servo 1, 1: Servo 2, 2: Servo 3, 3: Servo 4, 4: Servo 5, 5: Servo 6, 6: Servo 7, 7: Servo 8, 8: Servo 9, 9: Servo 10, 10: Servo 11, 11: Servo 12, 12: Servo 13, 13: Servo 14, 14: Servo 15

CAN_P1_UC_ESC_BM: RC Out channels to be transmitted as ESC over UAVCAN

Note: This parameter is for advanced users

Bitmask with one set for channel to be transmitted as a ESC command over UAVCAN

Bitmask
0: ESC 1, 1: ESC 2, 2: ESC 3, 3: ESC 4, 4: ESC 5, 5: ESC 6, 6: ESC 7, 7: ESC 8, 8: ESC 9, 9: ESC 10, 10: ESC 11, 11: ESC 12, 12: ESC 13, 13: ESC 14, 14: ESC 15, 15: ESC 16

CAN_P2_ Parameters

CAN_P2_DRIVER: Index of virtual driver to be used with physical CAN interface

Enabling this option enables use of CAN buses.

Values RebootRequired
Value Meaning
0 Disabled
1 First driver
2 Second driver
True

CAN_P2_BITRATE: Bitrate of CAN interface

Note: This parameter is for advanced users

Bit rate can be set up to from 10000 to 1000000

Range
10000 - 1000000

CAN_P2_DEBUG: Level of debug for CAN devices

Note: This parameter is for advanced users

Enabling this option will provide debug messages

Values
Value Meaning
0 Disabled
1 Major messages
2 All messages

CAN_P2_PROTOCOL: Enable use of specific protocol over virtual driver

Note: This parameter is for advanced users

Enabling this option starts selected protocol that will use this virtual driver

Values RebootRequired
Value Meaning
0 Disabled
1 UAVCAN
True

CAN_P2_UC_ Parameters

CAN_P2_UC_NODE: UAVCAN node that is used for this network

Note: This parameter is for advanced users

UAVCAN node should be set implicitly

Range
1 - 250

CAN_P2_UC_SRV_BM: RC Out channels to be transmitted as servo over UAVCAN

Note: This parameter is for advanced users

Bitmask with one set for channel to be transmitted as a servo command over UAVCAN

Bitmask
0: Servo 1, 1: Servo 2, 2: Servo 3, 3: Servo 4, 4: Servo 5, 5: Servo 6, 6: Servo 7, 7: Servo 8, 8: Servo 9, 9: Servo 10, 10: Servo 11, 11: Servo 12, 12: Servo 13, 13: Servo 14, 14: Servo 15

CAN_P2_UC_ESC_BM: RC Out channels to be transmitted as ESC over UAVCAN

Note: This parameter is for advanced users

Bitmask with one set for channel to be transmitted as a ESC command over UAVCAN

Bitmask
0: ESC 1, 1: ESC 2, 2: ESC 3, 3: ESC 4, 4: ESC 5, 5: ESC 6, 6: ESC 7, 7: ESC 8, 8: ESC 9, 9: ESC 10, 10: ESC 11, 11: ESC 12, 12: ESC 13, 13: ESC 14, 14: ESC 15, 15: ESC 16

CAN_P3_ Parameters

CAN_P3_DRIVER: Index of virtual driver to be used with physical CAN interface

Enabling this option enables use of CAN buses.

Values RebootRequired
Value Meaning
0 Disabled
1 First driver
2 Second driver
True

CAN_P3_BITRATE: Bitrate of CAN interface

Note: This parameter is for advanced users

Bit rate can be set up to from 10000 to 1000000

Range
10000 - 1000000

CAN_P3_DEBUG: Level of debug for CAN devices

Note: This parameter is for advanced users

Enabling this option will provide debug messages

Values
Value Meaning
0 Disabled
1 Major messages
2 All messages

CAN_P3_PROTOCOL: Enable use of specific protocol over virtual driver

Note: This parameter is for advanced users

Enabling this option starts selected protocol that will use this virtual driver

Values RebootRequired
Value Meaning
0 Disabled
1 UAVCAN
True

CAN_P3_UC_ Parameters

CAN_P3_UC_NODE: UAVCAN node that is used for this network

Note: This parameter is for advanced users

UAVCAN node should be set implicitly

Range
1 - 250

CAN_P3_UC_SRV_BM: RC Out channels to be transmitted as servo over UAVCAN

Note: This parameter is for advanced users

Bitmask with one set for channel to be transmitted as a servo command over UAVCAN

Bitmask
0: Servo 1, 1: Servo 2, 2: Servo 3, 3: Servo 4, 4: Servo 5, 5: Servo 6, 6: Servo 7, 7: Servo 8, 8: Servo 9, 9: Servo 10, 10: Servo 11, 11: Servo 12, 12: Servo 13, 13: Servo 14, 14: Servo 15

CAN_P3_UC_ESC_BM: RC Out channels to be transmitted as ESC over UAVCAN

Note: This parameter is for advanced users

Bitmask with one set for channel to be transmitted as a ESC command over UAVCAN

Bitmask
0: ESC 1, 1: ESC 2, 2: ESC 3, 3: ESC 4, 4: ESC 5, 5: ESC 6, 6: ESC 7, 7: ESC 8, 8: ESC 9, 9: ESC 10, 10: ESC 11, 11: ESC 12, 12: ESC 13, 13: ESC 14, 14: ESC 15, 15: ESC 16

COMPASS_ Parameters

COMPASS_OFS_X: Compass offsets in milligauss on the X axis

Note: This parameter is for advanced users

Offset to be added to the compass x-axis values to compensate for metal in the frame

Range Increment Units
-400 - 400 1 milligauss

COMPASS_OFS_Y: Compass offsets in milligauss on the Y axis

Note: This parameter is for advanced users

Offset to be added to the compass y-axis values to compensate for metal in the frame

Range Increment Units
-400 - 400 1 milligauss

COMPASS_OFS_Z: Compass offsets in milligauss on the Z axis

Note: This parameter is for advanced users

Offset to be added to the compass z-axis values to compensate for metal in the frame

Range Increment Units
-400 - 400 1 milligauss

COMPASS_DEC: Compass declination

An angle to compensate between the true north and magnetic north

Range Increment Units
-3.142 - 3.142 0.01 radians

COMPASS_LEARN: Learn compass offsets automatically

Note: This parameter is for advanced users

Enable or disable the automatic learning of compass offsets. You can enable learning either using a compass-only method that is suitable only for fixed wing aircraft or using the offsets learnt by the active EKF state estimator. If this option is enabled then the learnt offsets are saved when you disarm the vehicle.

Values
Value Meaning
0 Disabled
1 Internal-Learning
2 EKF-Learning

COMPASS_USE: Use compass for yaw

Note: This parameter is for advanced users

Enable or disable the use of the compass (instead of the GPS) for determining heading

Values
Value Meaning
0 Disabled
1 Enabled

COMPASS_AUTODEC: Auto Declination

Note: This parameter is for advanced users

Enable or disable the automatic calculation of the declination based on gps location

Values
Value Meaning
0 Disabled
1 Enabled

COMPASS_MOTCT: Motor interference compensation type

Note: This parameter is for advanced users

Set motor interference compensation type to disabled, throttle or current. Do not change manually.

Values
Value Meaning
0 Disabled
1 Use Throttle
2 Use Current

COMPASS_MOT_X: Motor interference compensation for body frame X axis

Note: This parameter is for advanced users

Multiplied by the current throttle and added to the compass’s x-axis values to compensate for motor interference (Offset per Amp or at Full Throttle)

Range Increment Units
-1000 - 1000 1 milligauss per ampere

COMPASS_MOT_Y: Motor interference compensation for body frame Y axis

Note: This parameter is for advanced users

Multiplied by the current throttle and added to the compass’s y-axis values to compensate for motor interference (Offset per Amp or at Full Throttle)

Range Increment Units
-1000 - 1000 1 milligauss per ampere

COMPASS_MOT_Z: Motor interference compensation for body frame Z axis

Note: This parameter is for advanced users

Multiplied by the current throttle and added to the compass’s z-axis values to compensate for motor interference (Offset per Amp or at Full Throttle)

Range Increment Units
-1000 - 1000 1 milligauss per ampere

COMPASS_ORIENT: Compass orientation

Note: This parameter is for advanced users

The orientation of the compass relative to the autopilot board. This will default to the right value for each board type, but can be changed if you have an external compass. See the documentation for your external compass for the right value. The correct orientation should give the X axis forward, the Y axis to the right and the Z axis down. So if your aircraft is pointing west it should show a positive value for the Y axis, and a value close to zero for the X axis. On a PX4 or Pixhawk with an external compass the correct value is zero if the compass is correctly oriented. NOTE: This orientation is combined with any AHRS_ORIENTATION setting.

Values
Value Meaning
0 None
1 Yaw45
2 Yaw90
3 Yaw135
4 Yaw180
5 Yaw225
6 Yaw270
7 Yaw315
8 Roll180
9 Roll180Yaw45
10 Roll180Yaw90
11 Roll180Yaw135
12 Pitch180
13 Roll180Yaw225
14 Roll180Yaw270
15 Roll180Yaw315
16 Roll90
17 Roll90Yaw45
18 Roll90Yaw90
19 Roll90Yaw135
20 Roll270
21 Roll270Yaw45
22 Roll270Yaw90
23 Roll270Yaw136
24 Pitch90
25 Pitch270
26 Pitch180Yaw90
27 Pitch180Yaw270
28 Roll90Pitch90
29 Roll180Pitch90
30 Roll270Pitch90
31 Roll90Pitch180
32 Roll270Pitch180
33 Roll90Pitch270
34 Roll180Pitch270
35 Roll270Pitch270
36 Roll90Pitch180Yaw90
37 Roll90Yaw270
38 Yaw293Pitch68Roll90

COMPASS_EXTERNAL: Compass is attached via an external cable

Note: This parameter is for advanced users

Configure compass so it is attached externally. This is auto-detected on PX4 and Pixhawk. Set to 1 if the compass is externally connected. When externally connected the COMPASS_ORIENT option operates independently of the AHRS_ORIENTATION board orientation option. If set to 0 or 1 then auto-detection by bus connection can override the value. If set to 2 then auto-detection will be disabled.

Values
Value Meaning
0 Internal
1 External
2 ForcedExternal

COMPASS_OFS2_X: Compass2 offsets in milligauss on the X axis

Note: This parameter is for advanced users

Offset to be added to compass2’s x-axis values to compensate for metal in the frame

Range Increment Units
-400 - 400 1 milligauss

COMPASS_OFS2_Y: Compass2 offsets in milligauss on the Y axis

Note: This parameter is for advanced users

Offset to be added to compass2’s y-axis values to compensate for metal in the frame

Range Increment Units
-400 - 400 1 milligauss

COMPASS_OFS2_Z: Compass2 offsets in milligauss on the Z axis

Note: This parameter is for advanced users

Offset to be added to compass2’s z-axis values to compensate for metal in the frame

Range Increment Units
-400 - 400 1 milligauss

COMPASS_MOT2_X: Motor interference compensation to compass2 for body frame X axis

Note: This parameter is for advanced users

Multiplied by the current throttle and added to compass2’s x-axis values to compensate for motor interference (Offset per Amp or at Full Throttle)

Range Increment Units
-1000 - 1000 1 milligauss per ampere

COMPASS_MOT2_Y: Motor interference compensation to compass2 for body frame Y axis

Note: This parameter is for advanced users

Multiplied by the current throttle and added to compass2’s y-axis values to compensate for motor interference (Offset per Amp or at Full Throttle)

Range Increment Units
-1000 - 1000 1 milligauss per ampere

COMPASS_MOT2_Z: Motor interference compensation to compass2 for body frame Z axis

Note: This parameter is for advanced users

Multiplied by the current throttle and added to compass2’s z-axis values to compensate for motor interference (Offset per Amp or at Full Throttle)

Range Increment Units
-1000 - 1000 1 milligauss per ampere

COMPASS_PRIMARY: Choose primary compass

Note: This parameter is for advanced users

If more than one compass is available this selects which compass is the primary. Normally 0=External, 1=Internal. If no External compass is attached this parameter is ignored

Values
Value Meaning
0 FirstCompass
1 SecondCompass
2 ThirdCompass

COMPASS_OFS3_X: Compass3 offsets in milligauss on the X axis

Note: This parameter is for advanced users

Offset to be added to compass3’s x-axis values to compensate for metal in the frame

Range Increment Units
-400 - 400 1 milligauss

COMPASS_OFS3_Y: Compass3 offsets in milligauss on the Y axis

Note: This parameter is for advanced users

Offset to be added to compass3’s y-axis values to compensate for metal in the frame

Range Increment Units
-400 - 400 1 milligauss

COMPASS_OFS3_Z: Compass3 offsets in milligauss on the Z axis

Note: This parameter is for advanced users

Offset to be added to compass3’s z-axis values to compensate for metal in the frame

Range Increment Units
-400 - 400 1 milligauss

COMPASS_MOT3_X: Motor interference compensation to compass3 for body frame X axis

Note: This parameter is for advanced users

Multiplied by the current throttle and added to compass3’s x-axis values to compensate for motor interference (Offset per Amp or at Full Throttle)

Range Increment Units
-1000 - 1000 1 milligauss per ampere

COMPASS_MOT3_Y: Motor interference compensation to compass3 for body frame Y axis

Note: This parameter is for advanced users

Multiplied by the current throttle and added to compass3’s y-axis values to compensate for motor interference (Offset per Amp or at Full Throttle)

Range Increment Units
-1000 - 1000 1 milligauss per ampere

COMPASS_MOT3_Z: Motor interference compensation to compass3 for body frame Z axis

Note: This parameter is for advanced users

Multiplied by the current throttle and added to compass3’s z-axis values to compensate for motor interference (Offset per Amp or at Full Throttle)

Range Increment Units
-1000 - 1000 1 milligauss per ampere

COMPASS_DEV_ID: Compass device id

Note: This parameter is for advanced users

Compass device id. Automatically detected, do not set manually

COMPASS_DEV_ID2: Compass2 device id

Note: This parameter is for advanced users

Second compass’s device id. Automatically detected, do not set manually

COMPASS_DEV_ID3: Compass3 device id

Note: This parameter is for advanced users

Third compass’s device id. Automatically detected, do not set manually

COMPASS_USE2: Compass2 used for yaw

Note: This parameter is for advanced users

Enable or disable the second compass for determining heading.

Values
Value Meaning
0 Disabled
1 Enabled

COMPASS_ORIENT2: Compass2 orientation

Note: This parameter is for advanced users

The orientation of the second compass relative to the frame (if external) or autopilot board (if internal).

Values
Value Meaning
0 None
1 Yaw45
2 Yaw90
3 Yaw135
4 Yaw180
5 Yaw225
6 Yaw270
7 Yaw315
8 Roll180
9 Roll180Yaw45
10 Roll180Yaw90
11 Roll180Yaw135
12 Pitch180
13 Roll180Yaw225
14 Roll180Yaw270
15 Roll180Yaw315
16 Roll90
17 Roll90Yaw45
18 Roll90Yaw90
19 Roll90Yaw135
20 Roll270
21 Roll270Yaw45
22 Roll270Yaw90
23 Roll270Yaw136
24 Pitch90
25 Pitch270
26 Pitch180Yaw90
27 Pitch180Yaw270
28 Roll90Pitch90
29 Roll180Pitch90
30 Roll270Pitch90
31 Roll90Pitch180
32 Roll270Pitch180
33 Roll90Pitch270
34 Roll180Pitch270
35 Roll270Pitch270
36 Roll90Pitch180Yaw90
37 Roll90Yaw270
38 Yaw293Pitch68Roll90

COMPASS_EXTERN2: Compass2 is attached via an external cable

Note: This parameter is for advanced users

Configure second compass so it is attached externally. This is auto-detected on PX4 and Pixhawk. If set to 0 or 1 then auto-detection by bus connection can override the value. If set to 2 then auto-detection will be disabled.

Values
Value Meaning
0 Internal
1 External
2 ForcedExternal

COMPASS_USE3: Compass3 used for yaw

Note: This parameter is for advanced users

Enable or disable the third compass for determining heading.

Values
Value Meaning
0 Disabled
1 Enabled

COMPASS_ORIENT3: Compass3 orientation

Note: This parameter is for advanced users

The orientation of the third compass relative to the frame (if external) or autopilot board (if internal).

Values
Value Meaning
0 None
1 Yaw45
2 Yaw90
3 Yaw135
4 Yaw180
5 Yaw225
6 Yaw270
7 Yaw315
8 Roll180
9 Roll180Yaw45
10 Roll180Yaw90
11 Roll180Yaw135
12 Pitch180
13 Roll180Yaw225
14 Roll180Yaw270
15 Roll180Yaw315
16 Roll90
17 Roll90Yaw45
18 Roll90Yaw90
19 Roll90Yaw135
20 Roll270
21 Roll270Yaw45
22 Roll270Yaw90
23 Roll270Yaw136
24 Pitch90
25 Pitch270
26 Pitch180Yaw90
27 Pitch180Yaw270
28 Roll90Pitch90
29 Roll180Pitch90
30 Roll270Pitch90
31 Roll90Pitch180
32 Roll270Pitch180
33 Roll90Pitch270
34 Roll180Pitch270
35 Roll270Pitch270
36 Roll90Pitch180Yaw90
37 Roll90Yaw270
38 Yaw293Pitch68Roll90

COMPASS_EXTERN3: Compass3 is attached via an external cable

Note: This parameter is for advanced users

Configure third compass so it is attached externally. This is auto-detected on PX4 and Pixhawk. If set to 0 or 1 then auto-detection by bus connection can override the value. If set to 2 then auto-detection will be disabled.

Values
Value Meaning
0 Internal
1 External
2 ForcedExternal

COMPASS_DIA_X: Compass soft-iron diagonal X component

Note: This parameter is for advanced users

DIA_X in the compass soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

COMPASS_DIA_Y: Compass soft-iron diagonal Y component

Note: This parameter is for advanced users

DIA_Y in the compass soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

COMPASS_DIA_Z: Compass soft-iron diagonal Z component

Note: This parameter is for advanced users

DIA_Z in the compass soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

COMPASS_ODI_X: Compass soft-iron off-diagonal X component

Note: This parameter is for advanced users

ODI_X in the compass soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

COMPASS_ODI_Y: Compass soft-iron off-diagonal Y component

Note: This parameter is for advanced users

ODI_Y in the compass soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

COMPASS_ODI_Z: Compass soft-iron off-diagonal Z component

Note: This parameter is for advanced users

ODI_Z in the compass soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

COMPASS_DIA2_X: Compass2 soft-iron diagonal X component

Note: This parameter is for advanced users

DIA_X in the compass2 soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

COMPASS_DIA2_Y: Compass2 soft-iron diagonal Y component

Note: This parameter is for advanced users

DIA_Y in the compass2 soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

COMPASS_DIA2_Z: Compass2 soft-iron diagonal Z component

Note: This parameter is for advanced users

DIA_Z in the compass2 soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

COMPASS_ODI2_X: Compass2 soft-iron off-diagonal X component

Note: This parameter is for advanced users

ODI_X in the compass2 soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

COMPASS_ODI2_Y: Compass2 soft-iron off-diagonal Y component

Note: This parameter is for advanced users

ODI_Y in the compass2 soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

COMPASS_ODI2_Z: Compass2 soft-iron off-diagonal Z component

Note: This parameter is for advanced users

ODI_Z in the compass2 soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

COMPASS_DIA3_X: Compass3 soft-iron diagonal X component

Note: This parameter is for advanced users

DIA_X in the compass3 soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

COMPASS_DIA3_Y: Compass3 soft-iron diagonal Y component

Note: This parameter is for advanced users

DIA_Y in the compass3 soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

COMPASS_DIA3_Z: Compass3 soft-iron diagonal Z component

Note: This parameter is for advanced users

DIA_Z in the compass3 soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

COMPASS_ODI3_X: Compass3 soft-iron off-diagonal X component

Note: This parameter is for advanced users

ODI_X in the compass3 soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

COMPASS_ODI3_Y: Compass3 soft-iron off-diagonal Y component

Note: This parameter is for advanced users

ODI_Y in the compass3 soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

COMPASS_ODI3_Z: Compass3 soft-iron off-diagonal Z component

Note: This parameter is for advanced users

ODI_Z in the compass3 soft-iron calibration matrix: [[DIA_X, ODI_X, ODI_Y], [ODI_X, DIA_Y, ODI_Z], [ODI_Y, ODI_Z, DIA_Z]]

COMPASS_CAL_FIT: Compass calibration fitness

Note: This parameter is for advanced users

This controls the fitness level required for a successful compass calibration. A lower value makes for a stricter fit (less likely to pass). This is the value used for the primary magnetometer. Other magnetometers get double the value.

Range Values Increment
4 - 32
Value Meaning
4 Very Strict
8 Strict
16 Default
32 Relaxed
0.1

COMPASS_OFFS_MAX: Compass maximum offset

Note: This parameter is for advanced users

This sets the maximum allowed compass offset in calibration and arming checks

Range Increment
500 - 3000 1

COMPASS_TYPEMASK: Compass disable driver type mask

Note: This parameter is for advanced users

This is a bitmask of driver types to disable. If a driver type is set in this mask then that driver will not try to find a sensor at startup

Bitmask
Bit Meaning
0 HMC5883
1 LSM303D
2 AK8963
3 BMM150
4 LSM9DS1
5 LIS3MDL
6 AK09916
7 IST8310
8 ICM20948
9 MMC3416
10 QFLIGHT
11 UAVCAN
12 QMC5883

EK2_ Parameters

EK2_ENABLE: Enable EKF2

Note: This parameter is for advanced users

This enables EKF2. Enabling EKF2 only makes the maths run, it does not mean it will be used for flight control. To use it for flight control set AHRS_EKF_TYPE=2. A reboot or restart will need to be performed after changing the value of EK2_ENABLE for it to take effect.

Values RebootRequired
Value Meaning
0 Disabled
1 Enabled
True

EK2_GPS_TYPE: GPS mode control

Note: This parameter is for advanced users

This controls use of GPS measurements : 0 = use 3D velocity & 2D position, 1 = use 2D velocity and 2D position, 2 = use 2D position, 3 = Inhibit GPS use - this can be useful when flying with an optical flow sensor in an environment where GPS quality is poor and subject to large multipath errors.

Values
Value Meaning
0 GPS 3D Vel and 2D Pos
1 GPS 2D vel and 2D pos
2 GPS 2D pos
3 No GPS

EK2_VELNE_M_NSE: GPS horizontal velocity measurement noise (m/s)

Note: This parameter is for advanced users

This sets a lower limit on the speed accuracy reported by the GPS receiver that is used to set horizontal velocity observation noise. If the model of receiver used does not provide a speed accurcy estimate, then the parameter value will be used. Increasing it reduces the weighting of the GPS horizontal velocity measurements.

Range Increment Units
0.05 - 5.0 0.05 meters per second

EK2_VELD_M_NSE: GPS vertical velocity measurement noise (m/s)

Note: This parameter is for advanced users

This sets a lower limit on the speed accuracy reported by the GPS receiver that is used to set vertical velocity observation noise. If the model of receiver used does not provide a speed accurcy estimate, then the parameter value will be used. Increasing it reduces the weighting of the GPS vertical velocity measurements.

Range Increment Units
0.05 - 5.0 0.05 meters per second

EK2_VEL_I_GATE: GPS velocity innovation gate size

Note: This parameter is for advanced users

This sets the percentage number of standard deviations applied to the GPS velocity measurement innovation consistency check. Decreasing it makes it more likely that good measurements willbe rejected. Increasing it makes it more likely that bad measurements will be accepted.

Range Increment
100 - 1000 25

EK2_POSNE_M_NSE: GPS horizontal position measurement noise (m)

Note: This parameter is for advanced users

This sets the GPS horizontal position observation noise. Increasing it reduces the weighting of GPS horizontal position measurements.

Range Increment Units
0.1 - 10.0 0.1 meters

EK2_POS_I_GATE: GPS position measurement gate size

Note: This parameter is for advanced users

This sets the percentage number of standard deviations applied to the GPS position measurement innovation consistency check. Decreasing it makes it more likely that good measurements will be rejected. Increasing it makes it more likely that bad measurements will be accepted.

Range Increment
100 - 1000 25

EK2_GLITCH_RAD: GPS glitch radius gate size (m)

Note: This parameter is for advanced users

This controls the maximum radial uncertainty in position between the value predicted by the filter and the value measured by the GPS before the filter position and velocity states are reset to the GPS. Making this value larger allows the filter to ignore larger GPS glitches but also means that non-GPS errors such as IMU and compass can create a larger error in position before the filter is forced back to the GPS position.

