Holybro Kakute F7 and KAKUTE F7 AIO

../_images/holybro-kakutef7aio.png

above image and some content courtesy of Holybro

Note

Support for these two boards are available with Copter-3.6.0 (and higher)

Specifications

  • Processor
    • STM32F745 32-bit processor
  • Sensors
    • InvenSense ICM20689 IMU (accel and gyro only, no compass) on vibration isolating foam
    • BMP280 barometers
  • Power
    • 7V ~ 42V input power directly from battery
    • Current Sensor up to 120A maximum continuous current on the All-in-One version
  • Interfaces
    • 6x PWM outputs
    • 1x RC input SBUS/PPM
    • 5x UARTs/serial for GPS and other peripherals
    • 1x I2C port for external compass
    • micro USB port
    • All UARTS support hardware inversion. SBUS, SmartPort, and other inverted protocols work on any UART without “uninvert hack”
    • microSD Card Slot for logging
    • AT7456E OSD
    • 2A 5v regulator

Pinout

The KakuteF7 comes in two varients with the primary difference being the AIO (All-In-One) board employs current sensor and provides power distribution in each of the four corners. Both variants include a 5-volt regulator rated for 2 amps, OSD, vibration-isolated IMU, etc.

Kakute F7 AIO

../_images/holybro-kakutef7_AIO.jpg

Kakute F7

../_images/holybro-kakutef7.jpg

UART Mapping

The UARTs are marked Rn and Tn in the above pinouts. The Rn pin is the receive pin for UARTn. The Tn pin is the transmit pin for UARTn.

  • SERIAL0 -> USB
  • SERIAL1 -> UART1 (Telem1)
  • SERIAL2 -> UART2 (Telem2)
  • SERIAL3 -> UART3 (GPS)
  • SERIAL4 -> UART4
  • SERIAL5 -> UART7
  • SERIAL6 -> UART6 (Transmit only, FrSky)

The SERIAL5 port (UART7) is for ESC telemetry, and has a R7 pad on each of the four corners of the KakuteF7 AIO board.

Servo Output Mapping

The PWM outputs are marked M1-M6 in the above pinouts. The corresponding servo outputs are:

  • M1 -> Servo Output 4
  • M2 -> Servo Output 1
  • M3 -> Servo Output 2
  • M4 -> Servo Output 3
  • M5 -> Servo Output 5
  • M6 -> Servo Output 6

RC Input

RC input is configured on the R6 (UART6_RX) pin. It supports all RC protocols.

FrSky Telemetry

FrSky Telemetry is supported using the T6 pin (UART6 transmit). You need to set the following parameters to enable support for FrSky S.PORT

  • SERIAL6_PROTOCOL 10
  • SERIAL6_OPTIONS 7

OSD Support

The KakuteF7 AIO supports OSD using OSD_TYPE 1 (MAX7456 driver).

PWM Output

The KakuteF7 supports up to 6 PWM outputs. The pads for motor output M1 to M6 on the above diagram are for the 6 outputs. All 6 outputs support DShot as well as all PWM types.

The PWM is in 3 groups:

  • PWM 1, 2 and 3 in group1
  • PWM 4 and 5 in group2
  • PWM 6 in group3

Channels within the same group need to use the same output rate, whether PWM or Dshot. If any channel in a group uses DShot then all channels in the group need to use DShot.

Battery Monitoring

The AIO board has a built-in current sensor. The current sensor can read up to 130 Amps. The voltage sensor can handle up to 6S LiPo batteries.

The correct battery setting parameters are:

  • BATT_MONITOR 4
  • BATT_VOLT_PIN 13
  • BATT_CURR_PIN 12
  • BATT_VOLT_MULT 10.1
  • BATT_AMP_PERVLT 17.0

Compass

The Kakute F7 and Kakute F7 AIO do not have a built-in compass, however you can attach an external compass using I2C on the SDA and SCL pads.

Loading Firmware

Initial firmware load can be done with DFU by plugging in USB with the bootloader button pressed. Then you should load the “with_bl.hex” firmware, using your favourite DFU loading tool.

Once the initial firmware is loaded you can update the firmware using any ArduPilot ground station software. Updates should be done with the *.apj firmware files.

Where to Buy