Range Increment Units
10 - 100 5 meters

EK2_GPS_DELAY: GPS measurement delay (msec)

Note: This parameter is for advanced users

This is the number of msec that the GPS measurements lag behind the inertial measurements.

Range Increment Units RebootRequired
0 - 250 10 milliseconds True

EK2_ALT_SOURCE: Primary altitude sensor source

Note: This parameter is for advanced users

This parameter controls the primary height sensor used by the EKF. If the selected option cannot be used, it will default to Baro as the primary height source. Setting 0 will use the baro altitude at all times. Setting 1 uses the range finder and is only available in combination with optical flow navigation (EK2_GPS_TYPE = 3). Setting 2 uses GPS. Setting 3 uses the range beacon data. NOTE - the EK2_RNG_USE_HGT parameter can be used to switch to range-finder when close to the ground.

Values RebootRequired
Value Meaning
0 Use Baro
1 Use Range Finder
2 Use GPS
3 Use Range Beacon
True

EK2_ALT_M_NSE: Altitude measurement noise (m)

Note: This parameter is for advanced users

This is the RMS value of noise in the altitude measurement. Increasing it reduces the weighting of the baro measurement and will make the filter respond more slowly to baro measurement errors, but will make it more sensitive to GPS and accelerometer errors.

Range Increment Units
0.1 - 10.0 0.1 meters

EK2_HGT_I_GATE: Height measurement gate size

Note: This parameter is for advanced users

This sets the percentage number of standard deviations applied to the height measurement innovation consistency check. Decreasing it makes it more likely that good measurements will be rejected. Increasing it makes it more likely that bad measurements will be accepted.

Range Increment
100 - 1000 25

EK2_HGT_DELAY: Height measurement delay (msec)

Note: This parameter is for advanced users

This is the number of msec that the Height measurements lag behind the inertial measurements.

Range Increment Units RebootRequired
0 - 250 10 milliseconds True

EK2_MAG_M_NSE: Magnetometer measurement noise (Gauss)

Note: This parameter is for advanced users

This is the RMS value of noise in magnetometer measurements. Increasing it reduces the weighting on these measurements.

Range Increment Units
0.01 - 0.5 0.01 gauss

EK2_MAG_CAL: Magnetometer default fusion mode

Note: This parameter is for advanced users

This determines when the filter will use the 3-axis magnetometer fusion model that estimates both earth and body fixed magnetic field states and when it will use a simpler magnetic heading fusion model that does not use magnetic field states. The 3-axis magnetometer fusion is only suitable for use when the external magnetic field environment is stable. EK2_MAG_CAL = 0 uses heading fusion on ground, 3-axis fusion in-flight, and is the default setting for Plane users. EK2_MAG_CAL = 1 uses 3-axis fusion only when manoeuvring. EK2_MAG_CAL = 2 uses heading fusion at all times, is recommended if the external magnetic field is varying and is the default for rovers. EK2_MAG_CAL = 3 uses heading fusion on the ground and 3-axis fusion after the first in-air field and yaw reset has completed, and is the default for copters. EK2_MAG_CAL = 4 uses 3-axis fusion at all times. NOTE : Use of simple heading magnetometer fusion makes vehicle compass calibration and alignment errors harder for the EKF to detect which reduces the sensitivity of the Copter EKF failsafe algorithm. NOTE: The fusion mode can be forced to 2 for specific EKF cores using the EK2_MAG_MASK parameter.

Values
Value Meaning
0 When flying
1 When manoeuvring
2 Never
3 After first climb yaw reset
4 Always

EK2_MAG_I_GATE: Magnetometer measurement gate size

Note: This parameter is for advanced users

This sets the percentage number of standard deviations applied to the magnetometer measurement innovation consistency check. Decreasing it makes it more likely that good measurements will be rejected. Increasing it makes it more likely that bad measurements will be accepted.

Range Increment
100 - 1000 25

EK2_EAS_M_NSE: Equivalent airspeed measurement noise (m/s)

Note: This parameter is for advanced users

This is the RMS value of noise in equivalent airspeed measurements used by planes. Increasing it reduces the weighting of airspeed measurements and will make wind speed estimates less noisy and slower to converge. Increasing also increases navigation errors when dead-reckoning without GPS measurements.

Range Increment Units
0.5 - 5.0 0.1 meters per second

EK2_EAS_I_GATE: Airspeed measurement gate size

Note: This parameter is for advanced users

This sets the percentage number of standard deviations applied to the airspeed measurement innovation consistency check. Decreasing it makes it more likely that good measurements will be rejected. Increasing it makes it more likely that bad measurements will be accepted.

Range Increment
100 - 1000 25

EK2_RNG_M_NSE: Range finder measurement noise (m)

Note: This parameter is for advanced users

This is the RMS value of noise in the range finder measurement. Increasing it reduces the weighting on this measurement.

Range Increment Units
0.1 - 10.0 0.1 meters

EK2_RNG_I_GATE: Range finder measurement gate size

Note: This parameter is for advanced users

This sets the percentage number of standard deviations applied to the range finder innovation consistency check. Decreasing it makes it more likely that good measurements will be rejected. Increasing it makes it more likely that bad measurements will be accepted.

Range Increment
100 - 1000 25

EK2_MAX_FLOW: Maximum valid optical flow rate

Note: This parameter is for advanced users

This sets the magnitude maximum optical flow rate in rad/sec that will be accepted by the filter

Range Increment Units
1.0 - 4.0 0.1 radians per second

EK2_FLOW_M_NSE: Optical flow measurement noise (rad/s)

Note: This parameter is for advanced users

This is the RMS value of noise and errors in optical flow measurements. Increasing it reduces the weighting on these measurements.

Range Increment Units
0.05 - 1.0 0.05 radians per second

EK2_FLOW_I_GATE: Optical Flow measurement gate size

Note: This parameter is for advanced users

This sets the percentage number of standard deviations applied to the optical flow innovation consistency check. Decreasing it makes it more likely that good measurements will be rejected. Increasing it makes it more likely that bad measurements will be accepted.

Range Increment
100 - 1000 25

EK2_FLOW_DELAY: Optical Flow measurement delay (msec)

Note: This parameter is for advanced users

This is the number of msec that the optical flow measurements lag behind the inertial measurements. It is the time from the end of the optical flow averaging period and does not include the time delay due to the 100msec of averaging within the flow sensor.

Range Increment Units RebootRequired
0 - 127 10 milliseconds True

EK2_GYRO_P_NSE: Rate gyro noise (rad/s)

Note: This parameter is for advanced users

This control disturbance noise controls the growth of estimated error due to gyro measurement errors excluding bias. Increasing it makes the flter trust the gyro measurements less and other measurements more.

Range Increment Units
0.0001 - 0.1 0.0001 radians per second

EK2_ACC_P_NSE: Accelerometer noise (m/s^2)

Note: This parameter is for advanced users

This control disturbance noise controls the growth of estimated error due to accelerometer measurement errors excluding bias. Increasing it makes the flter trust the accelerometer measurements less and other measurements more.

Range Increment Units
0.01 - 1.0 0.01 meters per square second

EK2_GBIAS_P_NSE: Rate gyro bias stability (rad/s/s)

Note: This parameter is for advanced users

This state process noise controls growth of the gyro delta angle bias state error estimate. Increasing it makes rate gyro bias estimation faster and noisier.

Range Units
0.00001 - 0.001 radians per square second

EK2_GSCL_P_NSE: Rate gyro scale factor stability (1/s)

Note: This parameter is for advanced users

This noise controls the rate of gyro scale factor learning. Increasing it makes rate gyro scale factor estimation faster and noisier.

Range Units
0.000001 - 0.001 hertz

EK2_ABIAS_P_NSE: Accelerometer bias stability (m/s^3)

Note: This parameter is for advanced users

This noise controls the growth of the vertical accelerometer delta velocity bias state error estimate. Increasing it makes accelerometer bias estimation faster and noisier.

Range Units
0.00001 - 0.001 meters per cubic second

EK2_WIND_P_NSE: Wind velocity process noise (m/s^2)

Note: This parameter is for advanced users

This state process noise controls the growth of wind state error estimates. Increasing it makes wind estimation faster and noisier.

Range Increment Units
0.01 - 1.0 0.1 meters per square second

EK2_WIND_PSCALE: Height rate to wind process noise scaler

Note: This parameter is for advanced users

This controls how much the process noise on the wind states is increased when gaining or losing altitude to take into account changes in wind speed and direction with altitude. Increasing this parameter increases how rapidly the wind states adapt when changing altitude, but does make wind velocity estimation noiser.

Range Increment
0.0 - 1.0 0.1

EK2_GPS_CHECK: GPS preflight check

Note: This parameter is for advanced users

This is a 1 byte bitmap controlling which GPS preflight checks are performed. Set to 0 to bypass all checks. Set to 255 perform all checks. Set to 3 to check just the number of satellites and HDoP. Set to 31 for the most rigorous checks that will still allow checks to pass when the copter is moving, eg launch from a boat.

Bitmask
Bit Meaning
0 NSats
1 HDoP
2 speed error
3 position error
4 yaw error
5 pos drift
6 vert speed
7 horiz speed

EK2_IMU_MASK: Bitmask of active IMUs

Note: This parameter is for advanced users

1 byte bitmap of IMUs to use in EKF2. A separate instance of EKF2 will be started for each IMU selected. Set to 1 to use the first IMU only (default), set to 2 to use the second IMU only, set to 3 to use the first and second IMU. Additional IMU’s can be used up to a maximum of 6 if memory and processing resources permit. There may be insufficient memory and processing resources to run multiple instances. If this occurs EKF2 will fail to start.

Bitmask RebootRequired
Bit Meaning
0 FirstIMU
1 SecondIMU
2 ThirdIMU
3 FourthIMU
4 FifthIMU
5 SixthIMU
True

EK2_CHECK_SCALE: GPS accuracy check scaler (%)

Note: This parameter is for advanced users

This scales the thresholds that are used to check GPS accuracy before it is used by the EKF. A value of 100 is the default. Values greater than 100 increase and values less than 100 reduce the maximum GPS error the EKF will accept. A value of 200 will double the allowable GPS error.

Range Units
50 - 200 percent

EK2_NOAID_M_NSE: Non-GPS operation position uncertainty (m)

Note: This parameter is for advanced users

This sets the amount of position variation that the EKF allows for when operating without external measurements (eg GPS or optical flow). Increasing this parameter makes the EKF attitude estimate less sensitive to vehicle manoeuvres but more sensitive to IMU errors.

Range Units
0.5 - 50.0 meters

EK2_LOG_MASK: EKF sensor logging IMU mask

Note: This parameter is for advanced users

This sets the IMU mask of sensors to do full logging for

Bitmask RebootRequired
Bit Meaning
0 FirstIMU
1 SecondIMU
2 ThirdIMU
3 FourthIMU
4 FifthIMU
5 SixthIMU
True

EK2_YAW_M_NSE: Yaw measurement noise (rad)

Note: This parameter is for advanced users

This is the RMS value of noise in yaw measurements from the magnetometer. Increasing it reduces the weighting on these measurements.

Range Increment Units
0.05 - 1.0 0.05 radians

EK2_YAW_I_GATE: Yaw measurement gate size

Note: This parameter is for advanced users

This sets the percentage number of standard deviations applied to the magnetometer yaw measurement innovation consistency check. Decreasing it makes it more likely that good measurements will be rejected. Increasing it makes it more likely that bad measurements will be accepted.

Range Increment
100 - 1000 25

EK2_TAU_OUTPUT: Output complementary filter time constant (centi-sec)

Note: This parameter is for advanced users

Sets the time constant of the output complementary filter/predictor in centi-seconds.

Range Increment Units
10 - 50 5 centiseconds

EK2_MAGE_P_NSE: Earth magnetic field process noise (gauss/s)

Note: This parameter is for advanced users

This state process noise controls the growth of earth magnetic field state error estimates. Increasing it makes earth magnetic field estimation faster and noisier.

Range Units
0.00001 - 0.01 gauss per second

EK2_MAGB_P_NSE: Body magnetic field process noise (gauss/s)

Note: This parameter is for advanced users

This state process noise controls the growth of body magnetic field state error estimates. Increasing it makes magnetometer bias error estimation faster and noisier.

Range Units
0.00001 - 0.01 gauss per second

EK2_RNG_USE_HGT: Range finder switch height percentage

Note: This parameter is for advanced users

The range finder will be used as the primary height source when below a specified percentage of the sensor maximum as set by the RNGFND_MAX_CM parameter. Set to -1 to prevent range finder use.

Range Increment Units
-1 - 70 1 percent

EK2_TERR_GRAD: Maximum terrain gradient

Note: This parameter is for advanced users

Specifies the maximum gradient of the terrain below the vehicle when it is using range finder as a height reference

Range Increment
0 - 0.2 0.01

EK2_BCN_M_NSE: Range beacon measurement noise (m)

Note: This parameter is for advanced users

This is the RMS value of noise in the range beacon measurement. Increasing it reduces the weighting on this measurement.

Range Increment Units
0.1 - 10.0 0.1 meters

EK2_BCN_I_GTE: Range beacon measurement gate size

Note: This parameter is for advanced users

This sets the percentage number of standard deviations applied to the range beacon measurement innovation consistency check. Decreasing it makes it more likely that good measurements will be rejected. Increasing it makes it more likely that bad measurements will be accepted.

Range Increment
100 - 1000 25

EK2_BCN_DELAY: Range beacon measurement delay (msec)

Note: This parameter is for advanced users

This is the number of msec that the range beacon measurements lag behind the inertial measurements. It is the time from the end of the optical flow averaging period and does not include the time delay due to the 100msec of averaging within the flow sensor.

Range Increment Units RebootRequired
0 - 127 10 milliseconds True

EK2_RNG_USE_SPD: Range finder max ground speed

Note: This parameter is for advanced users

The range finder will not be used as the primary height source when the horizontal ground speed is greater than this value.

Range Increment Units
2.0 - 6.0 0.5 meters per second

EK2_MAG_MASK: Bitmask of active EKF cores that will always use heading fusion

Note: This parameter is for advanced users

1 byte bitmap of EKF cores that will disable magnetic field states and use simple magnetic heading fusion at all times. This parameter enables specified cores to be used as a backup for flight into an environment with high levels of external magnetic interference which may degrade the EKF attitude estimate when using 3-axis magnetometer fusion. NOTE : Use of a different magnetometer fusion algorithm on different cores makes unwanted EKF core switches due to magnetometer errors more likely.

Bitmask RebootRequired
Bit Meaning
0 FirstEKF
1 SecondEKF
2 ThirdEKF
3 FourthEKF
4 FifthEKF
5 SixthEKF
True

EK2_OGN_HGT_MASK: Bitmask control of EKF reference height correction

Note: This parameter is for advanced users

When a height sensor other than GPS is used as the primary height source by the EKF, the position of the zero height datum is defined by that sensor and its frame of reference. If a GPS height measurement is also available, then the height of the WGS-84 height datum used by the EKF can be corrected so that the height returned by the getLLH() function is compensated for primary height sensor drift and change in datum over time. The first two bit positions control when the height datum will be corrected. Correction is performed using a Bayes filter and only operates when GPS quality permits. The third bit position controls where the corrections to the GPS reference datum are applied. Corrections can be applied to the local vertical position or to the reported EKF origin height (default).

Bitmask RebootRequired
Bit Meaning
0 Correct when using Baro height
1 Correct when using range finder height
2 Apply corrections to local position
True

EK3_ Parameters

EK3_ENABLE: Enable EKF3

Note: This parameter is for advanced users

This enables EKF3. Enabling EKF3 only makes the maths run, it does not mean it will be used for flight control. To use it for flight control set AHRS_EKF_TYPE=3. A reboot or restart will need to be performed after changing the value of EK3_ENABLE for it to take effect.

Values RebootRequired
Value Meaning
0 Disabled
1 Enabled
True

EK3_GPS_TYPE: GPS mode control

Note: This parameter is for advanced users

This controls use of GPS measurements : 0 = use 3D velocity & 2D position, 1 = use 2D velocity and 2D position, 2 = use 2D position, 3 = Inhibit GPS use - this can be useful when flying with an optical flow sensor in an environment where GPS quality is poor and subject to large multipath errors.

Values
Value Meaning
0 GPS 3D Vel and 2D Pos
1 GPS 2D vel and 2D pos
2 GPS 2D pos
3 No GPS

EK3_VELNE_M_NSE: GPS horizontal velocity measurement noise (m/s)

Note: This parameter is for advanced users

This sets a lower limit on the speed accuracy reported by the GPS receiver that is used to set horizontal velocity observation noise. If the model of receiver used does not provide a speed accurcy estimate, then the parameter value will be used. Increasing it reduces the weighting of the GPS horizontal velocity measurements.

Range Increment Units
0.05 - 5.0 0.05 meters per second

EK3_VELD_M_NSE: GPS vertical velocity measurement noise (m/s)

Note: This parameter is for advanced users

This sets a lower limit on the speed accuracy reported by the GPS receiver that is used to set vertical velocity observation noise. If the model of receiver used does not provide a speed accurcy estimate, then the parameter value will be used. Increasing it reduces the weighting of the GPS vertical velocity measurements.

Range Increment Units
0.05 - 5.0 0.05 meters per second

EK3_VEL_I_GATE: GPS velocity innovation gate size

Note: This parameter is for advanced users

This sets the percentage number of standard deviations applied to the GPS velocity measurement innovation consistency check. Decreasing it makes it more likely that good measurements willbe rejected. Increasing it makes it more likely that bad measurements will be accepted.

Range Increment
100 - 1000 25

EK3_POSNE_M_NSE: GPS horizontal position measurement noise (m)

Note: This parameter is for advanced users

This sets the GPS horizontal position observation noise. Increasing it reduces the weighting of GPS horizontal position measurements.

Range Increment Units
0.1 - 10.0 0.1 meters

EK3_POS_I_GATE: GPS position measurement gate size

Note: This parameter is for advanced users

This sets the percentage number of standard deviations applied to the GPS position measurement innovation consistency check. Decreasing it makes it more likely that good measurements will be rejected. Increasing it makes it more likely that bad measurements will be accepted.

Range Increment
100 - 1000 25

EK3_GLITCH_RAD: GPS glitch radius gate size (m)

Note: This parameter is for advanced users

This controls the maximum radial uncertainty in position between the value predicted by the filter and the value measured by the GPS before the filter position and velocity states are reset to the GPS. Making this value larger allows the filter to ignore larger GPS glitches but also means that non-GPS errors such as IMU and compass can create a larger error in position before the filter is forced back to the GPS position.

Range Increment Units
10 - 100 5 meters

EK3_ALT_SOURCE: Primary altitude sensor source

Note: This parameter is for advanced users

This parameter controls the primary height sensor used by the EKF. If the selected option cannot be used, it will default to Baro as the primary height source. Setting 0 will use the baro altitude at all times. Setting 1 uses the range finder and is only available in combination with optical flow navigation (EK3_GPS_TYPE = 3). Setting 2 uses GPS. Setting 3 uses the range beacon data. NOTE - the EK3_RNG_USE_HGT parameter can be used to switch to range-finder when close to the ground.

Values RebootRequired
Value Meaning
0 Use Baro
1 Use Range Finder
2 Use GPS
3 Use Range Beacon
True

EK3_ALT_M_NSE: Altitude measurement noise (m)

Note: This parameter is for advanced users

This is the RMS value of noise in the altitude measurement. Increasing it reduces the weighting of the baro measurement and will make the filter respond more slowly to baro measurement errors, but will make it more sensitive to GPS and accelerometer errors.

Range Increment Units
0.1 - 10.0 0.1 meters

EK3_HGT_I_GATE: Height measurement gate size

Note: This parameter is for advanced users

This sets the percentage number of standard deviations applied to the height measurement innovation consistency check. Decreasing it makes it more likely that good measurements will be rejected. Increasing it makes it more likely that bad measurements will be accepted.

Range Increment
100 - 1000 25

EK3_HGT_DELAY: Height measurement delay (msec)

Note: This parameter is for advanced users

This is the number of msec that the Height measurements lag behind the inertial measurements.

Range Increment Units RebootRequired
0 - 250 10 milliseconds True

EK3_MAG_M_NSE: Magnetometer measurement noise (Gauss)

Note: This parameter is for advanced users

This is the RMS value of noise in magnetometer measurements. Increasing it reduces the weighting on these measurements.

Range Increment Units
0.01 - 0.5 0.01 gauss

EK3_MAG_CAL: Magnetometer default fusion mode

Note: This parameter is for advanced users

This determines when the filter will use the 3-axis magnetometer fusion model that estimates both earth and body fixed magnetic field states and when it will use a simpler magnetic heading fusion model that does not use magnetic field states. The 3-axis magnetometer fusion is only suitable for use when the external magnetic field environment is stable. EK3_MAG_CAL = 0 uses heading fusion on ground, 3-axis fusion in-flight, and is the default setting for Plane users. EK3_MAG_CAL = 1 uses 3-axis fusion only when manoeuvring. EK3_MAG_CAL = 2 uses heading fusion at all times, is recommended if the external magnetic field is varying and is the default for rovers. EK3_MAG_CAL = 3 uses heading fusion on the ground and 3-axis fusion after the first in-air field and yaw reset has completed, and is the default for copters. EK3_MAG_CAL = 4 uses 3-axis fusion at all times. NOTE : Use of simple heading magnetometer fusion makes vehicle compass calibration and alignment errors harder for the EKF to detect which reduces the sensitivity of the Copter EKF failsafe algorithm. NOTE: The fusion mode can be forced to 2 for specific EKF cores using the EK3_MAG_MASK parameter.

Values RebootRequired
Value Meaning
0 When flying
1 When manoeuvring
2 Never
3 After first climb yaw reset
4 Always
True

EK3_MAG_I_GATE: Magnetometer measurement gate size

Note: This parameter is for advanced users

This sets the percentage number of standard deviations applied to the magnetometer measurement innovation consistency check. Decreasing it makes it more likely that good measurements will be rejected. Increasing it makes it more likely that bad measurements will be accepted.

Range Increment
100 - 1000 25

EK3_EAS_M_NSE: Equivalent airspeed measurement noise (m/s)

Note: This parameter is for advanced users

This is the RMS value of noise in equivalent airspeed measurements used by planes. Increasing it reduces the weighting of airspeed measurements and will make wind speed estimates less noisy and slower to converge. Increasing also increases navigation errors when dead-reckoning without GPS measurements.

Range Increment Units
0.5 - 5.0 0.1 meters per second

EK3_EAS_I_GATE: Airspeed measurement gate size

Note: This parameter is for advanced users

This sets the percentage number of standard deviations applied to the airspeed measurement innovation consistency check. Decreasing it makes it more likely that good measurements will be rejected. Increasing it makes it more likely that bad measurements will be accepted.

Range Increment
100 - 1000 25

EK3_RNG_M_NSE: Range finder measurement noise (m)

Note: This parameter is for advanced users

This is the RMS value of noise in the range finder measurement. Increasing it reduces the weighting on this measurement.

Range Increment Units
0.1 - 10.0 0.1 meters

EK3_RNG_I_GATE: Range finder measurement gate size

Note: This parameter is for advanced users

This sets the percentage number of standard deviations applied to the range finder innovation consistency check. Decreasing it makes it more likely that good measurements will be rejected. Increasing it makes it more likely that bad measurements will be accepted.

Range Increment
100 - 1000 25

EK3_MAX_FLOW: Maximum valid optical flow rate

Note: This parameter is for advanced users

This sets the magnitude maximum optical flow rate in rad/sec that will be accepted by the filter

Range Increment Units
1.0 - 4.0 0.1 radians per second

EK3_FLOW_M_NSE: Optical flow measurement noise (rad/s)

Note: This parameter is for advanced users

This is the RMS value of noise and errors in optical flow measurements. Increasing it reduces the weighting on these measurements.

Range Increment Units
0.05 - 1.0 0.05 radians per second

EK3_FLOW_I_GATE: Optical Flow measurement gate size

Note: This parameter is for advanced users

This sets the percentage number of standard deviations applied to the optical flow innovation consistency check. Decreasing it makes it more likely that good measurements will be rejected. Increasing it makes it more likely that bad measurements will be accepted.

Range Increment
100 - 1000 25

EK3_FLOW_DELAY: Optical Flow measurement delay (msec)

Note: This parameter is for advanced users

This is the number of msec that the optical flow measurements lag behind the inertial measurements. It is the time from the end of the optical flow averaging period and does not include the time delay due to the 100msec of averaging within the flow sensor.

Range Increment Units RebootRequired
0 - 250 10 milliseconds True

EK3_GYRO_P_NSE: Rate gyro noise (rad/s)

Note: This parameter is for advanced users

This control disturbance noise controls the growth of estimated error due to gyro measurement errors excluding bias. Increasing it makes the flter trust the gyro measurements less and other measurements more.

Range Increment Units
0.0001 - 0.1 0.0001 radians per second

EK3_ACC_P_NSE: Accelerometer noise (m/s^2)

Note: This parameter is for advanced users

This control disturbance noise controls the growth of estimated error due to accelerometer measurement errors excluding bias. Increasing it makes the flter trust the accelerometer measurements less and other measurements more.

Range Increment Units
0.01 - 1.0 0.01 meters per square second

EK3_GBIAS_P_NSE: Rate gyro bias stability (rad/s/s)

Note: This parameter is for advanced users

This state process noise controls growth of the gyro delta angle bias state error estimate. Increasing it makes rate gyro bias estimation faster and noisier.

Range Units
0.00001 - 0.001 radians per square second

EK3_ABIAS_P_NSE: Accelerometer bias stability (m/s^3)

Note: This parameter is for advanced users

This noise controls the growth of the vertical accelerometer delta velocity bias state error estimate. Increasing it makes accelerometer bias estimation faster and noisier.

Range Units
0.00001 - 0.001 meters per cubic second

EK3_WIND_P_NSE: Wind velocity process noise (m/s^2)

Note: This parameter is for advanced users

This state process noise controls the growth of wind state error estimates. Increasing it makes wind estimation faster and noisier.

Range Increment Units
0.01 - 1.0 0.1 meters per square second

EK3_WIND_PSCALE: Height rate to wind process noise scaler

Note: This parameter is for advanced users

This controls how much the process noise on the wind states is increased when gaining or losing altitude to take into account changes in wind speed and direction with altitude. Increasing this parameter increases how rapidly the wind states adapt when changing altitude, but does make wind velocity estimation noiser.

Range Increment
0.0 - 1.0 0.1

EK3_GPS_CHECK: GPS preflight check

Note: This parameter is for advanced users

This is a 1 byte bitmap controlling which GPS preflight checks are performed. Set to 0 to bypass all checks. Set to 255 perform all checks. Set to 3 to check just the number of satellites and HDoP. Set to 31 for the most rigorous checks that will still allow checks to pass when the copter is moving, eg launch from a boat.

Bitmask
Bit Meaning
0 NSats
1 HDoP
2 speed error
3 position error
4 yaw error
5 pos drift
6 vert speed
7 horiz speed

EK3_IMU_MASK: Bitmask of active IMUs

Note: This parameter is for advanced users

1 byte bitmap of IMUs to use in EKF3. A separate instance of EKF3 will be started for each IMU selected. Set to 1 to use the first IMU only (default), set to 2 to use the second IMU only, set to 3 to use the first and second IMU. Additional IMU’s can be used up to a maximum of 6 if memory and processing resources permit. There may be insufficient memory and processing resources to run multiple instances. If this occurs EKF3 will fail to start.

Bitmask RebootRequired
Bit Meaning
0 FirstIMU
1 SecondIMU
2 ThirdIMU
3 FourthIMU
4 FifthIMU
5 SixthIMU
True

EK3_CHECK_SCALE: GPS accuracy check scaler (%)

Note: This parameter is for advanced users

This scales the thresholds that are used to check GPS accuracy before it is used by the EKF. A value of 100 is the default. Values greater than 100 increase and values less than 100 reduce the maximum GPS error the EKF will accept. A value of 200 will double the allowable GPS error.

Range Units
50 - 200 percent

EK3_NOAID_M_NSE: Non-GPS operation position uncertainty (m)

Note: This parameter is for advanced users

This sets the amount of position variation that the EKF allows for when operating without external measurements (eg GPS or optical flow). Increasing this parameter makes the EKF attitude estimate less sensitive to vehicle manoeuvres but more sensitive to IMU errors.

Range Units
0.5 - 50.0 meters

EK3_LOG_MASK: EKF sensor logging IMU mask

Note: This parameter is for advanced users

This sets the IMU mask of sensors to do full logging for

Bitmask RebootRequired
Bit Meaning
0 FirstIMU
1 SecondIMU
2 ThirdIMU
3 FourthIMU
4 FifthIMU
5 SixthIMU
True

EK3_YAW_M_NSE: Yaw measurement noise (rad)

Note: This parameter is for advanced users

This is the RMS value of noise in yaw measurements from the magnetometer. Increasing it reduces the weighting on these measurements.

Range Increment Units
0.05 - 1.0 0.05 radians

EK3_YAW_I_GATE: Yaw measurement gate size

Note: This parameter is for advanced users

This sets the percentage number of standard deviations applied to the magnetometer yaw measurement innovation consistency check. Decreasing it makes it more likely that good measurements will be rejected. Increasing it makes it more likely that bad measurements will be accepted.

Range Increment
100 - 1000 25

EK3_TAU_OUTPUT: Output complementary filter time constant (centi-sec)

Note: This parameter is for advanced users

Sets the time constant of the output complementary filter/predictor in centi-seconds.

Range Increment Units
10 - 50 5 centiseconds

EK3_MAGE_P_NSE: Earth magnetic field process noise (gauss/s)

Note: This parameter is for advanced users

This state process noise controls the growth of earth magnetic field state error estimates. Increasing it makes earth magnetic field estimation faster and noisier.

Range Units
0.00001 - 0.01 gauss per second

EK3_MAGB_P_NSE: Body magnetic field process noise (gauss/s)

Note: This parameter is for advanced users

This state process noise controls the growth of body magnetic field state error estimates. Increasing it makes magnetometer bias error estimation faster and noisier.

Range Units
0.00001 - 0.01 gauss per second

EK3_RNG_USE_HGT: Range finder switch height percentage

Note: This parameter is for advanced users

The range finder will be used as the primary height source when below a specified percentage of the sensor maximum as set by the RNGFND_MAX_CM parameter. Set to -1 to prevent range finder use.

Range Increment Units
-1 - 70 1 percent

EK3_TERR_GRAD: Maximum terrain gradient

Note: This parameter is for advanced users

Specifies the maximum gradient of the terrain below the vehicle when it is using range finder as a height reference

Range Increment
0 - 0.2 0.01

EK3_BCN_M_NSE: Range beacon measurement noise (m)

Note: This parameter is for advanced users

This is the RMS value of noise in the range beacon measurement. Increasing it reduces the weighting on this measurement.

Range Increment Units
0.1 - 10.0 0.1 meters

EK3_BCN_I_GTE: Range beacon measurement gate size

Note: This parameter is for advanced users

This sets the percentage number of standard deviations applied to the range beacon measurement innovation consistency check. Decreasing it makes it more likely that good measurements will be rejected. Increasing it makes it more likely that bad measurements will be accepted.

Range Increment
100 - 1000 25

EK3_BCN_DELAY: Range beacon measurement delay (msec)

Note: This parameter is for advanced users

This is the number of msec that the range beacon measurements lag behind the inertial measurements.

Range Increment Units RebootRequired
0 - 250 10 milliseconds True

EK3_RNG_USE_SPD: Range finder max ground speed

Note: This parameter is for advanced users

The range finder will not be used as the primary height source when the horizontal ground speed is greater than this value.

Range Increment Units
2.0 - 6.0 0.5 meters per second

EK3_ACC_BIAS_LIM: Accelerometer bias limit

Note: This parameter is for advanced users

The accelerometer bias state will be limited to +- this value

Range Increment Units
0.5 - 2.5 0.1 meters per square second

EK3_MAG_MASK: Bitmask of active EKF cores that will always use heading fusion

Note: This parameter is for advanced users

1 byte bitmap of EKF cores that will disable magnetic field states and use simple magnetic heading fusion at all times. This parameter enables specified cores to be used as a backup for flight into an environment with high levels of external magnetic interference which may degrade the EKF attitude estimate when using 3-axis magnetometer fusion. NOTE : Use of a different magnetometer fusion algorithm on different cores makes unwanted EKF core switches due to magnetometer errors more likely.

Bitmask RebootRequired
Bit Meaning
0 FirstEKF
1 SecondEKF
2 ThirdEKF
3 FourthEKF
4 FifthEKF
5 SixthEKF
True

EK3_OGN_HGT_MASK: Bitmask control of EKF reference height correction

Note: This parameter is for advanced users

When a height sensor other than GPS is used as the primary height source by the EKF, the position of the zero height datum is defined by that sensor and its frame of reference. If a GPS height measurement is also available, then the height of the WGS-84 height datum used by the EKF can be corrected so that the height returned by the getLLH() function is compensated for primary height sensor drift and change in datum over time. The first two bit positions control when the height datum will be corrected. Correction is performed using a Bayes filter and only operates when GPS quality permits. The third bit position controls where the corrections to the GPS reference datum are applied. Corrections can be applied to the local vertical position or to the reported EKF origin height (default).

Bitmask RebootRequired
Bit Meaning
0 Correct when using Baro height
1 Correct when using range finder height
2 Apply corrections to local position
True

EK3_VIS_VERR_MIN: Visual odometry minimum velocity error

Note: This parameter is for advanced users

This is the 1-STD odometry velocity observation error that will be assumed when maximum quality is reported by the sensor. When quality is between max and min, the error will be calculated using linear interpolation between VIS_VERR_MIN and VIS_VERR_MAX.

Range Increment Units
0.05 - 0.5 0.05 meters per second

EK3_VIS_VERR_MAX: Visual odometry maximum velocity error

Note: This parameter is for advanced users

This is the 1-STD odometry velocity observation error that will be assumed when minimum quality is reported by the sensor. When quality is between max and min, the error will be calculated using linear interpolation between VIS_VERR_MIN and VIS_VERR_MAX.

Range Increment Units
0.5 - 5.0 0.1 meters per second

EK3_WENC_VERR: Wheel odometry velocity error

Note: This parameter is for advanced users

This is the 1-STD odometry velocity observation error that will be assumed when wheel encoder data is being fused.

Range Increment Units
0.01 - 1.0 0.1 meters per second

GND_ Parameters

GND_ABS_PRESS: Absolute Pressure

Note: This parameter is for advanced users

calibrated ground pressure in Pascals

ReadOnly Volatile Increment Units
True True 1 pascal

GND_TEMP: ground temperature

Note: This parameter is for advanced users

User provided ambient ground temperature in degrees Celsius. This is used to improve the calculation of the altitude the vehicle is at. This parameter is not persistent and will be reset to 0 every time the vehicle is rebooted. A value of 0 means use the internal measurement ambient temperature.

Volatile Increment Units
True 1 degrees Celsius

GND_ALT_OFFSET: altitude offset

Note: This parameter is for advanced users

altitude offset in meters added to barometric altitude. This is used to allow for automatic adjustment of the base barometric altitude by a ground station equipped with a barometer. The value is added to the barometric altitude read by the aircraft. It is automatically reset to 0 when the barometer is calibrated on each reboot or when a preflight calibration is performed.

Increment Units
0.1 meters

GND_PRIMARY: Primary barometer

Note: This parameter is for advanced users

This selects which barometer will be the primary if multiple barometers are found

Values
Value Meaning
0 FirstBaro
1 2ndBaro
2 3rdBaro

GND_EXT_BUS: External baro bus

Note: This parameter is for advanced users

This selects the bus number for looking for an I2C barometer

Values
Value Meaning
-1 Disabled
0 Bus0
1 Bus1

GND_SPEC_GRAV: Specific Gravity (For water depth measurement)

This sets the specific gravity of the fluid when flying an underwater ROV.

Values
1.0:Freshwater,1.024:Saltwater

GND_ABS_PRESS2: Absolute Pressure

Note: This parameter is for advanced users

calibrated ground pressure in Pascals

ReadOnly Volatile Increment Units
True True 1 pascal

GND_ABS_PRESS3: Absolute Pressure

Note: This parameter is for advanced users

calibrated ground pressure in Pascals

ReadOnly Volatile Increment Units
True True 1 pascal

GPS_ Parameters

GPS_TYPE: GPS type

Note: This parameter is for advanced users

GPS type

Values RebootRequired
Value Meaning
0 None
1 AUTO
2 uBlox
3 MTK
4 MTK19
5 NMEA
6 SiRF
7 HIL
8 SwiftNav
9 UAVCAN
10 SBF
11 GSOF
12 QURT
13 ERB
14 MAV
15 NOVA
True

GPS_TYPE2: 2nd GPS type

Note: This parameter is for advanced users

GPS type of 2nd GPS

Values RebootRequired
Value Meaning
0 None
1 AUTO
2 uBlox
3 MTK
4 MTK19
5 NMEA
6 SiRF
7 HIL
8 SwiftNav
9 UAVCAN
10 SBF
11 GSOF
12 QURT
13 ERB
14 MAV
15 NOVA
True

GPS_NAVFILTER: Navigation filter setting

Note: This parameter is for advanced users

Navigation filter engine setting

Values
Value Meaning
0 Portable
2 Stationary
3 Pedestrian
4 Automotive
5 Sea
6 Airborne1G
7 Airborne2G
8 Airborne4G

GPS_AUTO_SWITCH: Automatic Switchover Setting

Note: This parameter is for advanced users

Automatic switchover to GPS reporting best lock

Values
Value Meaning
0 Disabled
1 UseBest
2 Blend

GPS_MIN_DGPS: Minimum Lock Type Accepted for DGPS

Note: This parameter is for advanced users

Sets the minimum type of differential GPS corrections required before allowing to switch into DGPS mode.

Values RebootRequired
Value Meaning
0 Any
50 FloatRTK
100 IntegerRTK
True

GPS_SBAS_MODE: SBAS Mode

Note: This parameter is for advanced users

This sets the SBAS (satellite based augmentation system) mode if available on this GPS. If set to 2 then the SBAS mode is not changed in the GPS. Otherwise the GPS will be reconfigured to enable/disable SBAS. Disabling SBAS may be worthwhile in some parts of the world where an SBAS signal is available but the baseline is too long to be useful.

Values
Value Meaning
0 Disabled
1 Enabled
2 NoChange

GPS_MIN_ELEV: Minimum elevation

Note: This parameter is for advanced users

This sets the minimum elevation of satellites above the horizon for them to be used for navigation. Setting this to -100 leaves the minimum elevation set to the GPS modules default.

Range Units
-100 - 90 degrees

GPS_SBP_LOGMASK: Swift Binary Protocol Logging Mask

Note: This parameter is for advanced users

Masked with the SBP msg_type field to determine whether SBR1/SBR2 data is logged

Values
Value Meaning
0 None (0x0000)
-1 All (0xFFFF)
-256 External only (0xFF00)

GPS_RAW_DATA: Raw data logging

Note: This parameter is for advanced users

Enable logging of RXM raw data from uBlox which includes carrier phase and pseudo range information. This allows for post processing of dataflash logs for more precise positioning. Note that this requires a raw capable uBlox such as the 6P or 6T.

Values RebootRequired
Value Meaning
0 Disabled
1 log every sample
5 log every 5 samples
True

GPS_GNSS_MODE: GNSS system configuration

Note: This parameter is for advanced users

Bitmask for what GNSS system to use on the first GPS (all unchecked or zero to leave GPS as configured)

Bitmask Values
Bit Meaning
0 GPS
1 SBAS
2 Galileo
3 Beidou
4 IMES
5 QZSS
6 GLOSNASS
Value Meaning
0 Leave as currently configured
1 GPS-NoSBAS
3 GPS+SBAS
4 Galileo-NoSBAS
6 Galileo+SBAS
8 Beidou
51 GPS+IMES+QZSS+SBAS (Japan Only)
64 GLONASS
66 GLONASS+SBAS
67 GPS+GLONASS+SBAS

GPS_SAVE_CFG: Save GPS configuration

Note: This parameter is for advanced users

Determines whether the configuration for this GPS should be written to non-volatile memory on the GPS. Currently working for UBlox 6 series and above.

Values
Value Meaning
0 Do not save config
1 Save config
2 Save only when needed

GPS_GNSS_MODE2: GNSS system configuration

Note: This parameter is for advanced users

Bitmask for what GNSS system to use on the second GPS (all unchecked or zero to leave GPS as configured)

Bitmask Values
Bit Meaning
0 GPS
1 SBAS
2 Galileo
3 Beidou
4 IMES
5 QZSS
6 GLOSNASS
Value Meaning
0 Leave as currently configured
1 GPS-NoSBAS
3 GPS+SBAS
4 Galileo-NoSBAS
6 Galileo+SBAS
8 Beidou
51 GPS+IMES+QZSS+SBAS (Japan Only)
64 GLONASS
66 GLONASS+SBAS
67 GPS+GLONASS+SBAS

GPS_AUTO_CONFIG: Automatic GPS configuration

Note: This parameter is for advanced users

Controls if the autopilot should automatically configure the GPS based on the parameters and default settings

Values
Value Meaning
0 Disables automatic configuration
1 Enable automatic configuration

GPS_RATE_MS: GPS update rate in milliseconds

Note: This parameter is for advanced users

Controls how often the GPS should provide a position update. Lowering below 5Hz is not allowed

Range Values Units
50 - 200
Value Meaning
100 10Hz
125 8Hz
200 5Hz
milliseconds

GPS_RATE_MS2: GPS 2 update rate in milliseconds

Note: This parameter is for advanced users

Controls how often the GPS should provide a position update. Lowering below 5Hz is not allowed

Range Values Units
50 - 200
Value Meaning
100 10Hz
125 8Hz
200 5Hz
milliseconds

GPS_POS1_X: Antenna X position offset

Note: This parameter is for advanced users

X position of the first GPS antenna in body frame. Positive X is forward of the origin. Use antenna phase centroid location if provided by the manufacturer.

Units
meters

GPS_POS1_Y: Antenna Y position offset

Note: This parameter is for advanced users

Y position of the first GPS antenna in body frame. Positive Y is to the right of the origin. Use antenna phase centroid location if provided by the manufacturer.

Units
meters

GPS_POS1_Z: Antenna Z position offset

Note: This parameter is for advanced users

Z position of the first GPS antenna in body frame. Positive Z is down from the origin. Use antenna phase centroid location if provided by the manufacturer.

Units
meters

GPS_POS2_X: Antenna X position offset

Note: This parameter is for advanced users

X position of the second GPS antenna in body frame. Positive X is forward of the origin. Use antenna phase centroid location if provided by the manufacturer.

Units
meters

GPS_POS2_Y: Antenna Y position offset

Note: This parameter is for advanced users

Y position of the second GPS antenna in body frame. Positive Y is to the right of the origin. Use antenna phase centroid location if provided by the manufacturer.

Units
meters

GPS_POS2_Z: Antenna Z position offset

Note: This parameter is for advanced users

Z position of the second GPS antenna in body frame. Positive Z is down from the origin. Use antenna phase centroid location if provided by the manufacturer.

Units
meters

GPS_DELAY_MS: GPS delay in milliseconds

Note: This parameter is for advanced users

Controls the amount of GPS measurement delay that the autopilot compensates for. Set to zero to use the default delay for the detected GPS type.

Range Units RebootRequired
0 - 250 milliseconds True

GPS_DELAY_MS2: GPS 2 delay in milliseconds

Note: This parameter is for advanced users

Controls the amount of GPS measurement delay that the autopilot compensates for. Set to zero to use the default delay for the detected GPS type.

Range Units RebootRequired
0 - 250 milliseconds True

GPS_BLEND_MASK: Multi GPS Blending Mask

Note: This parameter is for advanced users

Determines which of the accuracy measures Horizontal position, Vertical Position and Speed are used to calculate the weighting on each GPS receiver when soft switching has been selected by setting GPS_AUTO_SWITCH to 2

Bitmask
Bit Meaning
0 Horiz Pos
1 Vert Pos
2 Speed

GPS_BLEND_TC: Blending time constant

Note: This parameter is for advanced users

Controls the slowest time constant applied to the calculation of GPS position and height offsets used to adjust different GPS receivers for steady state position differences.

Range Units
5.0 - 30.0 seconds

INS_ Parameters

INS_PRODUCT_ID: IMU Product ID

Note: This parameter is for advanced users

unused

INS_GYROFFS_X: Gyro offsets of X axis

Note: This parameter is for advanced users

Gyro sensor offsets of X axis. This is setup on each boot during gyro calibrations

Units
radians per second

INS_GYROFFS_Y: Gyro offsets of Y axis

Note: This parameter is for advanced users

Gyro sensor offsets of Y axis. This is setup on each boot during gyro calibrations

Units
radians per second

INS_GYROFFS_Z: Gyro offsets of Z axis

Note: This parameter is for advanced users

Gyro sensor offsets of Z axis. This is setup on each boot during gyro calibrations

Units
radians per second

INS_GYR2OFFS_X: Gyro2 offsets of X axis

Note: This parameter is for advanced users

Gyro2 sensor offsets of X axis. This is setup on each boot during gyro calibrations

Units
radians per second

INS_GYR2OFFS_Y: Gyro2 offsets of Y axis

Note: This parameter is for advanced users

Gyro2 sensor offsets of Y axis. This is setup on each boot during gyro calibrations

Units
radians per second

INS_GYR2OFFS_Z: Gyro2 offsets of Z axis

Note: This parameter is for advanced users

Gyro2 sensor offsets of Z axis. This is setup on each boot during gyro calibrations

Units
radians per second

INS_GYR3OFFS_X: Gyro3 offsets of X axis

Note: This parameter is for advanced users

Gyro3 sensor offsets of X axis. This is setup on each boot during gyro calibrations

Units
radians per second

INS_GYR3OFFS_Y: Gyro3 offsets of Y axis

Note: This parameter is for advanced users

Gyro3 sensor offsets of Y axis. This is setup on each boot during gyro calibrations

Units
radians per second

INS_GYR3OFFS_Z: Gyro3 offsets of Z axis

Note: This parameter is for advanced users

Gyro3 sensor offsets of Z axis. This is setup on each boot during gyro calibrations

Units
radians per second

INS_ACCSCAL_X: Accelerometer scaling of X axis

Note: This parameter is for advanced users

Accelerometer scaling of X axis. Calculated during acceleration calibration routine

Range
0.8 - 1.2

INS_ACCSCAL_Y: Accelerometer scaling of Y axis

Note: This parameter is for advanced users

Accelerometer scaling of Y axis Calculated during acceleration calibration routine

Range
0.8 - 1.2

INS_ACCSCAL_Z: Accelerometer scaling of Z axis

Note: This parameter is for advanced users

Accelerometer scaling of Z axis Calculated during acceleration calibration routine

Range
0.8 - 1.2

INS_ACCOFFS_X: Accelerometer offsets of X axis

Note: This parameter is for advanced users

Accelerometer offsets of X axis. This is setup using the acceleration calibration or level operations

Range Units
-3.5 - 3.5 meters per square second

INS_ACCOFFS_Y: Accelerometer offsets of Y axis

Note: This parameter is for advanced users

Accelerometer offsets of Y axis. This is setup using the acceleration calibration or level operations

Range Units
-3.5 - 3.5 meters per square second

INS_ACCOFFS_Z: Accelerometer offsets of Z axis

Note: This parameter is for advanced users

Accelerometer offsets of Z axis. This is setup using the acceleration calibration or level operations

Range Units
-3.5 - 3.5 meters per square second

INS_ACC2SCAL_X: Accelerometer2 scaling of X axis

Note: This parameter is for advanced users

Accelerometer2 scaling of X axis. Calculated during acceleration calibration routine

Range
0.8 - 1.2

INS_ACC2SCAL_Y: Accelerometer2 scaling of Y axis

Note: This parameter is for advanced users

Accelerometer2 scaling of Y axis Calculated during acceleration calibration routine

Range
0.8 - 1.2

INS_ACC2SCAL_Z: Accelerometer2 scaling of Z axis

Note: This parameter is for advanced users

Accelerometer2 scaling of Z axis Calculated during acceleration calibration routine

Range
0.8 - 1.2

INS_ACC2OFFS_X: Accelerometer2 offsets of X axis

Note: This parameter is for advanced users

Accelerometer2 offsets of X axis. This is setup using the acceleration calibration or level operations

Range Units
-3.5 - 3.5 meters per square second

INS_ACC2OFFS_Y: Accelerometer2 offsets of Y axis

Note: This parameter is for advanced users

Accelerometer2 offsets of Y axis. This is setup using the acceleration calibration or level operations

Range Units
-3.5 - 3.5 meters per square second

INS_ACC2OFFS_Z: Accelerometer2 offsets of Z axis

Note: This parameter is for advanced users

Accelerometer2 offsets of Z axis. This is setup using the acceleration calibration or level operations

Range Units
-3.5 - 3.5 meters per square second

INS_ACC3SCAL_X: Accelerometer3 scaling of X axis

Note: This parameter is for advanced users

Accelerometer3 scaling of X axis. Calculated during acceleration calibration routine

Range
0.8 - 1.2

INS_ACC3SCAL_Y: Accelerometer3 scaling of Y axis

Note: This parameter is for advanced users

Accelerometer3 scaling of Y axis Calculated during acceleration calibration routine

Range
0.8 - 1.2

INS_ACC3SCAL_Z: Accelerometer3 scaling of Z axis

Note: This parameter is for advanced users

Accelerometer3 scaling of Z axis Calculated during acceleration calibration routine

Range
0.8 - 1.2

INS_ACC3OFFS_X: Accelerometer3 offsets of X axis

Note: This parameter is for advanced users

Accelerometer3 offsets of X axis. This is setup using the acceleration calibration or level operations

Range Units
-3.5 - 3.5 meters per square second

INS_ACC3OFFS_Y: Accelerometer3 offsets of Y axis

Note: This parameter is for advanced users

Accelerometer3 offsets of Y axis. This is setup using the acceleration calibration or level operations

Range Units
-3.5 - 3.5 meters per square second

INS_ACC3OFFS_Z: Accelerometer3 offsets of Z axis

Note: This parameter is for advanced users

Accelerometer3 offsets of Z axis. This is setup using the acceleration calibration or level operations

Range Units
-3.5 - 3.5 meters per square second

INS_GYRO_FILTER: Gyro filter cutoff frequency

Note: This parameter is for advanced users

Filter cutoff frequency for gyroscopes. This can be set to a lower value to try to cope with very high vibration levels in aircraft. This option takes effect on the next reboot. A value of zero means no filtering (not recommended!)

Range Units
0 - 127 hertz

INS_ACCEL_FILTER: Accel filter cutoff frequency

Note: This parameter is for advanced users

Filter cutoff frequency for accelerometers. This can be set to a lower value to try to cope with very high vibration levels in aircraft. This option takes effect on the next reboot. A value of zero means no filtering (not recommended!)

Range Units
0 - 127 hertz

INS_USE: Use first IMU for attitude, velocity and position estimates

Note: This parameter is for advanced users

Use first IMU for attitude, velocity and position estimates

Values
Value Meaning
0 Disabled
1 Enabled

INS_USE2: Use second IMU for attitude, velocity and position estimates

Note: This parameter is for advanced users

Use second IMU for attitude, velocity and position estimates

Values
Value Meaning
0 Disabled
1 Enabled

INS_USE3: Use third IMU for attitude, velocity and position estimates

Note: This parameter is for advanced users

Use third IMU for attitude, velocity and position estimates

Values
Value Meaning
0 Disabled
1 Enabled

INS_STILL_THRESH: Stillness threshold for detecting if we are moving

Note: This parameter is for advanced users

Threshold to tolerate vibration to determine if vehicle is motionless. This depends on the frame type and if there is a constant vibration due to motors before launch or after landing. Total motionless is about 0.05. Suggested values: Planes/rover use 0.1, multirotors use 1, tradHeli uses 5

Range
0.05 - 50

INS_GYR_CAL: Gyro Calibration scheme

Note: This parameter is for advanced users

Conrols when automatic gyro calibration is performed

Values
Value Meaning
0 Never
1 Start-up only

INS_TRIM_OPTION: Accel cal trim option

Note: This parameter is for advanced users

Specifies how the accel cal routine determines the trims

Values
Value Meaning
0 Don’t adjust the trims
1 Assume first orientation was level
2 Assume ACC_BODYFIX is perfectly aligned to the vehicle

INS_ACC_BODYFIX: Body-fixed accelerometer

Note: This parameter is for advanced users

The body-fixed accelerometer to be used for trim calculation

Values
Value Meaning
1 IMU 1
2 IMU 2
3 IMU 3

INS_POS1_X: IMU accelerometer X position

Note: This parameter is for advanced users

X position of the first IMU Accelerometer in body frame. Positive X is forward of the origin. Attention: The IMU should be located as close to the vehicle c.g. as practical so that the value of this parameter is minimised. Failure to do so can result in noisy navigation velocity measurements due to vibration and IMU gyro noise. If the IMU cannot be moved and velocity noise is a problem, a location closer to the IMU can be used as the body frame origin.

Units
meters

INS_POS1_Y: IMU accelerometer Y position

Note: This parameter is for advanced users

Y position of the first IMU accelerometer in body frame. Positive Y is to the right of the origin. Attention: The IMU should be located as close to the vehicle c.g. as practical so that the value of this parameter is minimised. Failure to do so can result in noisy navigation velocity measurements due to vibration and IMU gyro noise. If the IMU cannot be moved and velocity noise is a problem, a location closer to the IMU can be used as the body frame origin.

Units
meters

INS_POS1_Z: IMU accelerometer Z position

Note: This parameter is for advanced users

Z position of the first IMU accelerometer in body frame. Positive Z is down from the origin. Attention: The IMU should be located as close to the vehicle c.g. as practical so that the value of this parameter is minimised. Failure to do so can result in noisy navigation velocity measurements due to vibration and IMU gyro noise. If the IMU cannot be moved and velocity noise is a problem, a location closer to the IMU can be used as the body frame origin.

Units
meters

INS_POS2_X: IMU accelerometer X position

Note: This parameter is for advanced users

X position of the second IMU accelerometer in body frame. Positive X is forward of the origin. Attention: The IMU should be located as close to the vehicle c.g. as practical so that the value of this parameter is minimised. Failure to do so can result in noisy navigation velocity measurements due to vibration and IMU gyro noise. If the IMU cannot be moved and velocity noise is a problem, a location closer to the IMU can be used as the body frame origin.

Units
meters

INS_POS2_Y: IMU accelerometer Y position

Note: This parameter is for advanced users

Y position of the second IMU accelerometer in body frame. Positive Y is to the right of the origin. Attention: The IMU should be located as close to the vehicle c.g. as practical so that the value of this parameter is minimised. Failure to do so can result in noisy navigation velocity measurements due to vibration and IMU gyro noise. If the IMU cannot be moved and velocity noise is a problem, a location closer to the IMU can be used as the body frame origin.

Units
meters

INS_POS2_Z: IMU accelerometer Z position

Note: This parameter is for advanced users

Z position of the second IMU accelerometer in body frame. Positive Z is down from the origin. Attention: The IMU should be located as close to the vehicle c.g. as practical so that the value of this parameter is minimised. Failure to do so can result in noisy navigation velocity measurements due to vibration and IMU gyro noise. If the IMU cannot be moved and velocity noise is a problem, a location closer to the IMU can be used as the body frame origin.

Units
meters

INS_POS3_X: IMU accelerometer X position

Note: This parameter is for advanced users

X position of the third IMU accelerometer in body frame. Positive X is forward of the origin. Attention: The IMU should be located as close to the vehicle c.g. as practical so that the value of this parameter is minimised. Failure to do so can result in noisy navigation velocity measurements due to vibration and IMU gyro noise. If the IMU cannot be moved and velocity noise is a problem, a location closer to the IMU can be used as the body frame origin.

Units
meters

INS_POS3_Y: IMU accelerometer Y position

Note: This parameter is for advanced users

Y position of the third IMU accelerometer in body frame. Positive Y is to the right of the origin. Attention: The IMU should be located as close to the vehicle c.g. as practical so that the value of this parameter is minimised. Failure to do so can result in noisy navigation velocity measurements due to vibration and IMU gyro noise. If the IMU cannot be moved and velocity noise is a problem, a location closer to the IMU can be used as the body frame origin.

Units
meters

INS_POS3_Z: IMU accelerometer Z position

Note: This parameter is for advanced users

Z position of the third IMU accelerometer in body frame. Positive Z is down from the origin. Attention: The IMU should be located as close to the vehicle c.g. as practical so that the value of this parameter is minimised. Failure to do so can result in noisy navigation velocity measurements due to vibration and IMU gyro noise. If the IMU cannot be moved and velocity noise is a problem, a location closer to the IMU can be used as the body frame origin.

Units
meters

INS_GYR_ID: Gyro ID

Note: This parameter is for advanced users

Gyro sensor ID, taking into account its type, bus and instance

ReadOnly
True

INS_GYR2_ID: Gyro2 ID

Note: This parameter is for advanced users

Gyro2 sensor ID, taking into account its type, bus and instance

ReadOnly
True

INS_GYR3_ID: Gyro3 ID

Note: This parameter is for advanced users

Gyro3 sensor ID, taking into account its type, bus and instance

ReadOnly
True

INS_ACC_ID: Accelerometer ID

Note: This parameter is for advanced users

Accelerometer sensor ID, taking into account its type, bus and instance

ReadOnly
True

INS_ACC2_ID: Accelerometer2 ID

Note: This parameter is for advanced users

Accelerometer2 sensor ID, taking into account its type, bus and instance

ReadOnly
True

INS_ACC3_ID: Accelerometer3 ID

Note: This parameter is for advanced users

Accelerometer3 sensor ID, taking into account its type, bus and instance

ReadOnly
True

INS_FAST_SAMPLE: Fast sampling mask

Note: This parameter is for advanced users

Mask of IMUs to enable fast sampling on, if available

INS_NOTCH_: Notch filter

Note: This parameter is for advanced users

Gyro notch filter

LOG Parameters

LOG_BACKEND_TYPE: DataFlash Backend Storage type

0 for None, 1 for File, 2 for dataflash mavlink, 3 for both file and dataflash

Values
Value Meaning
0 None
1 File
2 MAVLink
3 BothFileAndMAVLink

LOG_FILE_BUFSIZE: Maximum DataFlash File Backend buffer size (in kilobytes)

The DataFlash_File backend uses a buffer to store data before writing to the block device. Raising this value may reduce “gaps” in your SD card logging. This buffer size may be reduced depending on available memory. PixHawk requires at least 4 kilobytes. Maximum value available here is 64 kilobytes.

LOG_DISARMED: Enable logging while disarmed

If LOG_DISARMED is set to 1 then logging will be enabled while disarmed. This can make for very large logfiles but can help a lot when tracking down startup issues

Values
Value Meaning
0 Disabled
1 Enabled

LOG_REPLAY: Enable logging of information needed for Replay

If LOG_REPLAY is set to 1 then the EKF2 state estimator will log detailed information needed for diagnosing problems with the Kalman filter. It is suggested that you also raise LOG_FILE_BUFSIZE to give more buffer space for logging and use a high quality microSD card to ensure no sensor data is lost

Values
Value Meaning
0 Disabled
1 Enabled

LOG_FILE_DSRMROT: Stop logging to current file on disarm

When set, the current log file is closed when the vehicle is disarmed. If LOG_DISARMED is set then a fresh log will be opened.

Values
Value Meaning
0 Disabled
1 Enabled

MIS_ Parameters

MIS_TOTAL: Total mission commands

Note: This parameter is for advanced users

The number of mission mission items that has been loaded by the ground station. Do not change this manually.

Range Increment
0 - 32766 1

MIS_RESTART: Mission Restart when entering Auto mode

Note: This parameter is for advanced users

Controls mission starting point when entering Auto mode (either restart from beginning of mission or resume from last command run)

Values
Value Meaning
0 Resume Mission
1 Restart Mission

MIS_OPTIONS: Mission options bitmask

Note: This parameter is for advanced users

Bitmask of what options to use in missions.

Bitmask
Bit Meaning
0 Clear Mission on reboot

MNT Parameters

MNT_DEFLT_MODE: Mount default operating mode

Mount default operating mode on startup and after control is returned from autopilot

Values
Value Meaning
0 Retracted
1 Neutral
2 MavLink Targeting
3 RC Targeting
4 GPS Point

MNT_RETRACT_X: Mount roll angle when in retracted position

Mount roll angle when in retracted position

Range Increment Units
-180.00 - 179.99 1 degrees

MNT_RETRACT_Y: Mount tilt/pitch angle when in retracted position

Mount tilt/pitch angle when in retracted position

Range Increment Units
-180.00 - 179.99 1 degrees

MNT_RETRACT_Z: Mount yaw/pan angle when in retracted position

Mount yaw/pan angle when in retracted position

Range Increment Units
-180.00 - 179.99 1 degrees

MNT_NEUTRAL_X: Mount roll angle when in neutral position

Mount roll angle when in neutral position

Range Increment Units
-180.00 - 179.99 1 degrees

MNT_NEUTRAL_Y: Mount tilt/pitch angle when in neutral position

Mount tilt/pitch angle when in neutral position

Range Increment Units
-180.00 - 179.99 1 degrees

MNT_NEUTRAL_Z: Mount pan/yaw angle when in neutral position

Mount pan/yaw angle when in neutral position

Range Increment Units
-180.00 - 179.99 1 degrees

MNT_STAB_ROLL: Stabilize mount’s roll angle

enable roll stabilisation relative to Earth

Values
Value Meaning
0 Disabled
1 Enabled

MNT_STAB_TILT: Stabilize mount’s pitch/tilt angle

enable tilt/pitch stabilisation relative to Earth

Values
Value Meaning
0 Disabled
1 Enabled

MNT_STAB_PAN: Stabilize mount pan/yaw angle

enable pan/yaw stabilisation relative to Earth

Values
Value Meaning
0 Disabled
1 Enabled

MNT_RC_IN_ROLL: roll RC input channel

0 for none, any other for the RC channel to be used to control roll movements

Values
Value Meaning
0 Disabled
5 RC5
6 RC6
7 RC7
8 RC8
9 RC9
10 RC10
11 RC11
12 RC12

MNT_ANGMIN_ROL: Minimum roll angle

Minimum physical roll angular position of mount.

Range Increment Units
-18000 - 17999 1 centidegrees

MNT_ANGMAX_ROL: Maximum roll angle

Maximum physical roll angular position of the mount

Range Increment Units
-18000 - 17999 1 centidegrees

MNT_RC_IN_TILT: tilt (pitch) RC input channel

0 for none, any other for the RC channel to be used to control tilt (pitch) movements

Values
Value Meaning
0 Disabled
5 RC5
6 RC6
7 RC7
8 RC8
9 RC9
10 RC10
11 RC11
12 RC12

MNT_ANGMIN_TIL: Minimum tilt angle

Minimum physical tilt (pitch) angular position of mount.

Range Increment Units
-18000 - 17999 1 centidegrees

MNT_ANGMAX_TIL: Maximum tilt angle

Maximum physical tilt (pitch) angular position of the mount

Range Increment Units
-18000 - 17999 1 centidegrees

MNT_RC_IN_PAN: pan (yaw) RC input channel

0 for none, any other for the RC channel to be used to control pan (yaw) movements

Values
Value Meaning
0 Disabled
5 RC5
6 RC6
7 RC7
8 RC8
9 RC9
10 RC10
11 RC11
12 RC12

MNT_ANGMIN_PAN: Minimum pan angle

Minimum physical pan (yaw) angular position of mount.

Range Increment Units
-18000 - 17999 1 centidegrees

MNT_ANGMAX_PAN: Maximum pan angle

Maximum physical pan (yaw) angular position of the mount

Range Increment Units
-18000 - 17999 1 centidegrees

MNT_JSTICK_SPD: mount joystick speed

0 for position control, small for low speeds, 100 for max speed. A good general value is 10 which gives a movement speed of 3 degrees per second.

Range Increment
0 - 100 1

MNT_LEAD_RLL: Roll stabilization lead time

Causes the servo angle output to lead the current angle of the vehicle by some amount of time based on current angular rate, compensating for servo delay. Increase until the servo is responsive but doesn’t overshoot. Does nothing with pan stabilization enabled.

Range Increment Units
0.0 - 0.2 .005 seconds

MNT_LEAD_PTCH: Pitch stabilization lead time

Causes the servo angle output to lead the current angle of the vehicle by some amount of time based on current angular rate. Increase until the servo is responsive but doesn’t overshoot. Does nothing with pan stabilization enabled.

Range Increment Units
0.0 - 0.2 .005 seconds

MNT_TYPE: Mount Type

Mount Type (None, Servo or MAVLink)

Values RebootRequired
Value Meaning
0 None
1 Servo
2 3DR Solo
3 Alexmos Serial
4 SToRM32 MAVLink
5 SToRM32 Serial
True

MNT2_DEFLT_MODE: Mount default operating mode

Mount default operating mode on startup and after control is returned from autopilot

Values
Value Meaning
0 Retracted
1 Neutral
2 MavLink Targeting
3 RC Targeting
4 GPS Point

MNT2_RETRACT_X: Mount2 roll angle when in retracted position

Mount2 roll angle when in retracted position

Range Increment Units
-180.00 - 179.99 1 degrees

MNT2_RETRACT_Y: Mount2 tilt/pitch angle when in retracted position

Mount2 tilt/pitch angle when in retracted position

Range Increment Units
-180.00 - 179.99 1 degrees

MNT2_RETRACT_Z: Mount2 yaw/pan angle when in retracted position

Mount2 yaw/pan angle when in retracted position

Range Increment Units
-180.00 - 179.99 1 degrees

MNT2_NEUTRAL_X: Mount2 roll angle when in neutral position

Mount2 roll angle when in neutral position

Range Increment Units
-180.00 - 179.99 1 degrees

MNT2_NEUTRAL_Y: Mount2 tilt/pitch angle when in neutral position

Mount2 tilt/pitch angle when in neutral position

Range Increment Units
-180.00 - 179.99 1 degrees

MNT2_NEUTRAL_Z: Mount2 pan/yaw angle when in neutral position

Mount2 pan/yaw angle when in neutral position

Range Increment Units
-180.00 - 179.99 1 degrees

MNT2_STAB_ROLL: Stabilize Mount2’s roll angle

enable roll stabilisation relative to Earth

Values
Value Meaning
0 Disabled
1 Enabled

MNT2_STAB_TILT: Stabilize Mount2’s pitch/tilt angle

enable tilt/pitch stabilisation relative to Earth

Values
Value Meaning
0 Disabled
1 Enabled

MNT2_STAB_PAN: Stabilize mount2 pan/yaw angle

enable pan/yaw stabilisation relative to Earth

Values
Value Meaning
0 Disabled
1 Enabled

MNT2_RC_IN_ROLL: Mount2’s roll RC input channel

0 for none, any other for the RC channel to be used to control roll movements

Values
Value Meaning
0 Disabled
5 RC5
6 RC6
7 RC7
8 RC8
9 RC9
10 RC10
11 RC11
12 RC12

MNT2_ANGMIN_ROL: Mount2’s minimum roll angle

Mount2’s minimum physical roll angular position

Range Increment Units
-18000 - 17999 1 centidegrees

MNT2_ANGMAX_ROL: Mount2’s maximum roll angle

Mount2’s maximum physical roll angular position

Range Increment Units
-18000 - 17999 1 centidegrees

MNT2_RC_IN_TILT: Mount2’s tilt (pitch) RC input channel

0 for none, any other for the RC channel to be used to control tilt (pitch) movements

Values
Value Meaning
0 Disabled
5 RC5
6 RC6
7 RC7
8 RC8
9 RC9
10 RC10
11 RC11
12 RC12

MNT2_ANGMIN_TIL: Mount2’s minimum tilt angle

Mount2’s minimum physical tilt (pitch) angular position

Range Increment Units
-18000 - 17999 1 centidegrees

MNT2_ANGMAX_TIL: Mount2’s maximum tilt angle

Mount2’s maximum physical tilt (pitch) angular position

Range Increment Units
-18000 - 17999 1 centidegrees

MNT2_RC_IN_PAN: Mount2’s pan (yaw) RC input channel

0 for none, any other for the RC channel to be used to control pan (yaw) movements

Values
Value Meaning
0 Disabled
5 RC5
6 RC6
7 RC7
8 RC8
9 RC9
10 RC10
11 RC11
12 RC12

MNT2_ANGMIN_PAN: Mount2’s minimum pan angle

Mount2’s minimum physical pan (yaw) angular position

Range Increment Units
-18000 - 17999 1 centidegrees

MNT2_ANGMAX_PAN: Mount2’s maximum pan angle

MOunt2’s maximum physical pan (yaw) angular position

Range Increment Units
-18000 - 17999 1 centidegrees

MNT2_LEAD_RLL: Mount2’s Roll stabilization lead time

Causes the servo angle output to lead the current angle of the vehicle by some amount of time based on current angular rate, compensating for servo delay. Increase until the servo is responsive but doesn’t overshoot. Does nothing with pan stabilization enabled.

Range Increment Units
0.0 - 0.2 .005 seconds

MNT2_LEAD_PTCH: Mount2’s Pitch stabilization lead time

Causes the servo angle output to lead the current angle of the vehicle by some amount of time based on current angular rate. Increase until the servo is responsive but doesn’t overshoot. Does nothing with pan stabilization enabled.

Range Increment Units
0.0 - 0.2 .005 seconds

MNT2_TYPE: Mount2 Type

Mount Type (None, Servo or MAVLink)

Values
Value Meaning
0 None
1 Servo
2 3DR Solo
3 Alexmos Serial
4 SToRM32 MAVLink
5 SToRM32 Serial

MOT_ Parameters

MOT_PWM_TYPE: Output PWM type

Note: This parameter is for advanced users

This selects the output PWM type as regular PWM, OneShot, Brushed motor support using PWM (duty cycle) with separated direction signal, Brushed motor support with separate throttle and direction PWM (duty cyle)

Values RebootRequired
Value Meaning
0 Normal
1 OneShot
2 OneShot125
3 BrushedWithRelay
4 BrushedBiPolar
True

MOT_PWM_FREQ: Output PWM freq for brushed motors

Note: This parameter is for advanced users

Output PWM freq for brushed motors

Range Increment Units RebootRequired
1 - 20 1 kilohertz True

MOT_SAFE_DISARM: Motor PWM output disabled when disarmed

Note: This parameter is for advanced users

Disables motor PWM output when disarmed

Values
Value Meaning
0 PWM enabled while disarmed
1 PWM disabled while disarmed

MOT_THR_SLEWRATE: Throttle slew rate

maximum percentage change in throttle per second. A setting of 10 means to not change the throttle by more than 10% of the full throttle range in one second. A value of zero means no limit. A value of 100 means the throttle can change over its full range in one second. Note that for some NiMH powered rovers setting a lower value like 40 or 50 may be worthwhile as the sudden current demand on the battery of a big rise in throttle may cause a brownout.

Range Increment Units
0 - 100 1 percent per second

MOT_THR_MIN: Throttle minimum

Throttle minimum percentage the autopilot will apply. This is mostly useful for rovers with internal combustion motors, to prevent the motor from cutting out in auto mode.

Range Increment Units
0 - 20 1 percent

MOT_THR_MAX: Throttle maximum

Throttle maximum percentage the autopilot will apply. This can be used to prevent overheating an ESC or motor on an electric rover

Range Increment Units
30 - 100 1 percent

NTF_ Parameters

NTF_LED_BRIGHT: LED Brightness

Note: This parameter is for advanced users

Select the RGB LED brightness level. When USB is connected brightness will never be higher than low regardless of the setting.

Values
Value Meaning
0 Off
1 Low
2 Medium
3 High

NTF_BUZZ_ENABLE: Buzzer enable

Note: This parameter is for advanced users

Enable or disable the buzzer. Only for Linux and PX4 based boards.

Values
Value Meaning
0 Disable
1 Enable

NTF_DISPLAY_TYPE: Type of on-board I2C display

Note: This parameter is for advanced users

This sets up the type of on-board I2C display. Disabled by default.

Values
Value Meaning
0 Disable
1 ssd1306
2 sh1106

NTF_OREO_THEME: OreoLED Theme

Note: This parameter is for advanced users

Enable/Disable Solo Oreo LED driver, 0 to disable, 1 for Aircraft theme, 2 for Rover theme

Values
Value Meaning
0 Disabled
1 Aircraft
2 Rover

RC10_ Parameters

RC10_MIN: RC min PWM

Note: This parameter is for advanced users

RC minimum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Range Increment Units
800 - 2200 1 PWM in microseconds

RC10_TRIM: RC trim PWM

Note: This parameter is for advanced users

RC trim (neutral) PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Range Increment Units
800 - 2200 1 PWM in microseconds

RC10_MAX: RC max PWM

Note: This parameter is for advanced users

RC maximum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Range Increment Units
800 - 2200 1 PWM in microseconds

RC10_REVERSED: RC reversed

Note: This parameter is for advanced users

Reverse channel input. Set to 0 for normal operation. Set to 1 to reverse this input channel.

Values
Value Meaning
0 Normal
1 Reversed

RC10_DZ: RC dead-zone

Note: This parameter is for advanced users

PWM dead zone in microseconds around trim or bottom

Range Units
0 - 200 PWM in microseconds

RC11_ Parameters

RC11_MIN: RC min PWM

Note: This parameter is for advanced users

RC minimum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Range Increment Units
800 - 2200 1 PWM in microseconds

RC11_TRIM: RC trim PWM

Note: This parameter is for advanced users

RC trim (neutral) PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Range Increment Units
800 - 2200 1 PWM in microseconds

RC11_MAX: RC max PWM

Note: This parameter is for advanced users

RC maximum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Range Increment Units
800 - 2200 1 PWM in microseconds

RC11_REVERSED: RC reversed

Note: This parameter is for advanced users

Reverse channel input. Set to 0 for normal operation. Set to 1 to reverse this input channel.

Values
Value Meaning
0 Normal
1 Reversed

RC11_DZ: RC dead-zone

Note: This parameter is for advanced users

PWM dead zone in microseconds around trim or bottom

Range Units
0 - 200 PWM in microseconds

RC12_ Parameters

RC12_MIN: RC min PWM

Note: This parameter is for advanced users

RC minimum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Range Increment Units
800 - 2200 1 PWM in microseconds

RC12_TRIM: RC trim PWM

Note: This parameter is for advanced users

RC trim (neutral) PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Range Increment Units
800 - 2200 1 PWM in microseconds

RC12_MAX: RC max PWM

Note: This parameter is for advanced users

RC maximum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Range Increment Units
800 - 2200 1 PWM in microseconds

RC12_REVERSED: RC reversed

Note: This parameter is for advanced users

Reverse channel input. Set to 0 for normal operation. Set to 1 to reverse this input channel.

Values
Value Meaning
0 Normal
1 Reversed

RC12_DZ: RC dead-zone

Note: This parameter is for advanced users

PWM dead zone in microseconds around trim or bottom

Range Units
0 - 200 PWM in microseconds

RC13_ Parameters

RC13_MIN: RC min PWM

Note: This parameter is for advanced users

RC minimum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Range Increment Units
800 - 2200 1 PWM in microseconds

RC13_TRIM: RC trim PWM

Note: This parameter is for advanced users

RC trim (neutral) PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Range Increment Units
800 - 2200 1 PWM in microseconds

RC13_MAX: RC max PWM

Note: This parameter is for advanced users

RC maximum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Range Increment Units
800 - 2200 1 PWM in microseconds

RC13_REVERSED: RC reversed

Note: This parameter is for advanced users

Reverse channel input. Set to 0 for normal operation. Set to 1 to reverse this input channel.

Values
Value Meaning
0 Normal
1 Reversed

RC13_DZ: RC dead-zone

Note: This parameter is for advanced users

PWM dead zone in microseconds around trim or bottom

Range Units
0 - 200 PWM in microseconds

RC14_ Parameters

RC14_MIN: RC min PWM

Note: This parameter is for advanced users

RC minimum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Range Increment Units
800 - 2200 1 PWM in microseconds

RC14_TRIM: RC trim PWM

Note: This parameter is for advanced users

RC trim (neutral) PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Range Increment Units
800 - 2200 1 PWM in microseconds

RC14_MAX: RC max PWM

Note: This parameter is for advanced users

RC maximum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Range Increment Units
800 - 2200 1 PWM in microseconds

RC14_REVERSED: RC reversed

Note: This parameter is for advanced users

Reverse channel input. Set to 0 for normal operation. Set to 1 to reverse this input channel.

Values
Value Meaning
0 Normal
1 Reversed

RC14_DZ: RC dead-zone

Note: This parameter is for advanced users

PWM dead zone in microseconds around trim or bottom

Range Units
0 - 200 PWM in microseconds

RC15_ Parameters

RC15_MIN: RC min PWM

Note: This parameter is for advanced users

RC minimum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Range Increment Units
800 - 2200 1 PWM in microseconds

RC15_TRIM: RC trim PWM

Note: This parameter is for advanced users

RC trim (neutral) PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Range Increment Units
800 - 2200 1 PWM in microseconds

RC15_MAX: RC max PWM

Note: This parameter is for advanced users

RC maximum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Range Increment Units
800 - 2200 1 PWM in microseconds

RC15_REVERSED: RC reversed

Note: This parameter is for advanced users

Reverse channel input. Set to 0 for normal operation. Set to 1 to reverse this input channel.

Values
Value Meaning
0 Normal
1 Reversed

RC15_DZ: RC dead-zone

Note: This parameter is for advanced users

PWM dead zone in microseconds around trim or bottom

Range Units
0 - 200 PWM in microseconds

RC16_ Parameters

RC16_MIN: RC min PWM

Note: This parameter is for advanced users

RC minimum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Range Increment Units
800 - 2200 1 PWM in microseconds

RC16_TRIM: RC trim PWM

Note: This parameter is for advanced users

RC trim (neutral) PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Range Increment Units
800 - 2200 1 PWM in microseconds

RC16_MAX: RC max PWM

Note: This parameter is for advanced users

RC maximum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Range Increment Units
800 - 2200 1 PWM in microseconds

RC16_REVERSED: RC reversed

Note: This parameter is for advanced users

Reverse channel input. Set to 0 for normal operation. Set to 1 to reverse this input channel.

Values
Value Meaning
0 Normal
1 Reversed

RC16_DZ: RC dead-zone

Note: This parameter is for advanced users

PWM dead zone in microseconds around trim or bottom

Range Units
0 - 200 PWM in microseconds

RC1_ Parameters

RC1_MIN: RC min PWM

Note: This parameter is for advanced users

RC minimum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Range Increment Units
800 - 2200 1 PWM in microseconds

RC1_TRIM: RC trim PWM

Note: This parameter is for advanced users

RC trim (neutral) PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Range Increment Units
800 - 2200 1 PWM in microseconds

RC1_MAX: RC max PWM

Note: This parameter is for advanced users

RC maximum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Range Increment Units
800 - 2200 1 PWM in microseconds

RC1_REVERSED: RC reversed

Note: This parameter is for advanced users

Reverse channel input. Set to 0 for normal operation. Set to 1 to reverse this input channel.

Values
Value Meaning
0 Normal
1 Reversed

RC1_DZ: RC dead-zone

Note: This parameter is for advanced users

PWM dead zone in microseconds around trim or bottom

Range Units
0 - 200 PWM in microseconds

RC2_ Parameters

RC2_MIN: RC min PWM

Note: This parameter is for advanced users

RC minimum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Range Increment Units
800 - 2200 1 PWM in microseconds

RC2_TRIM: RC trim PWM

Note: This parameter is for advanced users

RC trim (neutral) PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Range Increment Units
800 - 2200 1 PWM in microseconds

RC2_MAX: RC max PWM

Note: This parameter is for advanced users

RC maximum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Range Increment Units
800 - 2200 1 PWM in microseconds

RC2_REVERSED: RC reversed

Note: This parameter is for advanced users

Reverse channel input. Set to 0 for normal operation. Set to 1 to reverse this input channel.

Values
Value Meaning
0 Normal
1 Reversed

RC2_DZ: RC dead-zone

Note: This parameter is for advanced users

PWM dead zone in microseconds around trim or bottom

Range Units
0 - 200 PWM in microseconds

RC3_ Parameters

RC3_MIN: RC min PWM

Note: This parameter is for advanced users

RC minimum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Range Increment Units
800 - 2200 1 PWM in microseconds

RC3_TRIM: RC trim PWM

Note: This parameter is for advanced users

RC trim (neutral) PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Range Increment Units
800 - 2200 1 PWM in microseconds

RC3_MAX: RC max PWM

Note: This parameter is for advanced users

RC maximum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Range Increment Units
800 - 2200 1 PWM in microseconds

RC3_REVERSED: RC reversed

Note: This parameter is for advanced users

Reverse channel input. Set to 0 for normal operation. Set to 1 to reverse this input channel.

Values
Value Meaning
0 Normal
1 Reversed

RC3_DZ: RC dead-zone

Note: This parameter is for advanced users

PWM dead zone in microseconds around trim or bottom

Range Units
0 - 200 PWM in microseconds

RC4_ Parameters

RC4_MIN: RC min PWM

Note: This parameter is for advanced users

RC minimum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Range Increment Units
800 - 2200 1 PWM in microseconds

RC4_TRIM: RC trim PWM

Note: This parameter is for advanced users

RC trim (neutral) PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Range Increment Units
800 - 2200 1 PWM in microseconds

RC4_MAX: RC max PWM

Note: This parameter is for advanced users

RC maximum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Range Increment Units
800 - 2200 1 PWM in microseconds

RC4_REVERSED: RC reversed

Note: This parameter is for advanced users

Reverse channel input. Set to 0 for normal operation. Set to 1 to reverse this input channel.

Values
Value Meaning
0 Normal
1 Reversed

RC4_DZ: RC dead-zone

Note: This parameter is for advanced users

PWM dead zone in microseconds around trim or bottom

Range Units
0 - 200 PWM in microseconds

RC5_ Parameters

RC5_MIN: RC min PWM

Note: This parameter is for advanced users

RC minimum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Range Increment Units
800 - 2200 1 PWM in microseconds

RC5_TRIM: RC trim PWM

Note: This parameter is for advanced users

RC trim (neutral) PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Range Increment Units
800 - 2200 1 PWM in microseconds

RC5_MAX: RC max PWM

Note: This parameter is for advanced users

RC maximum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Range Increment Units
800 - 2200 1 PWM in microseconds

RC5_REVERSED: RC reversed

Note: This parameter is for advanced users

Reverse channel input. Set to 0 for normal operation. Set to 1 to reverse this input channel.

Values
Value Meaning
0 Normal
1 Reversed

RC5_DZ: RC dead-zone

Note: This parameter is for advanced users

PWM dead zone in microseconds around trim or bottom

Range Units
0 - 200 PWM in microseconds

RC6_ Parameters

RC6_MIN: RC min PWM

Note: This parameter is for advanced users

RC minimum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Range Increment Units
800 - 2200 1 PWM in microseconds

RC6_TRIM: RC trim PWM

Note: This parameter is for advanced users

RC trim (neutral) PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Range Increment Units
800 - 2200 1 PWM in microseconds

RC6_MAX: RC max PWM

Note: This parameter is for advanced users

RC maximum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Range Increment Units
800 - 2200 1 PWM in microseconds

RC6_REVERSED: RC reversed

Note: This parameter is for advanced users

Reverse channel input. Set to 0 for normal operation. Set to 1 to reverse this input channel.

Values
Value Meaning
0 Normal
1 Reversed

RC6_DZ: RC dead-zone

Note: This parameter is for advanced users

PWM dead zone in microseconds around trim or bottom

Range Units
0 - 200 PWM in microseconds

RC7_ Parameters

RC7_MIN: RC min PWM

Note: This parameter is for advanced users

RC minimum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Range Increment Units
800 - 2200 1 PWM in microseconds

RC7_TRIM: RC trim PWM

Note: This parameter is for advanced users

RC trim (neutral) PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Range Increment Units
800 - 2200 1 PWM in microseconds

RC7_MAX: RC max PWM

Note: This parameter is for advanced users

RC maximum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Range Increment Units
800 - 2200 1 PWM in microseconds

RC7_REVERSED: RC reversed

Note: This parameter is for advanced users

Reverse channel input. Set to 0 for normal operation. Set to 1 to reverse this input channel.

Values
Value Meaning
0 Normal
1 Reversed

RC7_DZ: RC dead-zone

Note: This parameter is for advanced users

PWM dead zone in microseconds around trim or bottom

Range Units
0 - 200 PWM in microseconds

RC8_ Parameters

RC8_MIN: RC min PWM

Note: This parameter is for advanced users

RC minimum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Range Increment Units
800 - 2200 1 PWM in microseconds

RC8_TRIM: RC trim PWM

Note: This parameter is for advanced users

RC trim (neutral) PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Range Increment Units
800 - 2200 1 PWM in microseconds

RC8_MAX: RC max PWM

Note: This parameter is for advanced users

RC maximum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Range Increment Units
800 - 2200 1 PWM in microseconds

RC8_REVERSED: RC reversed

Note: This parameter is for advanced users

Reverse channel input. Set to 0 for normal operation. Set to 1 to reverse this input channel.

Values
Value Meaning
0 Normal
1 Reversed

RC8_DZ: RC dead-zone

Note: This parameter is for advanced users

PWM dead zone in microseconds around trim or bottom

Range Units
0 - 200 PWM in microseconds

RC9_ Parameters

RC9_MIN: RC min PWM

Note: This parameter is for advanced users

RC minimum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Range Increment Units
800 - 2200 1 PWM in microseconds

RC9_TRIM: RC trim PWM

Note: This parameter is for advanced users

RC trim (neutral) PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Range Increment Units
800 - 2200 1 PWM in microseconds

RC9_MAX: RC max PWM

Note: This parameter is for advanced users

RC maximum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Range Increment Units
800 - 2200 1 PWM in microseconds

RC9_REVERSED: RC reversed

Note: This parameter is for advanced users

Reverse channel input. Set to 0 for normal operation. Set to 1 to reverse this input channel.

Values
Value Meaning
0 Normal
1 Reversed

RC9_DZ: RC dead-zone

Note: This parameter is for advanced users

PWM dead zone in microseconds around trim or bottom

Range Units
0 - 200 PWM in microseconds

RCMAP_ Parameters

RCMAP_ROLL: Roll channel

Note: This parameter is for advanced users

Roll channel number. This is useful when you have a RC transmitter that can’t change the channel order easily. Roll is normally on channel 1, but you can move it to any channel with this parameter. Reboot is required for changes to take effect.

Range Increment RebootRequired
1 - 8 1 True

RCMAP_PITCH: Pitch channel

Note: This parameter is for advanced users

Pitch channel number. This is useful when you have a RC transmitter that can’t change the channel order easily. Pitch is normally on channel 2, but you can move it to any channel with this parameter. Reboot is required for changes to take effect.

Range Increment RebootRequired
1 - 8 1 True

RCMAP_THROTTLE: Throttle channel

Note: This parameter is for advanced users

Throttle channel number. This is useful when you have a RC transmitter that can’t change the channel order easily. Throttle is normally on channel 3, but you can move it to any channel with this parameter. Warning APM 2.X: Changing the throttle channel could produce unexpected fail-safe results if connection between receiver and on-board PPM Encoder is lost. Disabling on-board PPM Encoder is recommended. Reboot is required for changes to take effect.

Range Increment RebootRequired
1 - 8 1 True

RCMAP_YAW: Yaw channel

Note: This parameter is for advanced users

Yaw channel number. This is useful when you have a RC transmitter that can’t change the channel order easily. Yaw (also known as rudder) is normally on channel 4, but you can move it to any channel with this parameter. Reboot is required for changes to take effect.

Range Increment RebootRequired
1 - 8 1 True

RCMAP_FORWARD: Forward channel

Note: This parameter is for advanced users

Forward channel number. This is useful when you have a RC transmitter that can’t change the channel order easily. Forward is normally on channel 5, but you can move it to any channel with this parameter. Reboot is required for changes to take effect.

Range Increment RebootRequired
1 - 8 1 True

RCMAP_LATERAL: Lateral channel

Note: This parameter is for advanced users

Lateral channel number. This is useful when you have a RC transmitter that can’t change the channel order easily. Lateral is normally on channel 6, but you can move it to any channel with this parameter. Reboot is required for changes to take effect.

Range Increment RebootRequired
1 - 8 1 True

RELAY_ Parameters

RELAY_PIN: First Relay Pin

Digital pin number for first relay control. This is the pin used for camera control.

Values
Value Meaning
-1 Disabled
13 APM2 A9 pin
47 APM1 relay
50 Pixhawk AUXOUT1
51 Pixhawk AUXOUT2
52 Pixhawk AUXOUT3
53 Pixhawk AUXOUT4
54 Pixhawk AUXOUT5
55 Pixhawk AUXOUT6
111 PX4 FMU Relay1
112 PX4 FMU Relay2
113 PX4IO Relay1
114 PX4IO Relay2
115 PX4IO ACC1
116 PX4IO ACC2

RELAY_PIN2: Second Relay Pin

Digital pin number for 2nd relay control.

Values
Value Meaning
-1 Disabled
13 APM2 A9 pin
47 APM1 relay
50 Pixhawk AUXOUT1
51 Pixhawk AUXOUT2
52 Pixhawk AUXOUT3
53 Pixhawk AUXOUT4
54 Pixhawk AUXOUT5
55 Pixhawk AUXOUT6
111 PX4 FMU Relay1
112 PX4 FMU Relay2
113 PX4IO Relay1
114 PX4IO Relay2
115 PX4IO ACC1
116 PX4IO ACC2

RELAY_PIN3: Third Relay Pin

Digital pin number for 3rd relay control.

Values
Value Meaning
-1 Disabled
13 APM2 A9 pin
47 APM1 relay
50 Pixhawk AUXOUT1
51 Pixhawk AUXOUT2
52 Pixhawk AUXOUT3
53 Pixhawk AUXOUT4
54 Pixhawk AUXOUT5
55 Pixhawk AUXOUT6
111 PX4 FMU Relay1
112 PX4 FMU Relay2
113 PX4IO Relay1
114 PX4IO Relay2
115 PX4IO ACC1
116 PX4IO ACC2

RELAY_PIN4: Fourth Relay Pin

Digital pin number for 4th relay control.

Values
Value Meaning
-1 Disabled
13 APM2 A9 pin
47 APM1 relay
50 Pixhawk AUXOUT1
51 Pixhawk AUXOUT2
52 Pixhawk AUXOUT3
53 Pixhawk AUXOUT4
54 Pixhawk AUXOUT5
55 Pixhawk AUXOUT6
111 PX4 FMU Relay1
112 PX4 FMU Relay2
113 PX4IO Relay1
114 PX4IO Relay2
115 PX4IO ACC1
116 PX4IO ACC2

RELAY_DEFAULT: Default relay state

The state of the relay on boot.

Values
Value Meaning
0 Off
1 On
2 NoChange

RNGFND Parameters

RNGFND_TYPE: Rangefinder type

What type of rangefinder device that is connected

Values
Value Meaning
0 None
1 Analog
2 MaxbotixI2C
3 LidarLiteV2-I2C
5 PX4-PWM
6 BBB-PRU
7 LightWareI2C
8 LightWareSerial
9 Bebop
10 MAVLink
11 uLanding
12 LeddarOne
13 MaxbotixSerial
14 TeraRangerI2C
15 LidarLiteV3-I2C
16 VL53L0X

RNGFND_PIN: Rangefinder pin

Analog pin that rangefinder is connected to. Set this to 0..9 for the APM2 analog pins. Set to 64 on an APM1 for the dedicated ‘airspeed’ port on the end of the board. Set to 11 on PX4 for the analog ‘airspeed’ port. Set to 15 on the Pixhawk for the analog ‘airspeed’ port.

Values
Value Meaning
-1 Not Used
0 APM2-A0
1 APM2-A1
2 APM2-A2
3 APM2-A3
4 APM2-A4
5 APM2-A5
6 APM2-A6
7 APM2-A7
8 APM2-A8
9 APM2-A9
11 PX4-airspeed port
15 Pixhawk-airspeed port
64 APM1-airspeed port

RNGFND_SCALING: Rangefinder scaling

Scaling factor between rangefinder reading and distance. For the linear and inverted functions this is in meters per volt. For the hyperbolic function the units are meterVolts.

Increment Units
0.001 meters per volt

RNGFND_OFFSET: rangefinder offset

Offset in volts for zero distance for analog rangefinders. Offset added to distance in centimeters for PWM and I2C Lidars

Increment Units
0.001 volt

RNGFND_FUNCTION: Rangefinder function

Control over what function is used to calculate distance. For a linear function, the distance is (voltage-offset)*scaling. For a inverted function the distance is (offset-voltage)*scaling. For a hyperbolic function the distance is scaling/(voltage-offset). The functions return the distance in meters.

Values
Value Meaning
0 Linear
1 Inverted
2 Hyperbolic

RNGFND_MIN_CM: Rangefinder minimum distance

Minimum distance in centimeters that rangefinder can reliably read

Increment Units
1 centimeters

RNGFND_MAX_CM: Rangefinder maximum distance

Maximum distance in centimeters that rangefinder can reliably read

Increment Units
1 centimeters

RNGFND_STOP_PIN: Rangefinder stop pin

Digital pin that enables/disables rangefinder measurement for an analog rangefinder. A value of -1 means no pin. If this is set, then the pin is set to 1 to enable the rangefinder and set to 0 to disable it. This can be used to ensure that multiple sonar rangefinders don’t interfere with each other.

Values
Value Meaning
-1 Not Used
50 Pixhawk AUXOUT1
51 Pixhawk AUXOUT2
52 Pixhawk AUXOUT3
53 Pixhawk AUXOUT4
54 Pixhawk AUXOUT5
55 Pixhawk AUXOUT6
111 PX4 FMU Relay1
112 PX4 FMU Relay2
113 PX4IO Relay1
114 PX4IO Relay2
115 PX4IO ACC1
116 PX4IO ACC2

RNGFND_SETTLE: Rangefinder settle time

The time in milliseconds that the rangefinder reading takes to settle. This is only used when a STOP_PIN is specified. It determines how long we have to wait for the rangefinder to give a reading after we set the STOP_PIN high. For a sonar rangefinder with a range of around 7m this would need to be around 50 milliseconds to allow for the sonar pulse to travel to the target and back again.

Increment Units
1 milliseconds

RNGFND_RMETRIC: Ratiometric

This parameter sets whether an analog rangefinder is ratiometric. Most analog rangefinders are ratiometric, meaning that their output voltage is influenced by the supply voltage. Some analog rangefinders (such as the SF/02) have their own internal voltage regulators so they are not ratiometric.

Values
Value Meaning
0 No
1 Yes

RNGFND_PWRRNG: Powersave range

This parameter sets the estimated terrain distance in meters above which the sensor will be put into a power saving mode (if available). A value of zero means power saving is not enabled

Range Units
0 - 32767 meters

RNGFND_GNDCLEAR: Distance (in cm) from the range finder to the ground

This parameter sets the expected range measurement(in cm) that the range finder should return when the vehicle is on the ground.

Range Increment Units
5 - 127 1 centimeters

RNGFND_ADDR: Bus address of sensor

This sets the bus address of the sensor, where applicable. Used for the LightWare I2C sensor to allow for multiple sensors on different addresses. A value of 0 disables the sensor.

Range Increment
0 - 127 1

RNGFND_POS_X: X position offset

Note: This parameter is for advanced users

X position of the first rangefinder in body frame. Positive X is forward of the origin. Use the zero range datum point if supplied.

Units
meters

RNGFND_POS_Y: Y position offset

Note: This parameter is for advanced users

Y position of the first rangefinder in body frame. Positive Y is to the right of the origin. Use the zero range datum point if supplied.

Units
meters

RNGFND_POS_Z: Z position offset

Note: This parameter is for advanced users

Z position of the first rangefinder in body frame. Positive Z is down from the origin. Use the zero range datum point if supplied.

Units
meters

RNGFND_ORIENT: Rangefinder orientation

Note: This parameter is for advanced users

Orientation of rangefinder

Values
Value Meaning
0 Forward
1 Forward-Right
2 Right
3 Back-Right
4 Back
5 Back-Left
6 Left
7 Forward-Left
24 Up
25 Down

RNGFND2_TYPE: Second Rangefinder type

Note: This parameter is for advanced users

What type of rangefinder device that is connected

Values
Value Meaning
0 None
1 Analog
2 MaxbotixI2C
3 LidarLiteV2-I2C
5 PX4-PWM
6 BBB-PRU
7 LightWareI2C
8 LightWareSerial
9 Bebop
10 MAVLink
11 uLanding
12 LeddarOne
13 MaxbotixSerial
14 TeraRangerI2C
15 LidarLiteV3-I2C
16 VL53L0X

RNGFND2_PIN: Rangefinder pin

Note: This parameter is for advanced users

Analog pin that rangefinder is connected to. Set this to 0..9 for the APM2 analog pins. Set to 64 on an APM1 for the dedicated ‘airspeed’ port on the end of the board. Set to 11 on PX4 for the analog ‘airspeed’ port. Set to 15 on the Pixhawk for the analog ‘airspeed’ port.

Values
Value Meaning
-1 Not Used
0 APM2-A0
1 APM2-A1
2 APM2-A2
3 APM2-A3
4 APM2-A4
5 APM2-A5
6 APM2-A6
7 APM2-A7
8 APM2-A8
9 APM2-A9
11 PX4-airspeed port
15 Pixhawk-airspeed port
64 APM1-airspeed port

RNGFND2_SCALING: Rangefinder scaling

Note: This parameter is for advanced users

Scaling factor between rangefinder reading and distance. For the linear and inverted functions this is in meters per volt. For the hyperbolic function the units are meterVolts.

Increment Units
0.001 meters per volt

RNGFND2_OFFSET: rangefinder offset

Note: This parameter is for advanced users

Offset in volts for zero distance

Increment Units
0.001 volt

RNGFND2_FUNCTION: Rangefinder function

Note: This parameter is for advanced users

Control over what function is used to calculate distance. For a linear function, the distance is (voltage-offset)*scaling. For a inverted function the distance is (offset-voltage)*scaling. For a hyperbolic function the distance is scaling/(voltage-offset). The functions return the distance in meters.

Values
Value Meaning
0 Linear
1 Inverted
2 Hyperbolic

RNGFND2_MIN_CM: Rangefinder minimum distance

Note: This parameter is for advanced users

Minimum distance in centimeters that rangefinder can reliably read

Increment Units
1 centimeters

RNGFND2_MAX_CM: Rangefinder maximum distance

Note: This parameter is for advanced users

Maximum distance in centimeters that rangefinder can reliably read

Increment Units
1 centimeters

RNGFND2_STOP_PIN: Rangefinder stop pin

Note: This parameter is for advanced users

Digital pin that enables/disables rangefinder measurement for an analog rangefinder. A value of -1 means no pin. If this is set, then the pin is set to 1 to enable the rangefinder and set to 0 to disable it. This can be used to ensure that multiple sonar rangefinders don’t interfere with each other.

Values
Value Meaning
-1 Not Used
50 Pixhawk AUXOUT1
51 Pixhawk AUXOUT2
52 Pixhawk AUXOUT3
53 Pixhawk AUXOUT4
54 Pixhawk AUXOUT5
55 Pixhawk AUXOUT6
111 PX4 FMU Relay1
112 PX4 FMU Relay2
113 PX4IO Relay1
114 PX4IO Relay2
115 PX4IO ACC1
116 PX4IO ACC2

RNGFND2_SETTLE: Sonar settle time

Note: This parameter is for advanced users

The time in milliseconds that the rangefinder reading takes to settle. This is only used when a STOP_PIN is specified. It determines how long we have to wait for the rangefinder to give a reading after we set the STOP_PIN high. For a sonar rangefinder with a range of around 7m this would need to be around 50 milliseconds to allow for the sonar pulse to travel to the target and back again.

Increment Units
1 milliseconds

RNGFND2_RMETRIC: Ratiometric

Note: This parameter is for advanced users

This parameter sets whether an analog rangefinder is ratiometric. Most analog rangefinders are ratiometric, meaning that their output voltage is influenced by the supply voltage. Some analog rangefinders (such as the SF/02) have their own internal voltage regulators so they are not ratiometric.

Values
Value Meaning
0 No
1 Yes

RNGFND2_GNDCLEAR: Distance (in cm) from the second range finder to the ground

Note: This parameter is for advanced users

This parameter sets the expected range measurement(in cm) that the second range finder should return when the vehicle is on the ground.

Range Increment Units
0 - 127 1 centimeters

RNGFND2_ADDR: Bus address of second rangefinder

Note: This parameter is for advanced users

This sets the bus address of the sensor, where applicable. Used for the LightWare I2C sensor to allow for multiple sensors on different addresses. A value of 0 disables the sensor.

Range Increment
0 - 127 1

RNGFND2_POS_X: X position offset

Note: This parameter is for advanced users

X position of the second rangefinder in body frame. Positive X is forward of the origin. Use the zero range datum point if supplied.

Units
meters

RNGFND2_POS_Y: Y position offset

Note: This parameter is for advanced users

Y position of the second rangefinder in body frame. Positive Y is to the right of the origin. Use the zero range datum point if supplied.

Units
meters

RNGFND2_POS_Z: Z position offset

Note: This parameter is for advanced users

Z position of the second rangefinder in body frame. Positive Z is down from the origin. Use the zero range datum point if supplied.

Units
meters

RNGFND2_ORIENT: Rangefinder 2 orientation

Note: This parameter is for advanced users

Orientation of 2nd rangefinder

Values
Value Meaning
0 Forward
1 Forward-Right
2 Right
3 Back-Right
4 Back
5 Back-Left
6 Left
7 Forward-Left
24 Up
25 Down

RNGFND3_TYPE: Third Rangefinder type

Note: This parameter is for advanced users

What type of rangefinder device that is connected

Values
Value Meaning
0 None
1 Analog
2 MaxbotixI2C
3 LidarLiteV2-I2C
5 PX4-PWM
6 BBB-PRU
7 LightWareI2C
8 LightWareSerial
9 Bebop
10 MAVLink
11 uLanding
12 LeddarOne
13 MaxbotixSerial
14 TeraRangerI2C
15 LidarLiteV3-I2C
16 VL53L0X

RNGFND3_PIN: Rangefinder pin

Note: This parameter is for advanced users

Analog pin that rangefinder is connected to. Set this to 0..9 for the APM2 analog pins. Set to 64 on an APM1 for the dedicated ‘airspeed’ port on the end of the board. Set to 11 on PX4 for the analog ‘airspeed’ port. Set to 15 on the Pixhawk for the analog ‘airspeed’ port.

Values
Value Meaning
-1 Not Used
0 APM2-A0
1 APM2-A1
2 APM2-A2
3 APM2-A3
4 APM2-A4
5 APM2-A5
6 APM2-A6
7 APM2-A7
8 APM2-A8
9 APM2-A9
11 PX4-airspeed port
15 Pixhawk-airspeed port
64 APM1-airspeed port

RNGFND3_SCALING: Rangefinder scaling

Note: This parameter is for advanced users

Scaling factor between rangefinder reading and distance. For the linear and inverted functions this is in meters per volt. For the hyperbolic function the units are meterVolts.

Increment Units
0.001 meters per volt

RNGFND3_OFFSET: rangefinder offset

Note: This parameter is for advanced users

Offset in volts for zero distance

Increment Units
0.001 volt

RNGFND3_FUNCTION: Rangefinder function

Note: This parameter is for advanced users

Control over what function is used to calculate distance. For a linear function, the distance is (voltage-offset)*scaling. For a inverted function the distance is (offset-voltage)*scaling. For a hyperbolic function the distance is scaling/(voltage-offset). The functions return the distance in meters.

Values
Value Meaning
0 Linear
1 Inverted
2 Hyperbolic

RNGFND3_MIN_CM: Rangefinder minimum distance

Note: This parameter is for advanced users

Minimum distance in centimeters that rangefinder can reliably read

Increment Units
1 centimeters

RNGFND3_MAX_CM: Rangefinder maximum distance

Note: This parameter is for advanced users

Maximum distance in centimeters that rangefinder can reliably read

Increment Units
1 centimeters

RNGFND3_STOP_PIN: Rangefinder stop pin

Note: This parameter is for advanced users

Digital pin that enables/disables rangefinder measurement for an analog rangefinder. A value of -1 means no pin. If this is set, then the pin is set to 1 to enable the rangefinder and set to 0 to disable it. This can be used to ensure that multiple sonar rangefinders don’t interfere with each other.

Values
Value Meaning
-1 Not Used
50 Pixhawk AUXOUT1
51 Pixhawk AUXOUT2
52 Pixhawk AUXOUT3
53 Pixhawk AUXOUT4
54 Pixhawk AUXOUT5
55 Pixhawk AUXOUT6
111 PX4 FMU Relay1
112 PX4 FMU Relay2
113 PX4IO Relay1
114 PX4IO Relay2
115 PX4IO ACC1
116 PX4IO ACC2

RNGFND3_SETTLE: Sonar settle time

Note: This parameter is for advanced users

The time in milliseconds that the rangefinder reading takes to settle. This is only used when a STOP_PIN is specified. It determines how long we have to wait for the rangefinder to give a reading after we set the STOP_PIN high. For a sonar rangefinder with a range of around 7m this would need to be around 50 milliseconds to allow for the sonar pulse to travel to the target and back again.

Increment Units
1 milliseconds

RNGFND3_RMETRIC: Ratiometric

Note: This parameter is for advanced users

This parameter sets whether an analog rangefinder is ratiometric. Most analog rangefinders are ratiometric, meaning that their output voltage is influenced by the supply voltage. Some analog rangefinders (such as the SF/02) have their own internal voltage regulators so they are not ratiometric.

Values
Value Meaning
0 No
1 Yes

RNGFND3_GNDCLEAR: Distance (in cm) from the third range finder to the ground

Note: This parameter is for advanced users

This parameter sets the expected range measurement(in cm) that the third range finder should return when the vehicle is on the ground.

Range Increment Units
0 - 127 1 centimeters

RNGFND3_ADDR: Bus address of third rangefinder

Note: This parameter is for advanced users

This sets the bus address of the sensor, where applicable. Used for the LightWare I2C sensor to allow for multiple sensors on different addresses. A value of 0 disables the sensor.

Range Increment
0 - 127 1

RNGFND3_POS_X: X position offset

Note: This parameter is for advanced users

X position of the third rangefinder in body frame. Positive X is forward of the origin. Use the zero range datum point if supplied.

Units
meters

RNGFND3_POS_Y: Y position offset

Note: This parameter is for advanced users

Y position of the third rangefinder in body frame. Positive Y is to the right of the origin. Use the zero range datum point if supplied.

Units
meters

RNGFND3_POS_Z: Z position offset

Note: This parameter is for advanced users

Z position of the third rangefinder in body frame. Positive Z is down from the origin. Use the zero range datum point if supplied.

Units
meters

RNGFND3_ORIENT: Rangefinder 3 orientation

Note: This parameter is for advanced users

Orientation of 3rd rangefinder

Values
Value Meaning
0 Forward
1 Forward-Right
2 Right
3 Back-Right
4 Back
5 Back-Left
6 Left
7 Forward-Left
24 Up
25 Down

RNGFND4_TYPE: Fourth Rangefinder type

Note: This parameter is for advanced users

What type of rangefinder device that is connected

Values
Value Meaning
0 None
1 Analog
2 MaxbotixI2C
3 LidarLiteV2-I2C
5 PX4-PWM
6 BBB-PRU
7 LightWareI2C
8 LightWareSerial
9 Bebop
10 MAVLink
11 uLanding
12 LeddarOne
13 MaxbotixSerial
14 TeraRangerI2C
15 LidarLiteV3-I2C
16 VL53L0X

RNGFND4_PIN: Rangefinder pin

Note: This parameter is for advanced users

Analog pin that rangefinder is connected to. Set this to 0..9 for the APM2 analog pins. Set to 64 on an APM1 for the dedicated ‘airspeed’ port on the end of the board. Set to 11 on PX4 for the analog ‘airspeed’ port. Set to 15 on the Pixhawk for the analog ‘airspeed’ port.

Values
Value Meaning
-1 Not Used
0 APM2-A0
1 APM2-A1
2 APM2-A2
3 APM2-A3
4 APM2-A4
5 APM2-A5
6 APM2-A6
7 APM2-A7
8 APM2-A8
9 APM2-A9
11 PX4-airspeed port
15 Pixhawk-airspeed port
64 APM1-airspeed port

RNGFND4_SCALING: Rangefinder scaling

Note: This parameter is for advanced users

Scaling factor between rangefinder reading and distance. For the linear and inverted functions this is in meters per volt. For the hyperbolic function the units are meterVolts.

Increment Units
0.001 meters per volt

RNGFND4_OFFSET: rangefinder offset

Note: This parameter is for advanced users

Offset in volts for zero distance

Increment Units
0.001 volt

RNGFND4_FUNCTION: Rangefinder function

Note: This parameter is for advanced users

Control over what function is used to calculate distance. For a linear function, the distance is (voltage-offset)*scaling. For a inverted function the distance is (offset-voltage)*scaling. For a hyperbolic function the distance is scaling/(voltage-offset). The functions return the distance in meters.

Values
Value Meaning
0 Linear
1 Inverted
2 Hyperbolic

RNGFND4_MIN_CM: Rangefinder minimum distance

Note: This parameter is for advanced users

Minimum distance in centimeters that rangefinder can reliably read

Increment Units
1 centimeters

RNGFND4_MAX_CM: Rangefinder maximum distance

Note: This parameter is for advanced users

Maximum distance in centimeters that rangefinder can reliably read

Increment Units
1 centimeters

RNGFND4_STOP_PIN: Rangefinder stop pin

Note: This parameter is for advanced users

Digital pin that enables/disables rangefinder measurement for an analog rangefinder. A value of -1 means no pin. If this is set, then the pin is set to 1 to enable the rangefinder and set to 0 to disable it. This can be used to ensure that multiple sonar rangefinders don’t interfere with each other.

Values
Value Meaning
-1 Not Used
50 Pixhawk AUXOUT1
51 Pixhawk AUXOUT2
52 Pixhawk AUXOUT3
53 Pixhawk AUXOUT4
54 Pixhawk AUXOUT5
55 Pixhawk AUXOUT6
111 PX4 FMU Relay1
112 PX4 FMU Relay2
113 PX4IO Relay1
114 PX4IO Relay2
115 PX4IO ACC1
116 PX4IO ACC2

RNGFND4_SETTLE: Sonar settle time

Note: This parameter is for advanced users

The time in milliseconds that the rangefinder reading takes to settle. This is only used when a STOP_PIN is specified. It determines how long we have to wait for the rangefinder to give a reading after we set the STOP_PIN high. For a sonar rangefinder with a range of around 7m this would need to be around 50 milliseconds to allow for the sonar pulse to travel to the target and back again.

Increment Units
1 milliseconds

RNGFND4_RMETRIC: Ratiometric

Note: This parameter is for advanced users

This parameter sets whether an analog rangefinder is ratiometric. Most analog rangefinders are ratiometric, meaning that their output voltage is influenced by the supply voltage. Some analog rangefinders (such as the SF/02) have their own internal voltage regulators so they are not ratiometric.

Values
Value Meaning
0 No
1 Yes

RNGFND4_GNDCLEAR: Distance (in cm) from the fourth range finder to the ground

Note: This parameter is for advanced users

This parameter sets the expected range measurement(in cm) that the fourth range finder should return when the vehicle is on the ground.

Range Increment Units
0 - 127 1 centimeters

RNGFND4_ADDR: Bus address of fourth rangefinder

Note: This parameter is for advanced users

This sets the bus address of the sensor, where applicable. Used for the LightWare I2C sensor to allow for multiple sensors on different addresses. A value of 0 disables the sensor.

Range Increment
0 - 127 1

RNGFND4_POS_X: X position offset

Note: This parameter is for advanced users

X position of the fourth rangefinder in body frame. Use the zero range datum point if supplied.

Units
meters

RNGFND4_POS_Y: Y position offset

Note: This parameter is for advanced users

Y position of the fourth rangefinder in body frame. Use the zero range datum point if supplied.

Units
meters

RNGFND4_POS_Z: Z position offset

Note: This parameter is for advanced users

Z position of the fourth rangefinder in body frame. Use the zero range datum point if supplied.

Units
meters

RNGFND4_ORIENT: Rangefinder 4 orientation

Note: This parameter is for advanced users

Orientation of 4th range finder

Values
Value Meaning
0 Forward
1 Forward-Right
2 Right
3 Back-Right
4 Back
5 Back-Left
6 Left
7 Forward-Left
24 Up
25 Down

RSSI_ Parameters

RSSI_TYPE: RSSI Type

Radio Receiver RSSI type. If your radio receiver supports RSSI of some kind, set it here, then set its associated RSSI_XXXXX parameters, if any.

Values
Value Meaning
0 Disabled
1 AnalogPin
2 RCChannelPwmValue
3 ReceiverProtocol

RSSI_ANA_PIN: Receiver RSSI analog sensing pin

This selects an analog pin where the receiver RSSI voltage will be read.

Values
Value Meaning
0 APM2 A0
1 APM2 A1
13 APM2 A13
11 Pixracer
13 Pixhawk ADC4
14 Pixhawk ADC3
15 Pixhawk ADC6
103 Pixhawk SBUS

RSSI_PIN_LOW: Receiver RSSI voltage low

This is the voltage value that the radio receiver will put on the RSSI_ANA_PIN when the signal strength is the weakest. Since some radio receivers put out inverted values from what you might otherwise expect, this isn’t necessarily a lower value than RSSI_PIN_HIGH.

Range Increment Units
0 - 5.0 0.01 volt

RSSI_PIN_HIGH: Receiver RSSI voltage high

This is the voltage value that the radio receiver will put on the RSSI_ANA_PIN when the signal strength is the strongest. Since some radio receivers put out inverted values from what you might otherwise expect, this isn’t necessarily a higher value than RSSI_PIN_LOW.

Range Increment Units
0 - 5.0 0.01 volt

RSSI_CHANNEL: Receiver RSSI channel number

The channel number where RSSI will be output by the radio receiver (5 and above).

RSSI_CHAN_LOW: Receiver RSSI PWM low value

This is the PWM value in microseconds that the radio receiver will put on the RSSI_CHANNEL when the signal strength is the weakest. Since some radio receivers put out inverted values from what you might otherwise expect, this isn’t necessarily a lower value than RSSI_CHAN_HIGH.

Range Units
0 - 2000 PWM in microseconds

RSSI_CHAN_HIGH: Receiver RSSI PWM high value

This is the PWM value in microseconds that the radio receiver will put on the RSSI_CHANNEL when the signal strength is the strongest. Since some radio receivers put out inverted values from what you might otherwise expect, this isn’t necessarily a higher value than RSSI_CHAN_LOW.

Range Units
0 - 2000 PWM in microseconds

SCHED_ Parameters

SCHED_DEBUG: Scheduler debug level

Note: This parameter is for advanced users

Set to non-zero to enable scheduler debug messages. When set to show “Slips” the scheduler will display a message whenever a scheduled task is delayed due to too much CPU load. When set to ShowOverruns the scheduled will display a message whenever a task takes longer than the limit promised in the task table.

Values
Value Meaning
0 Disabled
2 ShowSlips
3 ShowOverruns

SCHED_LOOP_RATE: Scheduling main loop rate

Note: This parameter is for advanced users

This controls the rate of the main control loop in Hz. This should only be changed by developers. This only takes effect on restart

Values RebootRequired
Value Meaning
50 50Hz
100 100Hz
200 200Hz
250 250Hz
300 300Hz
400 400Hz
True

SERIAL Parameters

SERIAL0_BAUD: Serial0 baud rate

The baud rate used on the USB console. The APM2 can support all baudrates up to 115, and also can support 500. The PX4 can support rates of up to 1500. If you setup a rate you cannot support on APM2 and then can’t connect to your board you should load a firmware from a different vehicle type. That will reset all your parameters to defaults.

Values
Value Meaning
1 1200
2 2400
4 4800
9 9600
19 19200
38 38400
57 57600
111 111100
115 115200
460 460800
500 500000
921 921600
1500 1500000

SERIAL0_PROTOCOL: Console protocol selection

Control what protocol to use on the console.

Values RebootRequired
Value Meaning
1 MAVlink1
2 MAVLink2
True

SERIAL1_PROTOCOL: Telem1 protocol selection

Control what protocol to use on the Telem1 port. Note that the Frsky options require external converter hardware. See the wiki for details.

Values RebootRequired
Value Meaning
-1 None
1 MAVLink1
2 MAVLink2
3 Frsky D
4 Frsky SPort
5 GPS
7 Alexmos Gimbal Serial
8 SToRM32 Gimbal Serial
9 Lidar
10 FrSky SPort Passthrough (OpenTX)
11 Lidar360
12 Aerotenna uLanding
13 Beacon
True

SERIAL1_BAUD: Telem1 Baud Rate

The baud rate used on the Telem1 port. The APM2 can support all baudrates up to 115, and also can support 500. The PX4 can support rates of up to 1500. If you setup a rate you cannot support on APM2 and then can’t connect to your board you should load a firmware from a different vehicle type. That will reset all your parameters to defaults.

Values
Value Meaning
1 1200
2 2400
4 4800
9 9600
19 19200
38 38400
57 57600
111 111100
115 115200
500 500000
921 921600
1500 1500000

SERIAL2_PROTOCOL: Telemetry 2 protocol selection

Control what protocol to use on the Telem2 port. Note that the Frsky options require external converter hardware. See the wiki for details.

Values RebootRequired
Value Meaning
-1 None
1 MAVLink1
2 MAVLink2
3 Frsky D
4 Frsky SPort
5 GPS
7 Alexmos Gimbal Serial
8 SToRM32 Gimbal Serial
9 Lidar
10 FrSky SPort Passthrough (OpenTX)
11 Lidar360
12 Aerotenna uLanding
13 Beacon
True

SERIAL2_BAUD: Telemetry 2 Baud Rate

The baud rate of the Telem2 port. The APM2 can support all baudrates up to 115, and also can support 500. The PX4 can support rates of up to 1500. If you setup a rate you cannot support on APM2 and then can’t connect to your board you should load a firmware from a different vehicle type. That will reset all your parameters to defaults.

Values
Value Meaning
1 1200
2 2400
4 4800
9 9600
19 19200
38 38400
57 57600
111 111100
115 115200
500 500000
921 921600
1500 1500000

SERIAL3_PROTOCOL: Serial 3 (GPS) protocol selection

Control what protocol Serial 3 (GPS) should be used for. Note that the Frsky options require external converter hardware. See the wiki for details.

Values RebootRequired
Value Meaning
-1 None
1 MAVLink1
2 MAVLink2
3 Frsky D
4 Frsky SPort
5 GPS
7 Alexmos Gimbal Serial
8 SToRM32 Gimbal Serial
9 Lidar
10 FrSky SPort Passthrough (OpenTX)
11 Lidar360
12 Aerotenna uLanding
13 Beacon
True

SERIAL3_BAUD: Serial 3 (GPS) Baud Rate

The baud rate used for the Serial 3 (GPS). The APM2 can support all baudrates up to 115, and also can support 500. The PX4 can support rates of up to 1500. If you setup a rate you cannot support on APM2 and then can’t connect to your board you should load a firmware from a different vehicle type. That will reset all your parameters to defaults.

Values
Value Meaning
1 1200
2 2400
4 4800
9 9600
19 19200
38 38400
57 57600
111 111100
115 115200
500 500000
921 921600
1500 1500000

SERIAL4_PROTOCOL: Serial4 protocol selection

Control what protocol Serial4 port should be used for. Note that the Frsky options require external converter hardware. See the wiki for details.

Values RebootRequired
Value Meaning
-1 None
1 MAVLink1
2 MAVLink2
3 Frsky D
4 Frsky SPort
5 GPS
7 Alexmos Gimbal Serial
8 SToRM32 Gimbal Serial
9 Lidar
10 FrSky SPort Passthrough (OpenTX)
11 Lidar360
12 Aerotenna uLanding
13 Beacon
True

SERIAL4_BAUD: Serial 4 Baud Rate

The baud rate used for Serial4. The APM2 can support all baudrates up to 115, and also can support 500. The PX4 can support rates of up to 1500. If you setup a rate you cannot support on APM2 and then can’t connect to your board you should load a firmware from a different vehicle type. That will reset all your parameters to defaults.

Values
Value Meaning
1 1200
2 2400
4 4800
9 9600
19 19200
38 38400
57 57600
111 111100
115 115200
500 500000
921 921600
1500 1500000

SERIAL5_PROTOCOL: Serial5 protocol selection

Control what protocol Serial5 port should be used for. Note that the Frsky options require external converter hardware. See the wiki for details.

Values RebootRequired
Value Meaning
-1 None
1 MAVLink1
2 MAVLink2
3 Frsky D
4 Frsky SPort
5 GPS
7 Alexmos Gimbal Serial
8 SToRM32 Gimbal Serial
9 Lidar
10 FrSky SPort Passthrough (OpenTX)
11 Lidar360
12 Aerotenna uLanding
13 Beacon
True

SERIAL5_BAUD: Serial 5 Baud Rate

The baud rate used for Serial5. The APM2 can support all baudrates up to 115, and also can support 500. The PX4 can support rates of up to 1500. If you setup a rate you cannot support on APM2 and then can’t connect to your board you should load a firmware from a different vehicle type. That will reset all your parameters to defaults.

Values
Value Meaning
1 1200
2 2400
4 4800
9 9600
19 19200
38 38400
57 57600
111 111100
115 115200
500 500000
921 921600
1500 1500000

SERVO Parameters

SERVO_AUTO_TRIM: Automatic servo trim

Note: This parameter is for advanced users

This enables automatic servo trim in flight. Servos will be trimed in stabilized flight modes when the aircraft is close to level. Changes to servo trim will be saved every 10 seconds and will persist between flights.

Values
Value Meaning
0 Disable
1 Enable

SERVO_RATE: Servo default output rate

Note: This parameter is for advanced users

This sets the default output rate in Hz for all outputs.

Range Units
25 - 400 hertz

SERVO10_ Parameters

SERVO10_MIN: Minimum PWM

minimum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Range Increment Units
800 - 2200 1 PWM in microseconds

SERVO10_MAX: Maximum PWM

maximum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Range Increment Units
800 - 2200 1 PWM in microseconds

SERVO10_TRIM: Trim PWM

Trim PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Range Increment Units
800 - 2200 1 PWM in microseconds

SERVO10_REVERSED: Servo reverse

Reverse servo operation. Set to 0 for normal operation. Set to 1 to reverse this output channel.

Values
Value Meaning
0 Normal
1 Reversed

SERVO10_FUNCTION: Servo output function

Function assigned to this servo. Seeing this to Disabled(0) will setup this output for control by auto missions or MAVLink servo set commands. any other value will enable the corresponding function

Values
Value Meaning
0 Disabled
1 RCPassThru
2 Flap
3 Flap_auto
4 Aileron
6 mount_pan
7 mount_tilt
8 mount_roll
9 mount_open
10 camera_trigger
11 release
12 mount2_pan
13 mount2_tilt
14 mount2_roll
15 mount2_open
16 DifferentialSpoilerLeft1
17 DifferentialSpoilerRight1
86 DifferentialSpoilerLeft2
87 DifferentialSpoilerRight2
19 Elevator
21 Rudder
24 FlaperonLeft
25 FlaperonRight
26 GroundSteering
27 Parachute
28 EPM
29 LandingGear
30 EngineRunEnable
31 HeliRSC
32 HeliTailRSC
33 Motor1
34 Motor2
35 Motor3
36 Motor4
37 Motor5
38 Motor6
39 Motor7
40 Motor8
41 MotorTilt
51 RCIN1
52 RCIN2
53 RCIN3
54 RCIN4
55 RCIN5
56 RCIN6
57 RCIN7
58 RCIN8
59 RCIN9
60 RCIN10
61 RCIN11
62 RCIN12
63 RCIN13
64 RCIN14
65 RCIN15
66 RCIN16
67 Ignition
68 Choke
69 Starter
70 Throttle
71 TrackerYaw
72 TrackerPitch
73 ThrottleLeft
74 ThrottleRight
75 tiltMotorLeft
76 tiltMotorRight
77 ElevonLeft
78 ElevonRight
79 VTailLeft
80 VTailRight
81 BoostThrottle
82 Motor9
83 Motor10
84 Motor11
85 Motor12

SERVO11_ Parameters

SERVO11_MIN: Minimum PWM

minimum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Range Increment Units
800 - 2200 1 PWM in microseconds

SERVO11_MAX: Maximum PWM

maximum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Range Increment Units
800 - 2200 1 PWM in microseconds

SERVO11_TRIM: Trim PWM

Trim PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Range Increment Units
800 - 2200 1 PWM in microseconds

SERVO11_REVERSED: Servo reverse

Reverse servo operation. Set to 0 for normal operation. Set to 1 to reverse this output channel.

Values
Value Meaning
0 Normal
1 Reversed

SERVO11_FUNCTION: Servo output function

Function assigned to this servo. Seeing this to Disabled(0) will setup this output for control by auto missions or MAVLink servo set commands. any other value will enable the corresponding function

Values
Value Meaning
0 Disabled
1 RCPassThru
2 Flap
3 Flap_auto
4 Aileron
6 mount_pan
7 mount_tilt
8 mount_roll
9 mount_open
10 camera_trigger
11 release
12 mount2_pan
13 mount2_tilt
14 mount2_roll
15 mount2_open
16 DifferentialSpoilerLeft1
17 DifferentialSpoilerRight1
86 DifferentialSpoilerLeft2
87 DifferentialSpoilerRight2
19 Elevator
21 Rudder
24 FlaperonLeft
25 FlaperonRight
26 GroundSteering
27 Parachute
28 EPM
29 LandingGear
30 EngineRunEnable
31 HeliRSC
32 HeliTailRSC
33 Motor1
34 Motor2
35 Motor3
36 Motor4
37 Motor5
38 Motor6
39 Motor7
40 Motor8
41 MotorTilt
51 RCIN1
52 RCIN2
53 RCIN3
54 RCIN4
55 RCIN5
56 RCIN6
57 RCIN7
58 RCIN8
59 RCIN9
60 RCIN10
61 RCIN11
62 RCIN12
63 RCIN13
64 RCIN14
65 RCIN15
66 RCIN16
67 Ignition
68 Choke
69 Starter
70 Throttle
71 TrackerYaw
72 TrackerPitch
73 ThrottleLeft
74 ThrottleRight
75 tiltMotorLeft
76 tiltMotorRight
77 ElevonLeft
78 ElevonRight
79 VTailLeft
80 VTailRight
81 BoostThrottle
82 Motor9
83 Motor10
84 Motor11
85 Motor12

SERVO12_ Parameters

SERVO12_MIN: Minimum PWM

minimum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Range Increment Units
800 - 2200 1 PWM in microseconds

SERVO12_MAX: Maximum PWM

maximum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Range Increment Units
800 - 2200 1 PWM in microseconds

SERVO12_TRIM: Trim PWM

Trim PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Range Increment Units
800 - 2200 1 PWM in microseconds

SERVO12_REVERSED: Servo reverse

Reverse servo operation. Set to 0 for normal operation. Set to 1 to reverse this output channel.

Values
Value Meaning
0 Normal
1 Reversed

SERVO12_FUNCTION: Servo output function

Function assigned to this servo. Seeing this to Disabled(0) will setup this output for control by auto missions or MAVLink servo set commands. any other value will enable the corresponding function

Values
Value Meaning
0 Disabled
1 RCPassThru
2 Flap
3 Flap_auto
4 Aileron
6 mount_pan
7 mount_tilt
8 mount_roll
9 mount_open
10 camera_trigger
11 release
12 mount2_pan
13 mount2_tilt
14 mount2_roll
15 mount2_open
16 DifferentialSpoilerLeft1
17 DifferentialSpoilerRight1
86 DifferentialSpoilerLeft2
87 DifferentialSpoilerRight2
19 Elevator
21 Rudder
24 FlaperonLeft
25 FlaperonRight
26 GroundSteering
27 Parachute
28 EPM
29 LandingGear
30 EngineRunEnable
31 HeliRSC
32 HeliTailRSC
33 Motor1
34 Motor2
35 Motor3
36 Motor4
37 Motor5
38 Motor6
39 Motor7
40 Motor8
41 MotorTilt
51 RCIN1
52 RCIN2
53 RCIN3
54 RCIN4
55 RCIN5
56 RCIN6
57 RCIN7
58 RCIN8
59 RCIN9
60 RCIN10
61 RCIN11
62 RCIN12
63 RCIN13
64 RCIN14
65 RCIN15
66 RCIN16
67 Ignition
68 Choke
69 Starter
70 Throttle
71 TrackerYaw
72 TrackerPitch
73 ThrottleLeft
74 ThrottleRight
75 tiltMotorLeft
76 tiltMotorRight
77 ElevonLeft
78 ElevonRight
79 VTailLeft
80 VTailRight
81 BoostThrottle
82 Motor9
83 Motor10
84 Motor11
85 Motor12

SERVO13_ Parameters

SERVO13_MIN: Minimum PWM

minimum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Range Increment Units
800 - 2200 1 PWM in microseconds

SERVO13_MAX: Maximum PWM

maximum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Range Increment Units
800 - 2200 1 PWM in microseconds

SERVO13_TRIM: Trim PWM

Trim PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Range Increment Units
800 - 2200 1 PWM in microseconds

SERVO13_REVERSED: Servo reverse

Reverse servo operation. Set to 0 for normal operation. Set to 1 to reverse this output channel.

Values
Value Meaning
0 Normal
1 Reversed

SERVO13_FUNCTION: Servo output function

Function assigned to this servo. Seeing this to Disabled(0) will setup this output for control by auto missions or MAVLink servo set commands. any other value will enable the corresponding function

Values
Value Meaning
0 Disabled
1 RCPassThru
2 Flap
3 Flap_auto
4 Aileron
6 mount_pan
7 mount_tilt
8 mount_roll
9 mount_open
10 camera_trigger
11 release
12 mount2_pan
13 mount2_tilt
14 mount2_roll
15 mount2_open
16 DifferentialSpoilerLeft1
17 DifferentialSpoilerRight1
86 DifferentialSpoilerLeft2
87 DifferentialSpoilerRight2
19 Elevator
21 Rudder
24 FlaperonLeft
25 FlaperonRight
26 GroundSteering
27 Parachute
28 EPM
29 LandingGear
30 EngineRunEnable
31 HeliRSC
32 HeliTailRSC
33 Motor1
34 Motor2
35 Motor3
36 Motor4
37 Motor5
38 Motor6
39 Motor7
40 Motor8
41 MotorTilt
51 RCIN1
52 RCIN2
53 RCIN3
54 RCIN4
55 RCIN5
56 RCIN6
57 RCIN7
58 RCIN8
59 RCIN9
60 RCIN10
61 RCIN11
62 RCIN12
63 RCIN13
64 RCIN14
65 RCIN15
66 RCIN16
67 Ignition
68 Choke
69 Starter
70 Throttle
71 TrackerYaw
72 TrackerPitch
73 ThrottleLeft
74 ThrottleRight
75 tiltMotorLeft
76 tiltMotorRight
77 ElevonLeft
78 ElevonRight
79 VTailLeft
80 VTailRight
81 BoostThrottle
82 Motor9
83 Motor10
84 Motor11
85 Motor12

SERVO14_ Parameters

SERVO14_MIN: Minimum PWM

minimum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Range Increment Units
800 - 2200 1 PWM in microseconds

SERVO14_MAX: Maximum PWM

maximum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Range Increment Units
800 - 2200 1 PWM in microseconds

SERVO14_TRIM: Trim PWM

Trim PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Range Increment Units
800 - 2200 1 PWM in microseconds

SERVO14_REVERSED: Servo reverse

Reverse servo operation. Set to 0 for normal operation. Set to 1 to reverse this output channel.

Values
Value Meaning
0 Normal
1 Reversed

SERVO14_FUNCTION: Servo output function

Function assigned to this servo. Seeing this to Disabled(0) will setup this output for control by auto missions or MAVLink servo set commands. any other value will enable the corresponding function

Values
Value Meaning
0 Disabled
1 RCPassThru
2 Flap
3 Flap_auto
4 Aileron
6 mount_pan
7 mount_tilt
8 mount_roll
9 mount_open
10 camera_trigger
11 release
12 mount2_pan
13 mount2_tilt
14 mount2_roll
15 mount2_open
16 DifferentialSpoilerLeft1
17 DifferentialSpoilerRight1
86 DifferentialSpoilerLeft2
87 DifferentialSpoilerRight2
19 Elevator
21 Rudder
24 FlaperonLeft
25 FlaperonRight
26 GroundSteering
27 Parachute
28 EPM
29 LandingGear
30 EngineRunEnable
31 HeliRSC
32 HeliTailRSC
33 Motor1
34 Motor2
35 Motor3
36 Motor4
37 Motor5
38 Motor6
39 Motor7
40 Motor8
41 MotorTilt
51 RCIN1
52 RCIN2
53 RCIN3
54 RCIN4
55 RCIN5
56 RCIN6
57 RCIN7
58 RCIN8
59 RCIN9
60 RCIN10
61 RCIN11
62 RCIN12
63 RCIN13
64 RCIN14
65 RCIN15
66 RCIN16
67 Ignition
68 Choke
69 Starter
70 Throttle
71 TrackerYaw
72 TrackerPitch
73 ThrottleLeft
74 ThrottleRight
75 tiltMotorLeft
76 tiltMotorRight
77 ElevonLeft
78 ElevonRight
79 VTailLeft
80 VTailRight
81 BoostThrottle
82 Motor9
83 Motor10
84 Motor11
85 Motor12

SERVO15_ Parameters

SERVO15_MIN: Minimum PWM

minimum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Range Increment Units
800 - 2200 1 PWM in microseconds

SERVO15_MAX: Maximum PWM

maximum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Range Increment Units
800 - 2200 1 PWM in microseconds

SERVO15_TRIM: Trim PWM

Trim PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Range Increment Units
800 - 2200 1 PWM in microseconds

SERVO15_REVERSED: Servo reverse

Reverse servo operation. Set to 0 for normal operation. Set to 1 to reverse this output channel.

Values
Value Meaning
0 Normal
1 Reversed

SERVO15_FUNCTION: Servo output function

Function assigned to this servo. Seeing this to Disabled(0) will setup this output for control by auto missions or MAVLink servo set commands. any other value will enable the corresponding function

Values
Value Meaning
0 Disabled
1 RCPassThru
2 Flap
3 Flap_auto
4 Aileron
6 mount_pan
7 mount_tilt
8 mount_roll
9 mount_open
10 camera_trigger
11 release
12 mount2_pan
13 mount2_tilt
14 mount2_roll
15 mount2_open
16 DifferentialSpoilerLeft1
17 DifferentialSpoilerRight1
86 DifferentialSpoilerLeft2
87 DifferentialSpoilerRight2
19 Elevator
21 Rudder
24 FlaperonLeft
25 FlaperonRight
26 GroundSteering
27 Parachute
28 EPM
29 LandingGear
30 EngineRunEnable
31 HeliRSC
32 HeliTailRSC
33 Motor1
34 Motor2
35 Motor3
36 Motor4
37 Motor5
38 Motor6
39 Motor7
40 Motor8
41 MotorTilt
51 RCIN1
52 RCIN2
53 RCIN3
54 RCIN4
55 RCIN5
56 RCIN6
57 RCIN7
58 RCIN8
59 RCIN9
60 RCIN10
61 RCIN11
62 RCIN12
63 RCIN13
64 RCIN14
65 RCIN15
66 RCIN16
67 Ignition
68 Choke
69 Starter
70 Throttle
71 TrackerYaw
72 TrackerPitch
73 ThrottleLeft
74 ThrottleRight
75 tiltMotorLeft
76 tiltMotorRight
77 ElevonLeft
78 ElevonRight
79 VTailLeft
80 VTailRight
81 BoostThrottle
82 Motor9
83 Motor10
84 Motor11
85 Motor12

SERVO16_ Parameters

SERVO16_MIN: Minimum PWM

minimum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Range Increment Units
800 - 2200 1 PWM in microseconds

SERVO16_MAX: Maximum PWM

maximum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Range Increment Units
800 - 2200 1 PWM in microseconds

SERVO16_TRIM: Trim PWM

Trim PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Range Increment Units
800 - 2200 1 PWM in microseconds

SERVO16_REVERSED: Servo reverse

Reverse servo operation. Set to 0 for normal operation. Set to 1 to reverse this output channel.

Values
Value Meaning
0 Normal
1 Reversed

SERVO16_FUNCTION: Servo output function

Function assigned to this servo. Seeing this to Disabled(0) will setup this output for control by auto missions or MAVLink servo set commands. any other value will enable the corresponding function

Values
Value Meaning
0 Disabled
1 RCPassThru
2 Flap
3 Flap_auto
4 Aileron
6 mount_pan
7 mount_tilt
8 mount_roll
9 mount_open
10 camera_trigger
11 release
12 mount2_pan
13 mount2_tilt
14 mount2_roll
15 mount2_open
16 DifferentialSpoilerLeft1
17 DifferentialSpoilerRight1
86 DifferentialSpoilerLeft2
87 DifferentialSpoilerRight2
19 Elevator
21 Rudder
24 FlaperonLeft
25 FlaperonRight
26 GroundSteering
27 Parachute
28 EPM
29 LandingGear
30 EngineRunEnable
31 HeliRSC
32 HeliTailRSC
33 Motor1
34 Motor2
35 Motor3
36 Motor4
37 Motor5
38 Motor6
39 Motor7
40 Motor8
41 MotorTilt
51 RCIN1
52 RCIN2
53 RCIN3
54 RCIN4
55 RCIN5
56 RCIN6
57 RCIN7
58 RCIN8
59 RCIN9
60 RCIN10
61 RCIN11
62 RCIN12
63 RCIN13
64 RCIN14
65 RCIN15
66 RCIN16
67 Ignition
68 Choke
69 Starter
70 Throttle
71 TrackerYaw
72 TrackerPitch
73 ThrottleLeft
74 ThrottleRight
75 tiltMotorLeft
76 tiltMotorRight
77 ElevonLeft
78 ElevonRight
79 VTailLeft
80 VTailRight
81 BoostThrottle
82 Motor9
83 Motor10
84 Motor11
85 Motor12

SERVO1_ Parameters

SERVO1_MIN: Minimum PWM

minimum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Range Increment Units
800 - 2200 1 PWM in microseconds

SERVO1_MAX: Maximum PWM

maximum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Range Increment Units
800 - 2200 1 PWM in microseconds

SERVO1_TRIM: Trim PWM

Trim PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Range Increment Units
800 - 2200 1 PWM in microseconds

SERVO1_REVERSED: Servo reverse

Reverse servo operation. Set to 0 for normal operation. Set to 1 to reverse this output channel.

Values
Value Meaning
0 Normal
1 Reversed

SERVO1_FUNCTION: Servo output function

Function assigned to this servo. Seeing this to Disabled(0) will setup this output for control by auto missions or MAVLink servo set commands. any other value will enable the corresponding function

Values
Value Meaning
0 Disabled
1 RCPassThru
2 Flap
3 Flap_auto
4 Aileron
6 mount_pan
7 mount_tilt
8 mount_roll
9 mount_open
10 camera_trigger
11 release
12 mount2_pan
13 mount2_tilt
14 mount2_roll
15 mount2_open
16 DifferentialSpoilerLeft1
17 DifferentialSpoilerRight1
86 DifferentialSpoilerLeft2
87 DifferentialSpoilerRight2
19 Elevator
21 Rudder
24 FlaperonLeft
25 FlaperonRight
26 GroundSteering
27 Parachute
28 EPM
29 LandingGear
30 EngineRunEnable
31 HeliRSC
32 HeliTailRSC
33 Motor1
34 Motor2
35 Motor3
36 Motor4
37 Motor5
38 Motor6
39 Motor7
40 Motor8
41 MotorTilt
51 RCIN1
52 RCIN2
53 RCIN3
54 RCIN4
55 RCIN5
56 RCIN6
57 RCIN7
58 RCIN8
59 RCIN9
60 RCIN10
61 RCIN11
62 RCIN12
63 RCIN13
64 RCIN14
65 RCIN15
66 RCIN16
67 Ignition
68 Choke
69 Starter
70 Throttle
71 TrackerYaw
72 TrackerPitch
73 ThrottleLeft
74 ThrottleRight
75 tiltMotorLeft
76 tiltMotorRight
77 ElevonLeft
78 ElevonRight
79 VTailLeft
80 VTailRight
81 BoostThrottle
82 Motor9
83 Motor10
84 Motor11
85 Motor12

SERVO2_ Parameters

SERVO2_MIN: Minimum PWM

minimum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Range Increment Units
800 - 2200 1 PWM in microseconds

SERVO2_MAX: Maximum PWM

maximum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Range Increment Units
800 - 2200 1 PWM in microseconds

SERVO2_TRIM: Trim PWM

Trim PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Range Increment Units
800 - 2200 1 PWM in microseconds

SERVO2_REVERSED: Servo reverse

Reverse servo operation. Set to 0 for normal operation. Set to 1 to reverse this output channel.

Values
Value Meaning
0 Normal
1 Reversed

SERVO2_FUNCTION: Servo output function

Function assigned to this servo. Seeing this to Disabled(0) will setup this output for control by auto missions or MAVLink servo set commands. any other value will enable the corresponding function

Values
Value Meaning
0 Disabled
1 RCPassThru
2 Flap
3 Flap_auto
4 Aileron
6 mount_pan
7 mount_tilt
8 mount_roll
9 mount_open
10 camera_trigger
11 release
12 mount2_pan
13 mount2_tilt
14 mount2_roll
15 mount2_open
16 DifferentialSpoilerLeft1
17 DifferentialSpoilerRight1
86 DifferentialSpoilerLeft2
87 DifferentialSpoilerRight2
19 Elevator
21 Rudder
24 FlaperonLeft
25 FlaperonRight
26 GroundSteering
27 Parachute
28 EPM
29 LandingGear
30 EngineRunEnable
31 HeliRSC
32 HeliTailRSC
33 Motor1
34 Motor2
35 Motor3
36 Motor4
37 Motor5
38 Motor6
39 Motor7
40 Motor8
41 MotorTilt
51 RCIN1
52 RCIN2
53 RCIN3
54 RCIN4
55 RCIN5
56 RCIN6
57 RCIN7
58 RCIN8
59 RCIN9
60 RCIN10
61 RCIN11
62 RCIN12
63 RCIN13
64 RCIN14
65 RCIN15
66 RCIN16
67 Ignition
68 Choke
69 Starter
70 Throttle
71 TrackerYaw
72 TrackerPitch
73 ThrottleLeft
74 ThrottleRight
75 tiltMotorLeft
76 tiltMotorRight
77 ElevonLeft
78 ElevonRight
79 VTailLeft
80 VTailRight
81 BoostThrottle
82 Motor9
83 Motor10
84 Motor11
85 Motor12

SERVO3_ Parameters

SERVO3_MIN: Minimum PWM

minimum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Range Increment Units
800 - 2200 1 PWM in microseconds

SERVO3_MAX: Maximum PWM

maximum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Range Increment Units
800 - 2200 1 PWM in microseconds

SERVO3_TRIM: Trim PWM

Trim PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Range Increment Units
800 - 2200 1 PWM in microseconds

SERVO3_REVERSED: Servo reverse

Reverse servo operation. Set to 0 for normal operation. Set to 1 to reverse this output channel.

Values
Value Meaning
0 Normal
1 Reversed

SERVO3_FUNCTION: Servo output function

Function assigned to this servo. Seeing this to Disabled(0) will setup this output for control by auto missions or MAVLink servo set commands. any other value will enable the corresponding function

Values
Value Meaning
0 Disabled
1 RCPassThru
2 Flap
3 Flap_auto
4 Aileron
6 mount_pan
7 mount_tilt
8 mount_roll
9 mount_open
10 camera_trigger
11 release
12 mount2_pan
13 mount2_tilt
14 mount2_roll
15 mount2_open
16 DifferentialSpoilerLeft1
17 DifferentialSpoilerRight1
86 DifferentialSpoilerLeft2
87 DifferentialSpoilerRight2
19 Elevator
21 Rudder
24 FlaperonLeft
25 FlaperonRight
26 GroundSteering
27 Parachute
28 EPM
29 LandingGear
30 EngineRunEnable
31 HeliRSC
32 HeliTailRSC
33 Motor1
34 Motor2
35 Motor3
36 Motor4
37 Motor5
38 Motor6
39 Motor7
40 Motor8
41 MotorTilt
51 RCIN1
52 RCIN2
53 RCIN3
54 RCIN4
55 RCIN5
56 RCIN6
57 RCIN7
58 RCIN8
59 RCIN9
60 RCIN10
61 RCIN11
62 RCIN12
63 RCIN13
64 RCIN14
65 RCIN15
66 RCIN16
67 Ignition
68 Choke
69 Starter
70 Throttle
71 TrackerYaw
72 TrackerPitch
73 ThrottleLeft
74 ThrottleRight
75 tiltMotorLeft
76 tiltMotorRight
77 ElevonLeft
78 ElevonRight
79 VTailLeft
80 VTailRight
81 BoostThrottle
82 Motor9
83 Motor10
84 Motor11
85 Motor12

SERVO4_ Parameters

SERVO4_MIN: Minimum PWM

minimum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Range Increment Units
800 - 2200 1 PWM in microseconds

SERVO4_MAX: Maximum PWM

maximum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Range Increment Units
800 - 2200 1 PWM in microseconds

SERVO4_TRIM: Trim PWM

Trim PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Range Increment Units
800 - 2200 1 PWM in microseconds

SERVO4_REVERSED: Servo reverse

Reverse servo operation. Set to 0 for normal operation. Set to 1 to reverse this output channel.

Values
Value Meaning
0 Normal
1 Reversed

SERVO4_FUNCTION: Servo output function

Function assigned to this servo. Seeing this to Disabled(0) will setup this output for control by auto missions or MAVLink servo set commands. any other value will enable the corresponding function

Values
Value Meaning
0 Disabled
1 RCPassThru
2 Flap
3 Flap_auto
4 Aileron
6 mount_pan
7 mount_tilt
8 mount_roll
9 mount_open
10 camera_trigger
11 release
12 mount2_pan
13 mount2_tilt
14 mount2_roll
15 mount2_open
16 DifferentialSpoilerLeft1
17 DifferentialSpoilerRight1
86 DifferentialSpoilerLeft2
87 DifferentialSpoilerRight2
19 Elevator
21 Rudder
24 FlaperonLeft
25 FlaperonRight
26 GroundSteering
27 Parachute
28 EPM
29 LandingGear
30 EngineRunEnable
31 HeliRSC
32 HeliTailRSC
33 Motor1
34 Motor2
35 Motor3
36 Motor4
37 Motor5
38 Motor6
39 Motor7
40 Motor8
41 MotorTilt
51 RCIN1
52 RCIN2
53 RCIN3
54 RCIN4
55 RCIN5
56 RCIN6
57 RCIN7
58 RCIN8
59 RCIN9
60 RCIN10
61 RCIN11
62 RCIN12
63 RCIN13
64 RCIN14
65 RCIN15
66 RCIN16
67 Ignition
68 Choke
69 Starter
70 Throttle
71 TrackerYaw
72 TrackerPitch
73 ThrottleLeft
74 ThrottleRight
75 tiltMotorLeft
76 tiltMotorRight
77 ElevonLeft
78 ElevonRight
79 VTailLeft
80 VTailRight
81 BoostThrottle
82 Motor9
83 Motor10
84 Motor11
85 Motor12

SERVO5_ Parameters

SERVO5_MIN: Minimum PWM

minimum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Range Increment Units
800 - 2200 1 PWM in microseconds

SERVO5_MAX: Maximum PWM

maximum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Range Increment Units
800 - 2200 1 PWM in microseconds

SERVO5_TRIM: Trim PWM

Trim PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Range Increment Units
800 - 2200 1 PWM in microseconds

SERVO5_REVERSED: Servo reverse

Reverse servo operation. Set to 0 for normal operation. Set to 1 to reverse this output channel.

Values
Value Meaning
0 Normal
1 Reversed

SERVO5_FUNCTION: Servo output function

Function assigned to this servo. Seeing this to Disabled(0) will setup this output for control by auto missions or MAVLink servo set commands. any other value will enable the corresponding function

Values
Value Meaning
0 Disabled
1 RCPassThru
2 Flap
3 Flap_auto
4 Aileron
6 mount_pan
7 mount_tilt
8 mount_roll
9 mount_open
10 camera_trigger
11 release
12 mount2_pan
13 mount2_tilt
14 mount2_roll
15 mount2_open
16 DifferentialSpoilerLeft1
17 DifferentialSpoilerRight1
86 DifferentialSpoilerLeft2
87 DifferentialSpoilerRight2
19 Elevator
21 Rudder
24 FlaperonLeft
25 FlaperonRight
26 GroundSteering
27 Parachute
28 EPM
29 LandingGear
30 EngineRunEnable
31 HeliRSC
32 HeliTailRSC
33 Motor1
34 Motor2
35 Motor3
36 Motor4
37 Motor5
38 Motor6
39 Motor7
40 Motor8
41 MotorTilt
51 RCIN1
52 RCIN2
53 RCIN3
54 RCIN4
55 RCIN5
56 RCIN6
57 RCIN7
58 RCIN8
59 RCIN9
60 RCIN10
61 RCIN11
62 RCIN12
63 RCIN13
64 RCIN14
65 RCIN15
66 RCIN16
67 Ignition
68 Choke
69 Starter
70 Throttle
71 TrackerYaw
72 TrackerPitch
73 ThrottleLeft
74 ThrottleRight
75 tiltMotorLeft
76 tiltMotorRight
77 ElevonLeft
78 ElevonRight
79 VTailLeft
80 VTailRight
81 BoostThrottle
82 Motor9
83 Motor10
84 Motor11
85 Motor12

SERVO6_ Parameters

SERVO6_MIN: Minimum PWM

minimum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Range Increment Units
800 - 2200 1 PWM in microseconds

SERVO6_MAX: Maximum PWM

maximum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Range Increment Units
800 - 2200 1 PWM in microseconds

SERVO6_TRIM: Trim PWM

Trim PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Range Increment Units
800 - 2200 1 PWM in microseconds

SERVO6_REVERSED: Servo reverse

Reverse servo operation. Set to 0 for normal operation. Set to 1 to reverse this output channel.

Values
Value Meaning
0 Normal
1 Reversed

SERVO6_FUNCTION: Servo output function

Function assigned to this servo. Seeing this to Disabled(0) will setup this output for control by auto missions or MAVLink servo set commands. any other value will enable the corresponding function

Values
Value Meaning
0 Disabled
1 RCPassThru
2 Flap
3 Flap_auto
4 Aileron
6 mount_pan
7 mount_tilt
8 mount_roll
9 mount_open
10 camera_trigger
11 release
12 mount2_pan
13 mount2_tilt
14 mount2_roll
15 mount2_open
16 DifferentialSpoilerLeft1
17 DifferentialSpoilerRight1
86 DifferentialSpoilerLeft2
87 DifferentialSpoilerRight2
19 Elevator
21 Rudder
24 FlaperonLeft
25 FlaperonRight
26 GroundSteering
27 Parachute
28 EPM
29 LandingGear
30 EngineRunEnable
31 HeliRSC
32 HeliTailRSC
33 Motor1
34 Motor2
35 Motor3
36 Motor4
37 Motor5
38 Motor6
39 Motor7
40 Motor8
41 MotorTilt
51 RCIN1
52 RCIN2
53 RCIN3
54 RCIN4
55 RCIN5
56 RCIN6
57 RCIN7
58 RCIN8
59 RCIN9
60 RCIN10
61 RCIN11
62 RCIN12
63 RCIN13
64 RCIN14
65 RCIN15
66 RCIN16
67 Ignition
68 Choke
69 Starter
70 Throttle
71 TrackerYaw
72 TrackerPitch
73 ThrottleLeft
74 ThrottleRight
75 tiltMotorLeft
76 tiltMotorRight
77 ElevonLeft
78 ElevonRight
79 VTailLeft
80 VTailRight
81 BoostThrottle
82 Motor9
83 Motor10
84 Motor11
85 Motor12

SERVO7_ Parameters

SERVO7_MIN: Minimum PWM

minimum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Range Increment Units
800 - 2200 1 PWM in microseconds

SERVO7_MAX: Maximum PWM

maximum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Range Increment Units
800 - 2200 1 PWM in microseconds

SERVO7_TRIM: Trim PWM

Trim PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Range Increment Units
800 - 2200 1 PWM in microseconds

SERVO7_REVERSED: Servo reverse

Reverse servo operation. Set to 0 for normal operation. Set to 1 to reverse this output channel.

Values
Value Meaning
0 Normal
1 Reversed

SERVO7_FUNCTION: Servo output function

Function assigned to this servo. Seeing this to Disabled(0) will setup this output for control by auto missions or MAVLink servo set commands. any other value will enable the corresponding function

Values
Value Meaning
0 Disabled
1 RCPassThru
2 Flap
3 Flap_auto
4 Aileron
6 mount_pan
7 mount_tilt
8 mount_roll
9 mount_open
10 camera_trigger
11 release
12 mount2_pan
13 mount2_tilt
14 mount2_roll
15 mount2_open
16 DifferentialSpoilerLeft1
17 DifferentialSpoilerRight1
86 DifferentialSpoilerLeft2
87 DifferentialSpoilerRight2
19 Elevator
21 Rudder
24 FlaperonLeft
25 FlaperonRight
26 GroundSteering
27 Parachute
28 EPM
29 LandingGear
30 EngineRunEnable
31 HeliRSC
32 HeliTailRSC
33 Motor1
34 Motor2
35 Motor3
36 Motor4
37 Motor5
38 Motor6
39 Motor7
40 Motor8
41 MotorTilt
51 RCIN1
52 RCIN2
53 RCIN3
54 RCIN4
55 RCIN5
56 RCIN6
57 RCIN7
58 RCIN8
59 RCIN9
60 RCIN10
61 RCIN11
62 RCIN12
63 RCIN13
64 RCIN14
65 RCIN15
66 RCIN16
67 Ignition
68 Choke
69 Starter
70 Throttle
71 TrackerYaw
72 TrackerPitch
73 ThrottleLeft
74 ThrottleRight
75 tiltMotorLeft
76 tiltMotorRight
77 ElevonLeft
78 ElevonRight
79 VTailLeft
80 VTailRight
81 BoostThrottle
82 Motor9
83 Motor10
84 Motor11
85 Motor12

SERVO8_ Parameters

SERVO8_MIN: Minimum PWM

minimum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Range Increment Units
800 - 2200 1 PWM in microseconds

SERVO8_MAX: Maximum PWM

maximum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Range Increment Units
800 - 2200 1 PWM in microseconds

SERVO8_TRIM: Trim PWM

Trim PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Range Increment Units
800 - 2200 1 PWM in microseconds

SERVO8_REVERSED: Servo reverse

Reverse servo operation. Set to 0 for normal operation. Set to 1 to reverse this output channel.

Values
Value Meaning
0 Normal
1 Reversed

SERVO8_FUNCTION: Servo output function

Function assigned to this servo. Seeing this to Disabled(0) will setup this output for control by auto missions or MAVLink servo set commands. any other value will enable the corresponding function

Values
Value Meaning
0 Disabled
1 RCPassThru
2 Flap
3 Flap_auto
4 Aileron
6 mount_pan
7 mount_tilt
8 mount_roll
9 mount_open
10 camera_trigger
11 release
12 mount2_pan
13 mount2_tilt
14 mount2_roll
15 mount2_open
16 DifferentialSpoilerLeft1
17 DifferentialSpoilerRight1
86 DifferentialSpoilerLeft2
87 DifferentialSpoilerRight2
19 Elevator
21 Rudder
24 FlaperonLeft
25 FlaperonRight
26 GroundSteering
27 Parachute
28 EPM
29 LandingGear
30 EngineRunEnable
31 HeliRSC
32 HeliTailRSC
33 Motor1
34 Motor2
35 Motor3
36 Motor4
37 Motor5
38 Motor6
39 Motor7
40 Motor8
41 MotorTilt
51 RCIN1
52 RCIN2
53 RCIN3
54 RCIN4
55 RCIN5
56 RCIN6
57 RCIN7
58 RCIN8
59 RCIN9
60 RCIN10
61 RCIN11
62 RCIN12
63 RCIN13
64 RCIN14
65 RCIN15
66 RCIN16
67 Ignition
68 Choke
69 Starter
70 Throttle
71 TrackerYaw
72 TrackerPitch
73 ThrottleLeft
74 ThrottleRight
75 tiltMotorLeft
76 tiltMotorRight
77 ElevonLeft
78 ElevonRight
79 VTailLeft
80 VTailRight
81 BoostThrottle
82 Motor9
83 Motor10
84 Motor11
85 Motor12

SERVO9_ Parameters

SERVO9_MIN: Minimum PWM

minimum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Range Increment Units
800 - 2200 1 PWM in microseconds

SERVO9_MAX: Maximum PWM

maximum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Range Increment Units
800 - 2200 1 PWM in microseconds

SERVO9_TRIM: Trim PWM

Trim PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.

Range Increment Units
800 - 2200 1 PWM in microseconds

SERVO9_REVERSED: Servo reverse

Reverse servo operation. Set to 0 for normal operation. Set to 1 to reverse this output channel.

Values
Value Meaning
0 Normal
1 Reversed

SERVO9_FUNCTION: Servo output function

Function assigned to this servo. Seeing this to Disabled(0) will setup this output for control by auto missions or MAVLink servo set commands. any other value will enable the corresponding function

Values
Value Meaning
0 Disabled
1 RCPassThru
2 Flap
3 Flap_auto
4 Aileron
6 mount_pan
7 mount_tilt
8 mount_roll
9 mount_open
10 camera_trigger
11 release
12 mount2_pan
13 mount2_tilt
14 mount2_roll
15 mount2_open
16 DifferentialSpoilerLeft1
17 DifferentialSpoilerRight1
86 DifferentialSpoilerLeft2
87 DifferentialSpoilerRight2
19 Elevator
21 Rudder
24 FlaperonLeft
25 FlaperonRight
26 GroundSteering
27 Parachute
28 EPM
29 LandingGear
30 EngineRunEnable
31 HeliRSC
32 HeliTailRSC
33 Motor1
34 Motor2
35 Motor3
36 Motor4
37 Motor5
38 Motor6
39 Motor7
40 Motor8
41 MotorTilt
51 RCIN1
52 RCIN2
53 RCIN3
54 RCIN4
55 RCIN5
56 RCIN6
57 RCIN7
58 RCIN8
59 RCIN9
60 RCIN10
61 RCIN11
62 RCIN12
63 RCIN13
64 RCIN14
65 RCIN15
66 RCIN16
67 Ignition
68 Choke
69 Starter
70 Throttle
71 TrackerYaw
72 TrackerPitch
73 ThrottleLeft
74 ThrottleRight
75 tiltMotorLeft
76 tiltMotorRight
77 ElevonLeft
78 ElevonRight
79 VTailLeft
80 VTailRight
81 BoostThrottle
82 Motor9
83 Motor10
84 Motor11
85 Motor12

SR0_ Parameters

SR0_RAW_SENS: Raw sensor stream rate

Note: This parameter is for advanced users

Raw sensor stream rate to ground station

Range Increment Units
0 - 10 1 hertz

SR0_EXT_STAT: Extended status stream rate to ground station

Note: This parameter is for advanced users

Extended status stream rate to ground station

Range Increment Units
0 - 10 1 hertz

SR0_RC_CHAN: RC Channel stream rate to ground station

Note: This parameter is for advanced users

RC Channel stream rate to ground station

Range Increment Units
0 - 10 1 hertz

SR0_RAW_CTRL: Raw Control stream rate to ground station

Note: This parameter is for advanced users

Raw Control stream rate to ground station

Range Increment Units
0 - 10 1 hertz

SR0_POSITION: Position stream rate to ground station

Note: This parameter is for advanced users

Position stream rate to ground station

Range Increment Units
0 - 10 1 hertz

SR0_EXTRA1: Extra data type 1 stream rate to ground station

Note: This parameter is for advanced users

Extra data type 1 stream rate to ground station

Range Increment Units
0 - 10 1 hertz

SR0_EXTRA2: Extra data type 2 stream rate to ground station

Note: This parameter is for advanced users

Extra data type 2 stream rate to ground station

Range Increment Units
0 - 10 1 hertz

SR0_EXTRA3: Extra data type 3 stream rate to ground station

Note: This parameter is for advanced users

Extra data type 3 stream rate to ground station

Range Increment Units
0 - 10 1 hertz

SR0_PARAMS: Parameter stream rate to ground station

Note: This parameter is for advanced users

Parameter stream rate to ground station

Range Increment Units
0 - 10 1 hertz

SR1_ Parameters

SR1_RAW_SENS: Raw sensor stream rate

Note: This parameter is for advanced users

Raw sensor stream rate to ground station

Range Increment Units
0 - 10 1 hertz

SR1_EXT_STAT: Extended status stream rate to ground station

Note: This parameter is for advanced users

Extended status stream rate to ground station

Range Increment Units
0 - 10 1 hertz

SR1_RC_CHAN: RC Channel stream rate to ground station

Note: This parameter is for advanced users

RC Channel stream rate to ground station

Range Increment Units
0 - 10 1 hertz

SR1_RAW_CTRL: Raw Control stream rate to ground station

Note: This parameter is for advanced users

Raw Control stream rate to ground station

Range Increment Units
0 - 10 1 hertz

SR1_POSITION: Position stream rate to ground station

Note: This parameter is for advanced users

Position stream rate to ground station

Range Increment Units
0 - 10 1 hertz

SR1_EXTRA1: Extra data type 1 stream rate to ground station

Note: This parameter is for advanced users

Extra data type 1 stream rate to ground station

Range Increment Units
0 - 10 1 hertz

SR1_EXTRA2: Extra data type 2 stream rate to ground station

Note: This parameter is for advanced users

Extra data type 2 stream rate to ground station

Range Increment Units
0 - 10 1 hertz

SR1_EXTRA3: Extra data type 3 stream rate to ground station

Note: This parameter is for advanced users

Extra data type 3 stream rate to ground station

Range Increment Units
0 - 10 1 hertz

SR1_PARAMS: Parameter stream rate to ground station

Note: This parameter is for advanced users

Parameter stream rate to ground station

Range Increment Units
0 - 10 1 hertz

SR2_ Parameters

SR2_RAW_SENS: Raw sensor stream rate

Note: This parameter is for advanced users

Raw sensor stream rate to ground station

Range Increment Units
0 - 10 1 hertz

SR2_EXT_STAT: Extended status stream rate to ground station

Note: This parameter is for advanced users

Extended status stream rate to ground station

Range Increment Units
0 - 10 1 hertz

SR2_RC_CHAN: RC Channel stream rate to ground station

Note: This parameter is for advanced users

RC Channel stream rate to ground station

Range Increment Units
0 - 10 1 hertz

SR2_RAW_CTRL: Raw Control stream rate to ground station

Note: This parameter is for advanced users

Raw Control stream rate to ground station

Range Increment Units
0 - 10 1 hertz

SR2_POSITION: Position stream rate to ground station

Note: This parameter is for advanced users

Position stream rate to ground station

Range Increment Units
0 - 10 1 hertz

SR2_EXTRA1: Extra data type 1 stream rate to ground station

Note: This parameter is for advanced users

Extra data type 1 stream rate to ground station

Range Increment Units
0 - 10 1 hertz

SR2_EXTRA2: Extra data type 2 stream rate to ground station

Note: This parameter is for advanced users

Extra data type 2 stream rate to ground station

Range Increment Units
0 - 10 1 hertz

SR2_EXTRA3: Extra data type 3 stream rate to ground station

Note: This parameter is for advanced users

Extra data type 3 stream rate to ground station

Range Increment Units
0 - 10 1 hertz

SR2_PARAMS: Parameter stream rate to ground station

Note: This parameter is for advanced users

Parameter stream rate to ground station

Range Increment Units
0 - 10 1 hertz

SR3_ Parameters

SR3_RAW_SENS: Raw sensor stream rate

Note: This parameter is for advanced users

Raw sensor stream rate to ground station

Range Increment Units
0 - 10 1 hertz

SR3_EXT_STAT: Extended status stream rate to ground station

Note: This parameter is for advanced users

Extended status stream rate to ground station

Range Increment Units
0 - 10 1 hertz

SR3_RC_CHAN: RC Channel stream rate to ground station

Note: This parameter is for advanced users

RC Channel stream rate to ground station

Range Increment Units
0 - 10 1 hertz

SR3_RAW_CTRL: Raw Control stream rate to ground station

Note: This parameter is for advanced users

Raw Control stream rate to ground station

Range Increment Units
0 - 10 1 hertz

SR3_POSITION: Position stream rate to ground station

Note: This parameter is for advanced users

Position stream rate to ground station

Range Increment Units
0 - 10 1 hertz

SR3_EXTRA1: Extra data type 1 stream rate to ground station

Note: This parameter is for advanced users

Extra data type 1 stream rate to ground station

Range Increment Units
0 - 10 1 hertz

SR3_EXTRA2: Extra data type 2 stream rate to ground station

Note: This parameter is for advanced users

Extra data type 2 stream rate to ground station

Range Increment Units
0 - 10 1 hertz

SR3_EXTRA3: Extra data type 3 stream rate to ground station

Note: This parameter is for advanced users

Extra data type 3 stream rate to ground station

Range Increment Units
0 - 10 1 hertz

SR3_PARAMS: Parameter stream rate to ground station

Note: This parameter is for advanced users

Parameter stream rate to ground station

Range Increment Units
0 - 10 1 hertz

STAT Parameters

STAT_BOOTCNT: Boot Count

Number of times board has been booted

ReadOnly
True

STAT_FLTTIME: Total FlightTime

Total FlightTime (seconds)

ReadOnly Units
True seconds

STAT_RUNTIME: Total RunTime

Total time autopilot has run

ReadOnly Units
True seconds

STAT_RESET: Reset time

Seconds since January 1st 2016 (Unix epoch+1451606400) since reset (set to 0 to reset statistics)

ReadOnly Units
True seconds

VISO Parameters

VISO_TYPE: Visual odometry camera connection type

Note: This parameter is for advanced users

Visual odometry camera connection type

Values
Value Meaning
0 None
1 MAV

VISO_POS_X: Visual odometry camera X position offset

Note: This parameter is for advanced users

X position of the camera in body frame. Positive X is forward of the origin.

Units
meters

VISO_POS_Y: Visual odometry camera Y position offset

Note: This parameter is for advanced users

Y position of the camera in body frame. Positive Y is to the right of the origin.

Units
meters

VISO_POS_Z: Visual odometry camera Z position offset

Note: This parameter is for advanced users

Z position of the camera in body frame. Positive Z is down from the origin.

Units
meters

VISO_ORIENT: Visual odometery camera orientation

Note: This parameter is for advanced users

Visual odometery camera orientation

Values
Value Meaning
0 Forward
2 Right
4 Back
6 Left
24 Up
25 Down

WENC Parameters

WENC_TYPE: WheelEncoder type

What type of WheelEncoder is connected

Values
Value Meaning
0 None
1 Quadrature

WENC_CPR: WheelEncoder counts per revolution

WheelEncoder counts per full revolution of the wheel

Increment
1

WENC_RADIUS: Wheel radius in meters

Wheel radius in meters

Increment
0.001

WENC_POS_X: Wheel’s X position offset

Note: This parameter is for advanced users

X position of the center of the wheel in body frame. Positive X is forward of the origin.

Increment Units
0.01 meters

WENC_POS_Y: Wheel’s Y position offset

Note: This parameter is for advanced users

Y position of the center of the wheel in body frame. Positive Y is to the right of the origin.

Increment Units
0.01 meters

WENC_POS_Z: Wheel’s Z position offset

Note: This parameter is for advanced users

Z position of the center of the wheel in body frame. Positive Z is down from the origin.

Increment Units
0.01 meters

WENC_PINA: Input Pin A

Input Pin A

Values
Value Meaning
-1 Disabled
50 PixhawkAUX1
51 PixhawkAUX2
52 PixhawkAUX3
53 PixhawkAUX4
54 PixhawkAUX5
55 PixhawkAUX6

WENC_PINB: Input Pin B

Input Pin B

Values
Value Meaning
-1 Disabled
50 PixhawkAUX1
51 PixhawkAUX2
52 PixhawkAUX3
53 PixhawkAUX4
54 PixhawkAUX5
55 PixhawkAUX6

WENC2_TYPE: Second WheelEncoder type

What type of WheelEncoder sensor is connected

Values
Value Meaning
0 None
1 Quadrature

WENC2_CPR: WheelEncoder 2 counts per revolution

WheelEncoder 2 counts per full revolution of the wheel

Increment
1

WENC2_RADIUS: Wheel2’s radius in meters

Wheel2’s radius in meters

Increment
0.001

WENC2_POS_X: Wheel2’s X position offset

Note: This parameter is for advanced users

X position of the center of the second wheel in body frame. Positive X is forward of the origin.

Increment Units
0.01 meters

WENC2_POS_Y: Wheel2’s Y position offset

Note: This parameter is for advanced users

Y position of the center of the second wheel in body frame. Positive Y is to the right of the origin.

Increment Units
0.01 meters

WENC2_POS_Z: Wheel2’s Z position offset

Note: This parameter is for advanced users

Z position of the center of the second wheel in body frame. Positive Z is down from the origin.

Increment Units
0.01 meters

WENC2_PINA: Second Encoder Input Pin A

Second Encoder Input Pin A

Values
Value Meaning
-1 Disabled
50 PixhawkAUX1
51 PixhawkAUX2
52 PixhawkAUX3
53 PixhawkAUX4
54 PixhawkAUX5
55 PixhawkAUX6

WENC2_PINB: Second Encoder Input Pin B

Second Encoder Input Pin B

Values
Value Meaning
-1 Disabled
50 PixhawkAUX1
51 PixhawkAUX2
52 PixhawkAUX3
53 PixhawkAUX4
54 PixhawkAUX5
55 PixhawkAUX6